Merge tag 'xfs-5.19-fixes-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 static bool vgic_present;
57
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
64 }
65
66 int kvm_arch_hardware_setup(void *opaque)
67 {
68         return 0;
69 }
70
71 int kvm_arch_check_processor_compat(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
77                             struct kvm_enable_cap *cap)
78 {
79         int r;
80
81         if (cap->flags)
82                 return -EINVAL;
83
84         switch (cap->cap) {
85         case KVM_CAP_ARM_NISV_TO_USER:
86                 r = 0;
87                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
88                         &kvm->arch.flags);
89                 break;
90         case KVM_CAP_ARM_MTE:
91                 mutex_lock(&kvm->lock);
92                 if (!system_supports_mte() || kvm->created_vcpus) {
93                         r = -EINVAL;
94                 } else {
95                         r = 0;
96                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
97                 }
98                 mutex_unlock(&kvm->lock);
99                 break;
100         case KVM_CAP_ARM_SYSTEM_SUSPEND:
101                 r = 0;
102                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = kvm_share_hyp(kvm, kvm + 1);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL)) {
154                 ret = -ENOMEM;
155                 goto out_free_stage2_pgd;
156         }
157         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
158
159         kvm_vgic_early_init(kvm);
160
161         /* The maximum number of VCPUs is limited by the host's GIC model */
162         kvm->max_vcpus = kvm_arm_default_max_vcpus();
163
164         set_default_spectre(kvm);
165         kvm_arm_init_hypercalls(kvm);
166
167         return ret;
168 out_free_stage2_pgd:
169         kvm_free_stage2_pgd(&kvm->arch.mmu);
170         return ret;
171 }
172
173 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
174 {
175         return VM_FAULT_SIGBUS;
176 }
177
178
179 /**
180  * kvm_arch_destroy_vm - destroy the VM data structure
181  * @kvm:        pointer to the KVM struct
182  */
183 void kvm_arch_destroy_vm(struct kvm *kvm)
184 {
185         bitmap_free(kvm->arch.pmu_filter);
186         free_cpumask_var(kvm->arch.supported_cpus);
187
188         kvm_vgic_destroy(kvm);
189
190         kvm_destroy_vcpus(kvm);
191
192         kvm_unshare_hyp(kvm, kvm + 1);
193 }
194
195 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
196 {
197         int r;
198         switch (ext) {
199         case KVM_CAP_IRQCHIP:
200                 r = vgic_present;
201                 break;
202         case KVM_CAP_IOEVENTFD:
203         case KVM_CAP_DEVICE_CTRL:
204         case KVM_CAP_USER_MEMORY:
205         case KVM_CAP_SYNC_MMU:
206         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
207         case KVM_CAP_ONE_REG:
208         case KVM_CAP_ARM_PSCI:
209         case KVM_CAP_ARM_PSCI_0_2:
210         case KVM_CAP_READONLY_MEM:
211         case KVM_CAP_MP_STATE:
212         case KVM_CAP_IMMEDIATE_EXIT:
213         case KVM_CAP_VCPU_EVENTS:
214         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
215         case KVM_CAP_ARM_NISV_TO_USER:
216         case KVM_CAP_ARM_INJECT_EXT_DABT:
217         case KVM_CAP_SET_GUEST_DEBUG:
218         case KVM_CAP_VCPU_ATTRIBUTES:
219         case KVM_CAP_PTP_KVM:
220         case KVM_CAP_ARM_SYSTEM_SUSPEND:
221                 r = 1;
222                 break;
223         case KVM_CAP_SET_GUEST_DEBUG2:
224                 return KVM_GUESTDBG_VALID_MASK;
225         case KVM_CAP_ARM_SET_DEVICE_ADDR:
226                 r = 1;
227                 break;
228         case KVM_CAP_NR_VCPUS:
229                 /*
230                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
231                  * architectures, as it does not always bound it to
232                  * KVM_CAP_MAX_VCPUS. It should not matter much because
233                  * this is just an advisory value.
234                  */
235                 r = min_t(unsigned int, num_online_cpus(),
236                           kvm_arm_default_max_vcpus());
237                 break;
238         case KVM_CAP_MAX_VCPUS:
239         case KVM_CAP_MAX_VCPU_ID:
240                 if (kvm)
241                         r = kvm->max_vcpus;
242                 else
243                         r = kvm_arm_default_max_vcpus();
244                 break;
245         case KVM_CAP_MSI_DEVID:
246                 if (!kvm)
247                         r = -EINVAL;
248                 else
249                         r = kvm->arch.vgic.msis_require_devid;
250                 break;
251         case KVM_CAP_ARM_USER_IRQ:
252                 /*
253                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
254                  * (bump this number if adding more devices)
255                  */
256                 r = 1;
257                 break;
258         case KVM_CAP_ARM_MTE:
259                 r = system_supports_mte();
260                 break;
261         case KVM_CAP_STEAL_TIME:
262                 r = kvm_arm_pvtime_supported();
263                 break;
264         case KVM_CAP_ARM_EL1_32BIT:
265                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
266                 break;
267         case KVM_CAP_GUEST_DEBUG_HW_BPS:
268                 r = get_num_brps();
269                 break;
270         case KVM_CAP_GUEST_DEBUG_HW_WPS:
271                 r = get_num_wrps();
272                 break;
273         case KVM_CAP_ARM_PMU_V3:
274                 r = kvm_arm_support_pmu_v3();
275                 break;
276         case KVM_CAP_ARM_INJECT_SERROR_ESR:
277                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
278                 break;
279         case KVM_CAP_ARM_VM_IPA_SIZE:
280                 r = get_kvm_ipa_limit();
281                 break;
282         case KVM_CAP_ARM_SVE:
283                 r = system_supports_sve();
284                 break;
285         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
286         case KVM_CAP_ARM_PTRAUTH_GENERIC:
287                 r = system_has_full_ptr_auth();
288                 break;
289         default:
290                 r = 0;
291         }
292
293         return r;
294 }
295
296 long kvm_arch_dev_ioctl(struct file *filp,
297                         unsigned int ioctl, unsigned long arg)
298 {
299         return -EINVAL;
300 }
301
302 struct kvm *kvm_arch_alloc_vm(void)
303 {
304         size_t sz = sizeof(struct kvm);
305
306         if (!has_vhe())
307                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
308
309         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
310 }
311
312 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
313 {
314         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
315                 return -EBUSY;
316
317         if (id >= kvm->max_vcpus)
318                 return -EINVAL;
319
320         return 0;
321 }
322
323 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
324 {
325         int err;
326
327         /* Force users to call KVM_ARM_VCPU_INIT */
328         vcpu->arch.target = -1;
329         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
330
331         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
332
333         /* Set up the timer */
334         kvm_timer_vcpu_init(vcpu);
335
336         kvm_pmu_vcpu_init(vcpu);
337
338         kvm_arm_reset_debug_ptr(vcpu);
339
340         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
341
342         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
343
344         err = kvm_vgic_vcpu_init(vcpu);
345         if (err)
346                 return err;
347
348         return kvm_share_hyp(vcpu, vcpu + 1);
349 }
350
351 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
352 {
353 }
354
355 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
356 {
357         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
358                 static_branch_dec(&userspace_irqchip_in_use);
359
360         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
361         kvm_timer_vcpu_terminate(vcpu);
362         kvm_pmu_vcpu_destroy(vcpu);
363
364         kvm_arm_vcpu_destroy(vcpu);
365 }
366
367 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
368 {
369
370 }
371
372 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
373 {
374
375 }
376
377 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
378 {
379         struct kvm_s2_mmu *mmu;
380         int *last_ran;
381
382         mmu = vcpu->arch.hw_mmu;
383         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
384
385         /*
386          * We guarantee that both TLBs and I-cache are private to each
387          * vcpu. If detecting that a vcpu from the same VM has
388          * previously run on the same physical CPU, call into the
389          * hypervisor code to nuke the relevant contexts.
390          *
391          * We might get preempted before the vCPU actually runs, but
392          * over-invalidation doesn't affect correctness.
393          */
394         if (*last_ran != vcpu->vcpu_id) {
395                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
396                 *last_ran = vcpu->vcpu_id;
397         }
398
399         vcpu->cpu = cpu;
400
401         kvm_vgic_load(vcpu);
402         kvm_timer_vcpu_load(vcpu);
403         if (has_vhe())
404                 kvm_vcpu_load_sysregs_vhe(vcpu);
405         kvm_arch_vcpu_load_fp(vcpu);
406         kvm_vcpu_pmu_restore_guest(vcpu);
407         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
408                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
409
410         if (single_task_running())
411                 vcpu_clear_wfx_traps(vcpu);
412         else
413                 vcpu_set_wfx_traps(vcpu);
414
415         if (vcpu_has_ptrauth(vcpu))
416                 vcpu_ptrauth_disable(vcpu);
417         kvm_arch_vcpu_load_debug_state_flags(vcpu);
418
419         if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
420                 vcpu_set_on_unsupported_cpu(vcpu);
421 }
422
423 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
424 {
425         kvm_arch_vcpu_put_debug_state_flags(vcpu);
426         kvm_arch_vcpu_put_fp(vcpu);
427         if (has_vhe())
428                 kvm_vcpu_put_sysregs_vhe(vcpu);
429         kvm_timer_vcpu_put(vcpu);
430         kvm_vgic_put(vcpu);
431         kvm_vcpu_pmu_restore_host(vcpu);
432         kvm_arm_vmid_clear_active();
433
434         vcpu_clear_on_unsupported_cpu(vcpu);
435         vcpu->cpu = -1;
436 }
437
438 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
439 {
440         vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
441         kvm_make_request(KVM_REQ_SLEEP, vcpu);
442         kvm_vcpu_kick(vcpu);
443 }
444
445 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
446 {
447         return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
448 }
449
450 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
451 {
452         vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
453         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
454         kvm_vcpu_kick(vcpu);
455 }
456
457 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
458 {
459         return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
460 }
461
462 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
463                                     struct kvm_mp_state *mp_state)
464 {
465         *mp_state = vcpu->arch.mp_state;
466
467         return 0;
468 }
469
470 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
471                                     struct kvm_mp_state *mp_state)
472 {
473         int ret = 0;
474
475         switch (mp_state->mp_state) {
476         case KVM_MP_STATE_RUNNABLE:
477                 vcpu->arch.mp_state = *mp_state;
478                 break;
479         case KVM_MP_STATE_STOPPED:
480                 kvm_arm_vcpu_power_off(vcpu);
481                 break;
482         case KVM_MP_STATE_SUSPENDED:
483                 kvm_arm_vcpu_suspend(vcpu);
484                 break;
485         default:
486                 ret = -EINVAL;
487         }
488
489         return ret;
490 }
491
492 /**
493  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
494  * @v:          The VCPU pointer
495  *
496  * If the guest CPU is not waiting for interrupts or an interrupt line is
497  * asserted, the CPU is by definition runnable.
498  */
499 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
500 {
501         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
502         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
503                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
504 }
505
506 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
507 {
508         return vcpu_mode_priv(vcpu);
509 }
510
511 #ifdef CONFIG_GUEST_PERF_EVENTS
512 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
513 {
514         return *vcpu_pc(vcpu);
515 }
516 #endif
517
518 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
519 {
520         return vcpu->arch.target >= 0;
521 }
522
523 /*
524  * Handle both the initialisation that is being done when the vcpu is
525  * run for the first time, as well as the updates that must be
526  * performed each time we get a new thread dealing with this vcpu.
527  */
528 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
529 {
530         struct kvm *kvm = vcpu->kvm;
531         int ret;
532
533         if (!kvm_vcpu_initialized(vcpu))
534                 return -ENOEXEC;
535
536         if (!kvm_arm_vcpu_is_finalized(vcpu))
537                 return -EPERM;
538
539         ret = kvm_arch_vcpu_run_map_fp(vcpu);
540         if (ret)
541                 return ret;
542
543         if (likely(vcpu_has_run_once(vcpu)))
544                 return 0;
545
546         kvm_arm_vcpu_init_debug(vcpu);
547
548         if (likely(irqchip_in_kernel(kvm))) {
549                 /*
550                  * Map the VGIC hardware resources before running a vcpu the
551                  * first time on this VM.
552                  */
553                 ret = kvm_vgic_map_resources(kvm);
554                 if (ret)
555                         return ret;
556         }
557
558         ret = kvm_timer_enable(vcpu);
559         if (ret)
560                 return ret;
561
562         ret = kvm_arm_pmu_v3_enable(vcpu);
563         if (ret)
564                 return ret;
565
566         if (!irqchip_in_kernel(kvm)) {
567                 /*
568                  * Tell the rest of the code that there are userspace irqchip
569                  * VMs in the wild.
570                  */
571                 static_branch_inc(&userspace_irqchip_in_use);
572         }
573
574         /*
575          * Initialize traps for protected VMs.
576          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
577          * the code is in place for first run initialization at EL2.
578          */
579         if (kvm_vm_is_protected(kvm))
580                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
581
582         mutex_lock(&kvm->lock);
583         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
584         mutex_unlock(&kvm->lock);
585
586         return ret;
587 }
588
589 bool kvm_arch_intc_initialized(struct kvm *kvm)
590 {
591         return vgic_initialized(kvm);
592 }
593
594 void kvm_arm_halt_guest(struct kvm *kvm)
595 {
596         unsigned long i;
597         struct kvm_vcpu *vcpu;
598
599         kvm_for_each_vcpu(i, vcpu, kvm)
600                 vcpu->arch.pause = true;
601         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
602 }
603
604 void kvm_arm_resume_guest(struct kvm *kvm)
605 {
606         unsigned long i;
607         struct kvm_vcpu *vcpu;
608
609         kvm_for_each_vcpu(i, vcpu, kvm) {
610                 vcpu->arch.pause = false;
611                 __kvm_vcpu_wake_up(vcpu);
612         }
613 }
614
615 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
616 {
617         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
618
619         rcuwait_wait_event(wait,
620                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
621                            TASK_INTERRUPTIBLE);
622
623         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
624                 /* Awaken to handle a signal, request we sleep again later. */
625                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
626         }
627
628         /*
629          * Make sure we will observe a potential reset request if we've
630          * observed a change to the power state. Pairs with the smp_wmb() in
631          * kvm_psci_vcpu_on().
632          */
633         smp_rmb();
634 }
635
636 /**
637  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
638  * @vcpu:       The VCPU pointer
639  *
640  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
641  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
642  * on when a wake event arrives, e.g. there may already be a pending wake event.
643  */
644 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
645 {
646         /*
647          * Sync back the state of the GIC CPU interface so that we have
648          * the latest PMR and group enables. This ensures that
649          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
650          * we have pending interrupts, e.g. when determining if the
651          * vCPU should block.
652          *
653          * For the same reason, we want to tell GICv4 that we need
654          * doorbells to be signalled, should an interrupt become pending.
655          */
656         preempt_disable();
657         kvm_vgic_vmcr_sync(vcpu);
658         vgic_v4_put(vcpu, true);
659         preempt_enable();
660
661         kvm_vcpu_halt(vcpu);
662         vcpu->arch.flags &= ~KVM_ARM64_WFIT;
663         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
664
665         preempt_disable();
666         vgic_v4_load(vcpu);
667         preempt_enable();
668 }
669
670 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
671 {
672         if (!kvm_arm_vcpu_suspended(vcpu))
673                 return 1;
674
675         kvm_vcpu_wfi(vcpu);
676
677         /*
678          * The suspend state is sticky; we do not leave it until userspace
679          * explicitly marks the vCPU as runnable. Request that we suspend again
680          * later.
681          */
682         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
683
684         /*
685          * Check to make sure the vCPU is actually runnable. If so, exit to
686          * userspace informing it of the wakeup condition.
687          */
688         if (kvm_arch_vcpu_runnable(vcpu)) {
689                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
690                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
691                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
692                 return 0;
693         }
694
695         /*
696          * Otherwise, we were unblocked to process a different event, such as a
697          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
698          * process the event.
699          */
700         return 1;
701 }
702
703 /**
704  * check_vcpu_requests - check and handle pending vCPU requests
705  * @vcpu:       the VCPU pointer
706  *
707  * Return: 1 if we should enter the guest
708  *         0 if we should exit to userspace
709  *         < 0 if we should exit to userspace, where the return value indicates
710  *         an error
711  */
712 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
713 {
714         if (kvm_request_pending(vcpu)) {
715                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
716                         kvm_vcpu_sleep(vcpu);
717
718                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
719                         kvm_reset_vcpu(vcpu);
720
721                 /*
722                  * Clear IRQ_PENDING requests that were made to guarantee
723                  * that a VCPU sees new virtual interrupts.
724                  */
725                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
726
727                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
728                         kvm_update_stolen_time(vcpu);
729
730                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
731                         /* The distributor enable bits were changed */
732                         preempt_disable();
733                         vgic_v4_put(vcpu, false);
734                         vgic_v4_load(vcpu);
735                         preempt_enable();
736                 }
737
738                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
739                         kvm_pmu_handle_pmcr(vcpu,
740                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
741
742                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
743                         return kvm_vcpu_suspend(vcpu);
744         }
745
746         return 1;
747 }
748
749 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
750 {
751         if (likely(!vcpu_mode_is_32bit(vcpu)))
752                 return false;
753
754         return !system_supports_32bit_el0() ||
755                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
756 }
757
758 /**
759  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
760  * @vcpu:       The VCPU pointer
761  * @ret:        Pointer to write optional return code
762  *
763  * Returns: true if the VCPU needs to return to a preemptible + interruptible
764  *          and skip guest entry.
765  *
766  * This function disambiguates between two different types of exits: exits to a
767  * preemptible + interruptible kernel context and exits to userspace. For an
768  * exit to userspace, this function will write the return code to ret and return
769  * true. For an exit to preemptible + interruptible kernel context (i.e. check
770  * for pending work and re-enter), return true without writing to ret.
771  */
772 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
773 {
774         struct kvm_run *run = vcpu->run;
775
776         /*
777          * If we're using a userspace irqchip, then check if we need
778          * to tell a userspace irqchip about timer or PMU level
779          * changes and if so, exit to userspace (the actual level
780          * state gets updated in kvm_timer_update_run and
781          * kvm_pmu_update_run below).
782          */
783         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
784                 if (kvm_timer_should_notify_user(vcpu) ||
785                     kvm_pmu_should_notify_user(vcpu)) {
786                         *ret = -EINTR;
787                         run->exit_reason = KVM_EXIT_INTR;
788                         return true;
789                 }
790         }
791
792         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
793                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
794                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
795                 run->fail_entry.cpu = smp_processor_id();
796                 *ret = 0;
797                 return true;
798         }
799
800         return kvm_request_pending(vcpu) ||
801                         xfer_to_guest_mode_work_pending();
802 }
803
804 /*
805  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
806  * the vCPU is running.
807  *
808  * This must be noinstr as instrumentation may make use of RCU, and this is not
809  * safe during the EQS.
810  */
811 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
812 {
813         int ret;
814
815         guest_state_enter_irqoff();
816         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
817         guest_state_exit_irqoff();
818
819         return ret;
820 }
821
822 /**
823  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
824  * @vcpu:       The VCPU pointer
825  *
826  * This function is called through the VCPU_RUN ioctl called from user space. It
827  * will execute VM code in a loop until the time slice for the process is used
828  * or some emulation is needed from user space in which case the function will
829  * return with return value 0 and with the kvm_run structure filled in with the
830  * required data for the requested emulation.
831  */
832 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
833 {
834         struct kvm_run *run = vcpu->run;
835         int ret;
836
837         if (run->exit_reason == KVM_EXIT_MMIO) {
838                 ret = kvm_handle_mmio_return(vcpu);
839                 if (ret)
840                         return ret;
841         }
842
843         vcpu_load(vcpu);
844
845         if (run->immediate_exit) {
846                 ret = -EINTR;
847                 goto out;
848         }
849
850         kvm_sigset_activate(vcpu);
851
852         ret = 1;
853         run->exit_reason = KVM_EXIT_UNKNOWN;
854         run->flags = 0;
855         while (ret > 0) {
856                 /*
857                  * Check conditions before entering the guest
858                  */
859                 ret = xfer_to_guest_mode_handle_work(vcpu);
860                 if (!ret)
861                         ret = 1;
862
863                 if (ret > 0)
864                         ret = check_vcpu_requests(vcpu);
865
866                 /*
867                  * Preparing the interrupts to be injected also
868                  * involves poking the GIC, which must be done in a
869                  * non-preemptible context.
870                  */
871                 preempt_disable();
872
873                 /*
874                  * The VMID allocator only tracks active VMIDs per
875                  * physical CPU, and therefore the VMID allocated may not be
876                  * preserved on VMID roll-over if the task was preempted,
877                  * making a thread's VMID inactive. So we need to call
878                  * kvm_arm_vmid_update() in non-premptible context.
879                  */
880                 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
881
882                 kvm_pmu_flush_hwstate(vcpu);
883
884                 local_irq_disable();
885
886                 kvm_vgic_flush_hwstate(vcpu);
887
888                 kvm_pmu_update_vcpu_events(vcpu);
889
890                 /*
891                  * Ensure we set mode to IN_GUEST_MODE after we disable
892                  * interrupts and before the final VCPU requests check.
893                  * See the comment in kvm_vcpu_exiting_guest_mode() and
894                  * Documentation/virt/kvm/vcpu-requests.rst
895                  */
896                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
897
898                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
899                         vcpu->mode = OUTSIDE_GUEST_MODE;
900                         isb(); /* Ensure work in x_flush_hwstate is committed */
901                         kvm_pmu_sync_hwstate(vcpu);
902                         if (static_branch_unlikely(&userspace_irqchip_in_use))
903                                 kvm_timer_sync_user(vcpu);
904                         kvm_vgic_sync_hwstate(vcpu);
905                         local_irq_enable();
906                         preempt_enable();
907                         continue;
908                 }
909
910                 kvm_arm_setup_debug(vcpu);
911                 kvm_arch_vcpu_ctxflush_fp(vcpu);
912
913                 /**************************************************************
914                  * Enter the guest
915                  */
916                 trace_kvm_entry(*vcpu_pc(vcpu));
917                 guest_timing_enter_irqoff();
918
919                 ret = kvm_arm_vcpu_enter_exit(vcpu);
920
921                 vcpu->mode = OUTSIDE_GUEST_MODE;
922                 vcpu->stat.exits++;
923                 /*
924                  * Back from guest
925                  *************************************************************/
926
927                 kvm_arm_clear_debug(vcpu);
928
929                 /*
930                  * We must sync the PMU state before the vgic state so
931                  * that the vgic can properly sample the updated state of the
932                  * interrupt line.
933                  */
934                 kvm_pmu_sync_hwstate(vcpu);
935
936                 /*
937                  * Sync the vgic state before syncing the timer state because
938                  * the timer code needs to know if the virtual timer
939                  * interrupts are active.
940                  */
941                 kvm_vgic_sync_hwstate(vcpu);
942
943                 /*
944                  * Sync the timer hardware state before enabling interrupts as
945                  * we don't want vtimer interrupts to race with syncing the
946                  * timer virtual interrupt state.
947                  */
948                 if (static_branch_unlikely(&userspace_irqchip_in_use))
949                         kvm_timer_sync_user(vcpu);
950
951                 kvm_arch_vcpu_ctxsync_fp(vcpu);
952
953                 /*
954                  * We must ensure that any pending interrupts are taken before
955                  * we exit guest timing so that timer ticks are accounted as
956                  * guest time. Transiently unmask interrupts so that any
957                  * pending interrupts are taken.
958                  *
959                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
960                  * context synchronization event) is necessary to ensure that
961                  * pending interrupts are taken.
962                  */
963                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
964                         local_irq_enable();
965                         isb();
966                         local_irq_disable();
967                 }
968
969                 guest_timing_exit_irqoff();
970
971                 local_irq_enable();
972
973                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
974
975                 /* Exit types that need handling before we can be preempted */
976                 handle_exit_early(vcpu, ret);
977
978                 preempt_enable();
979
980                 /*
981                  * The ARMv8 architecture doesn't give the hypervisor
982                  * a mechanism to prevent a guest from dropping to AArch32 EL0
983                  * if implemented by the CPU. If we spot the guest in such
984                  * state and that we decided it wasn't supposed to do so (like
985                  * with the asymmetric AArch32 case), return to userspace with
986                  * a fatal error.
987                  */
988                 if (vcpu_mode_is_bad_32bit(vcpu)) {
989                         /*
990                          * As we have caught the guest red-handed, decide that
991                          * it isn't fit for purpose anymore by making the vcpu
992                          * invalid. The VMM can try and fix it by issuing  a
993                          * KVM_ARM_VCPU_INIT if it really wants to.
994                          */
995                         vcpu->arch.target = -1;
996                         ret = ARM_EXCEPTION_IL;
997                 }
998
999                 ret = handle_exit(vcpu, ret);
1000         }
1001
1002         /* Tell userspace about in-kernel device output levels */
1003         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1004                 kvm_timer_update_run(vcpu);
1005                 kvm_pmu_update_run(vcpu);
1006         }
1007
1008         kvm_sigset_deactivate(vcpu);
1009
1010 out:
1011         /*
1012          * In the unlikely event that we are returning to userspace
1013          * with pending exceptions or PC adjustment, commit these
1014          * adjustments in order to give userspace a consistent view of
1015          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1016          * being preempt-safe on VHE.
1017          */
1018         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
1019                                          KVM_ARM64_INCREMENT_PC)))
1020                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1021
1022         vcpu_put(vcpu);
1023         return ret;
1024 }
1025
1026 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1027 {
1028         int bit_index;
1029         bool set;
1030         unsigned long *hcr;
1031
1032         if (number == KVM_ARM_IRQ_CPU_IRQ)
1033                 bit_index = __ffs(HCR_VI);
1034         else /* KVM_ARM_IRQ_CPU_FIQ */
1035                 bit_index = __ffs(HCR_VF);
1036
1037         hcr = vcpu_hcr(vcpu);
1038         if (level)
1039                 set = test_and_set_bit(bit_index, hcr);
1040         else
1041                 set = test_and_clear_bit(bit_index, hcr);
1042
1043         /*
1044          * If we didn't change anything, no need to wake up or kick other CPUs
1045          */
1046         if (set == level)
1047                 return 0;
1048
1049         /*
1050          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1051          * trigger a world-switch round on the running physical CPU to set the
1052          * virtual IRQ/FIQ fields in the HCR appropriately.
1053          */
1054         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1055         kvm_vcpu_kick(vcpu);
1056
1057         return 0;
1058 }
1059
1060 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1061                           bool line_status)
1062 {
1063         u32 irq = irq_level->irq;
1064         unsigned int irq_type, vcpu_idx, irq_num;
1065         int nrcpus = atomic_read(&kvm->online_vcpus);
1066         struct kvm_vcpu *vcpu = NULL;
1067         bool level = irq_level->level;
1068
1069         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1070         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1071         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1072         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1073
1074         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1075
1076         switch (irq_type) {
1077         case KVM_ARM_IRQ_TYPE_CPU:
1078                 if (irqchip_in_kernel(kvm))
1079                         return -ENXIO;
1080
1081                 if (vcpu_idx >= nrcpus)
1082                         return -EINVAL;
1083
1084                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1085                 if (!vcpu)
1086                         return -EINVAL;
1087
1088                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1089                         return -EINVAL;
1090
1091                 return vcpu_interrupt_line(vcpu, irq_num, level);
1092         case KVM_ARM_IRQ_TYPE_PPI:
1093                 if (!irqchip_in_kernel(kvm))
1094                         return -ENXIO;
1095
1096                 if (vcpu_idx >= nrcpus)
1097                         return -EINVAL;
1098
1099                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1100                 if (!vcpu)
1101                         return -EINVAL;
1102
1103                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1104                         return -EINVAL;
1105
1106                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1107         case KVM_ARM_IRQ_TYPE_SPI:
1108                 if (!irqchip_in_kernel(kvm))
1109                         return -ENXIO;
1110
1111                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1112                         return -EINVAL;
1113
1114                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1115         }
1116
1117         return -EINVAL;
1118 }
1119
1120 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1121                                const struct kvm_vcpu_init *init)
1122 {
1123         unsigned int i, ret;
1124         u32 phys_target = kvm_target_cpu();
1125
1126         if (init->target != phys_target)
1127                 return -EINVAL;
1128
1129         /*
1130          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1131          * use the same target.
1132          */
1133         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1134                 return -EINVAL;
1135
1136         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1137         for (i = 0; i < sizeof(init->features) * 8; i++) {
1138                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1139
1140                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1141                         return -ENOENT;
1142
1143                 /*
1144                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1145                  * use the same feature set.
1146                  */
1147                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1148                     test_bit(i, vcpu->arch.features) != set)
1149                         return -EINVAL;
1150
1151                 if (set)
1152                         set_bit(i, vcpu->arch.features);
1153         }
1154
1155         vcpu->arch.target = phys_target;
1156
1157         /* Now we know what it is, we can reset it. */
1158         ret = kvm_reset_vcpu(vcpu);
1159         if (ret) {
1160                 vcpu->arch.target = -1;
1161                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1162         }
1163
1164         return ret;
1165 }
1166
1167 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1168                                          struct kvm_vcpu_init *init)
1169 {
1170         int ret;
1171
1172         ret = kvm_vcpu_set_target(vcpu, init);
1173         if (ret)
1174                 return ret;
1175
1176         /*
1177          * Ensure a rebooted VM will fault in RAM pages and detect if the
1178          * guest MMU is turned off and flush the caches as needed.
1179          *
1180          * S2FWB enforces all memory accesses to RAM being cacheable,
1181          * ensuring that the data side is always coherent. We still
1182          * need to invalidate the I-cache though, as FWB does *not*
1183          * imply CTR_EL0.DIC.
1184          */
1185         if (vcpu_has_run_once(vcpu)) {
1186                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1187                         stage2_unmap_vm(vcpu->kvm);
1188                 else
1189                         icache_inval_all_pou();
1190         }
1191
1192         vcpu_reset_hcr(vcpu);
1193         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1194
1195         /*
1196          * Handle the "start in power-off" case.
1197          */
1198         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1199                 kvm_arm_vcpu_power_off(vcpu);
1200         else
1201                 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1202
1203         return 0;
1204 }
1205
1206 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1207                                  struct kvm_device_attr *attr)
1208 {
1209         int ret = -ENXIO;
1210
1211         switch (attr->group) {
1212         default:
1213                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1214                 break;
1215         }
1216
1217         return ret;
1218 }
1219
1220 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1221                                  struct kvm_device_attr *attr)
1222 {
1223         int ret = -ENXIO;
1224
1225         switch (attr->group) {
1226         default:
1227                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1228                 break;
1229         }
1230
1231         return ret;
1232 }
1233
1234 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1235                                  struct kvm_device_attr *attr)
1236 {
1237         int ret = -ENXIO;
1238
1239         switch (attr->group) {
1240         default:
1241                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1242                 break;
1243         }
1244
1245         return ret;
1246 }
1247
1248 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1249                                    struct kvm_vcpu_events *events)
1250 {
1251         memset(events, 0, sizeof(*events));
1252
1253         return __kvm_arm_vcpu_get_events(vcpu, events);
1254 }
1255
1256 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1257                                    struct kvm_vcpu_events *events)
1258 {
1259         int i;
1260
1261         /* check whether the reserved field is zero */
1262         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1263                 if (events->reserved[i])
1264                         return -EINVAL;
1265
1266         /* check whether the pad field is zero */
1267         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1268                 if (events->exception.pad[i])
1269                         return -EINVAL;
1270
1271         return __kvm_arm_vcpu_set_events(vcpu, events);
1272 }
1273
1274 long kvm_arch_vcpu_ioctl(struct file *filp,
1275                          unsigned int ioctl, unsigned long arg)
1276 {
1277         struct kvm_vcpu *vcpu = filp->private_data;
1278         void __user *argp = (void __user *)arg;
1279         struct kvm_device_attr attr;
1280         long r;
1281
1282         switch (ioctl) {
1283         case KVM_ARM_VCPU_INIT: {
1284                 struct kvm_vcpu_init init;
1285
1286                 r = -EFAULT;
1287                 if (copy_from_user(&init, argp, sizeof(init)))
1288                         break;
1289
1290                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1291                 break;
1292         }
1293         case KVM_SET_ONE_REG:
1294         case KVM_GET_ONE_REG: {
1295                 struct kvm_one_reg reg;
1296
1297                 r = -ENOEXEC;
1298                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1299                         break;
1300
1301                 r = -EFAULT;
1302                 if (copy_from_user(&reg, argp, sizeof(reg)))
1303                         break;
1304
1305                 /*
1306                  * We could owe a reset due to PSCI. Handle the pending reset
1307                  * here to ensure userspace register accesses are ordered after
1308                  * the reset.
1309                  */
1310                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1311                         kvm_reset_vcpu(vcpu);
1312
1313                 if (ioctl == KVM_SET_ONE_REG)
1314                         r = kvm_arm_set_reg(vcpu, &reg);
1315                 else
1316                         r = kvm_arm_get_reg(vcpu, &reg);
1317                 break;
1318         }
1319         case KVM_GET_REG_LIST: {
1320                 struct kvm_reg_list __user *user_list = argp;
1321                 struct kvm_reg_list reg_list;
1322                 unsigned n;
1323
1324                 r = -ENOEXEC;
1325                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1326                         break;
1327
1328                 r = -EPERM;
1329                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1330                         break;
1331
1332                 r = -EFAULT;
1333                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1334                         break;
1335                 n = reg_list.n;
1336                 reg_list.n = kvm_arm_num_regs(vcpu);
1337                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1338                         break;
1339                 r = -E2BIG;
1340                 if (n < reg_list.n)
1341                         break;
1342                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1343                 break;
1344         }
1345         case KVM_SET_DEVICE_ATTR: {
1346                 r = -EFAULT;
1347                 if (copy_from_user(&attr, argp, sizeof(attr)))
1348                         break;
1349                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1350                 break;
1351         }
1352         case KVM_GET_DEVICE_ATTR: {
1353                 r = -EFAULT;
1354                 if (copy_from_user(&attr, argp, sizeof(attr)))
1355                         break;
1356                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1357                 break;
1358         }
1359         case KVM_HAS_DEVICE_ATTR: {
1360                 r = -EFAULT;
1361                 if (copy_from_user(&attr, argp, sizeof(attr)))
1362                         break;
1363                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1364                 break;
1365         }
1366         case KVM_GET_VCPU_EVENTS: {
1367                 struct kvm_vcpu_events events;
1368
1369                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1370                         return -EINVAL;
1371
1372                 if (copy_to_user(argp, &events, sizeof(events)))
1373                         return -EFAULT;
1374
1375                 return 0;
1376         }
1377         case KVM_SET_VCPU_EVENTS: {
1378                 struct kvm_vcpu_events events;
1379
1380                 if (copy_from_user(&events, argp, sizeof(events)))
1381                         return -EFAULT;
1382
1383                 return kvm_arm_vcpu_set_events(vcpu, &events);
1384         }
1385         case KVM_ARM_VCPU_FINALIZE: {
1386                 int what;
1387
1388                 if (!kvm_vcpu_initialized(vcpu))
1389                         return -ENOEXEC;
1390
1391                 if (get_user(what, (const int __user *)argp))
1392                         return -EFAULT;
1393
1394                 return kvm_arm_vcpu_finalize(vcpu, what);
1395         }
1396         default:
1397                 r = -EINVAL;
1398         }
1399
1400         return r;
1401 }
1402
1403 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1404 {
1405
1406 }
1407
1408 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1409                                         const struct kvm_memory_slot *memslot)
1410 {
1411         kvm_flush_remote_tlbs(kvm);
1412 }
1413
1414 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1415                                         struct kvm_arm_device_addr *dev_addr)
1416 {
1417         unsigned long dev_id, type;
1418
1419         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1420                 KVM_ARM_DEVICE_ID_SHIFT;
1421         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1422                 KVM_ARM_DEVICE_TYPE_SHIFT;
1423
1424         switch (dev_id) {
1425         case KVM_ARM_DEVICE_VGIC_V2:
1426                 if (!vgic_present)
1427                         return -ENXIO;
1428                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1429         default:
1430                 return -ENODEV;
1431         }
1432 }
1433
1434 long kvm_arch_vm_ioctl(struct file *filp,
1435                        unsigned int ioctl, unsigned long arg)
1436 {
1437         struct kvm *kvm = filp->private_data;
1438         void __user *argp = (void __user *)arg;
1439
1440         switch (ioctl) {
1441         case KVM_CREATE_IRQCHIP: {
1442                 int ret;
1443                 if (!vgic_present)
1444                         return -ENXIO;
1445                 mutex_lock(&kvm->lock);
1446                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1447                 mutex_unlock(&kvm->lock);
1448                 return ret;
1449         }
1450         case KVM_ARM_SET_DEVICE_ADDR: {
1451                 struct kvm_arm_device_addr dev_addr;
1452
1453                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1454                         return -EFAULT;
1455                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1456         }
1457         case KVM_ARM_PREFERRED_TARGET: {
1458                 struct kvm_vcpu_init init;
1459
1460                 kvm_vcpu_preferred_target(&init);
1461
1462                 if (copy_to_user(argp, &init, sizeof(init)))
1463                         return -EFAULT;
1464
1465                 return 0;
1466         }
1467         case KVM_ARM_MTE_COPY_TAGS: {
1468                 struct kvm_arm_copy_mte_tags copy_tags;
1469
1470                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1471                         return -EFAULT;
1472                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1473         }
1474         default:
1475                 return -EINVAL;
1476         }
1477 }
1478
1479 static unsigned long nvhe_percpu_size(void)
1480 {
1481         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1482                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1483 }
1484
1485 static unsigned long nvhe_percpu_order(void)
1486 {
1487         unsigned long size = nvhe_percpu_size();
1488
1489         return size ? get_order(size) : 0;
1490 }
1491
1492 /* A lookup table holding the hypervisor VA for each vector slot */
1493 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1494
1495 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1496 {
1497         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1498 }
1499
1500 static int kvm_init_vector_slots(void)
1501 {
1502         int err;
1503         void *base;
1504
1505         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1506         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1507
1508         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1509         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1510
1511         if (kvm_system_needs_idmapped_vectors() &&
1512             !is_protected_kvm_enabled()) {
1513                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1514                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1515                 if (err)
1516                         return err;
1517         }
1518
1519         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1520         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1521         return 0;
1522 }
1523
1524 static void cpu_prepare_hyp_mode(int cpu)
1525 {
1526         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1527         unsigned long tcr;
1528
1529         /*
1530          * Calculate the raw per-cpu offset without a translation from the
1531          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1532          * so that we can use adr_l to access per-cpu variables in EL2.
1533          * Also drop the KASAN tag which gets in the way...
1534          */
1535         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1536                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1537
1538         params->mair_el2 = read_sysreg(mair_el1);
1539
1540         /*
1541          * The ID map may be configured to use an extended virtual address
1542          * range. This is only the case if system RAM is out of range for the
1543          * currently configured page size and VA_BITS, in which case we will
1544          * also need the extended virtual range for the HYP ID map, or we won't
1545          * be able to enable the EL2 MMU.
1546          *
1547          * However, at EL2, there is only one TTBR register, and we can't switch
1548          * between translation tables *and* update TCR_EL2.T0SZ at the same
1549          * time. Bottom line: we need to use the extended range with *both* our
1550          * translation tables.
1551          *
1552          * So use the same T0SZ value we use for the ID map.
1553          */
1554         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1555         tcr &= ~TCR_T0SZ_MASK;
1556         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1557         params->tcr_el2 = tcr;
1558
1559         params->pgd_pa = kvm_mmu_get_httbr();
1560         if (is_protected_kvm_enabled())
1561                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1562         else
1563                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1564         params->vttbr = params->vtcr = 0;
1565
1566         /*
1567          * Flush the init params from the data cache because the struct will
1568          * be read while the MMU is off.
1569          */
1570         kvm_flush_dcache_to_poc(params, sizeof(*params));
1571 }
1572
1573 static void hyp_install_host_vector(void)
1574 {
1575         struct kvm_nvhe_init_params *params;
1576         struct arm_smccc_res res;
1577
1578         /* Switch from the HYP stub to our own HYP init vector */
1579         __hyp_set_vectors(kvm_get_idmap_vector());
1580
1581         /*
1582          * Call initialization code, and switch to the full blown HYP code.
1583          * If the cpucaps haven't been finalized yet, something has gone very
1584          * wrong, and hyp will crash and burn when it uses any
1585          * cpus_have_const_cap() wrapper.
1586          */
1587         BUG_ON(!system_capabilities_finalized());
1588         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1589         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1590         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1591 }
1592
1593 static void cpu_init_hyp_mode(void)
1594 {
1595         hyp_install_host_vector();
1596
1597         /*
1598          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1599          * at EL2.
1600          */
1601         if (this_cpu_has_cap(ARM64_SSBS) &&
1602             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1603                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1604         }
1605 }
1606
1607 static void cpu_hyp_reset(void)
1608 {
1609         if (!is_kernel_in_hyp_mode())
1610                 __hyp_reset_vectors();
1611 }
1612
1613 /*
1614  * EL2 vectors can be mapped and rerouted in a number of ways,
1615  * depending on the kernel configuration and CPU present:
1616  *
1617  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1618  *   placed in one of the vector slots, which is executed before jumping
1619  *   to the real vectors.
1620  *
1621  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1622  *   containing the hardening sequence is mapped next to the idmap page,
1623  *   and executed before jumping to the real vectors.
1624  *
1625  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1626  *   empty slot is selected, mapped next to the idmap page, and
1627  *   executed before jumping to the real vectors.
1628  *
1629  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1630  * VHE, as we don't have hypervisor-specific mappings. If the system
1631  * is VHE and yet selects this capability, it will be ignored.
1632  */
1633 static void cpu_set_hyp_vector(void)
1634 {
1635         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1636         void *vector = hyp_spectre_vector_selector[data->slot];
1637
1638         if (!is_protected_kvm_enabled())
1639                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1640         else
1641                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1642 }
1643
1644 static void cpu_hyp_init_context(void)
1645 {
1646         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1647
1648         if (!is_kernel_in_hyp_mode())
1649                 cpu_init_hyp_mode();
1650 }
1651
1652 static void cpu_hyp_init_features(void)
1653 {
1654         cpu_set_hyp_vector();
1655         kvm_arm_init_debug();
1656
1657         if (is_kernel_in_hyp_mode())
1658                 kvm_timer_init_vhe();
1659
1660         if (vgic_present)
1661                 kvm_vgic_init_cpu_hardware();
1662 }
1663
1664 static void cpu_hyp_reinit(void)
1665 {
1666         cpu_hyp_reset();
1667         cpu_hyp_init_context();
1668         cpu_hyp_init_features();
1669 }
1670
1671 static void _kvm_arch_hardware_enable(void *discard)
1672 {
1673         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1674                 cpu_hyp_reinit();
1675                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1676         }
1677 }
1678
1679 int kvm_arch_hardware_enable(void)
1680 {
1681         _kvm_arch_hardware_enable(NULL);
1682         return 0;
1683 }
1684
1685 static void _kvm_arch_hardware_disable(void *discard)
1686 {
1687         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1688                 cpu_hyp_reset();
1689                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1690         }
1691 }
1692
1693 void kvm_arch_hardware_disable(void)
1694 {
1695         if (!is_protected_kvm_enabled())
1696                 _kvm_arch_hardware_disable(NULL);
1697 }
1698
1699 #ifdef CONFIG_CPU_PM
1700 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1701                                     unsigned long cmd,
1702                                     void *v)
1703 {
1704         /*
1705          * kvm_arm_hardware_enabled is left with its old value over
1706          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1707          * re-enable hyp.
1708          */
1709         switch (cmd) {
1710         case CPU_PM_ENTER:
1711                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1712                         /*
1713                          * don't update kvm_arm_hardware_enabled here
1714                          * so that the hardware will be re-enabled
1715                          * when we resume. See below.
1716                          */
1717                         cpu_hyp_reset();
1718
1719                 return NOTIFY_OK;
1720         case CPU_PM_ENTER_FAILED:
1721         case CPU_PM_EXIT:
1722                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1723                         /* The hardware was enabled before suspend. */
1724                         cpu_hyp_reinit();
1725
1726                 return NOTIFY_OK;
1727
1728         default:
1729                 return NOTIFY_DONE;
1730         }
1731 }
1732
1733 static struct notifier_block hyp_init_cpu_pm_nb = {
1734         .notifier_call = hyp_init_cpu_pm_notifier,
1735 };
1736
1737 static void hyp_cpu_pm_init(void)
1738 {
1739         if (!is_protected_kvm_enabled())
1740                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1741 }
1742 static void hyp_cpu_pm_exit(void)
1743 {
1744         if (!is_protected_kvm_enabled())
1745                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1746 }
1747 #else
1748 static inline void hyp_cpu_pm_init(void)
1749 {
1750 }
1751 static inline void hyp_cpu_pm_exit(void)
1752 {
1753 }
1754 #endif
1755
1756 static void init_cpu_logical_map(void)
1757 {
1758         unsigned int cpu;
1759
1760         /*
1761          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1762          * Only copy the set of online CPUs whose features have been checked
1763          * against the finalized system capabilities. The hypervisor will not
1764          * allow any other CPUs from the `possible` set to boot.
1765          */
1766         for_each_online_cpu(cpu)
1767                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1768 }
1769
1770 #define init_psci_0_1_impl_state(config, what)  \
1771         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1772
1773 static bool init_psci_relay(void)
1774 {
1775         /*
1776          * If PSCI has not been initialized, protected KVM cannot install
1777          * itself on newly booted CPUs.
1778          */
1779         if (!psci_ops.get_version) {
1780                 kvm_err("Cannot initialize protected mode without PSCI\n");
1781                 return false;
1782         }
1783
1784         kvm_host_psci_config.version = psci_ops.get_version();
1785
1786         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1787                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1788                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1789                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1790                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1791                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1792         }
1793         return true;
1794 }
1795
1796 static int init_subsystems(void)
1797 {
1798         int err = 0;
1799
1800         /*
1801          * Enable hardware so that subsystem initialisation can access EL2.
1802          */
1803         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1804
1805         /*
1806          * Register CPU lower-power notifier
1807          */
1808         hyp_cpu_pm_init();
1809
1810         /*
1811          * Init HYP view of VGIC
1812          */
1813         err = kvm_vgic_hyp_init();
1814         switch (err) {
1815         case 0:
1816                 vgic_present = true;
1817                 break;
1818         case -ENODEV:
1819         case -ENXIO:
1820                 vgic_present = false;
1821                 err = 0;
1822                 break;
1823         default:
1824                 goto out;
1825         }
1826
1827         /*
1828          * Init HYP architected timer support
1829          */
1830         err = kvm_timer_hyp_init(vgic_present);
1831         if (err)
1832                 goto out;
1833
1834         kvm_register_perf_callbacks(NULL);
1835
1836 out:
1837         if (err || !is_protected_kvm_enabled())
1838                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1839
1840         return err;
1841 }
1842
1843 static void teardown_hyp_mode(void)
1844 {
1845         int cpu;
1846
1847         free_hyp_pgds();
1848         for_each_possible_cpu(cpu) {
1849                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1850                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1851         }
1852 }
1853
1854 static int do_pkvm_init(u32 hyp_va_bits)
1855 {
1856         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1857         int ret;
1858
1859         preempt_disable();
1860         cpu_hyp_init_context();
1861         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1862                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1863                                 hyp_va_bits);
1864         cpu_hyp_init_features();
1865
1866         /*
1867          * The stub hypercalls are now disabled, so set our local flag to
1868          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1869          */
1870         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1871         preempt_enable();
1872
1873         return ret;
1874 }
1875
1876 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1877 {
1878         void *addr = phys_to_virt(hyp_mem_base);
1879         int ret;
1880
1881         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1882         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1883         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1884         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1885         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1886         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1887         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1888         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1889
1890         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1891         if (ret)
1892                 return ret;
1893
1894         ret = do_pkvm_init(hyp_va_bits);
1895         if (ret)
1896                 return ret;
1897
1898         free_hyp_pgds();
1899
1900         return 0;
1901 }
1902
1903 /**
1904  * Inits Hyp-mode on all online CPUs
1905  */
1906 static int init_hyp_mode(void)
1907 {
1908         u32 hyp_va_bits;
1909         int cpu;
1910         int err = -ENOMEM;
1911
1912         /*
1913          * The protected Hyp-mode cannot be initialized if the memory pool
1914          * allocation has failed.
1915          */
1916         if (is_protected_kvm_enabled() && !hyp_mem_base)
1917                 goto out_err;
1918
1919         /*
1920          * Allocate Hyp PGD and setup Hyp identity mapping
1921          */
1922         err = kvm_mmu_init(&hyp_va_bits);
1923         if (err)
1924                 goto out_err;
1925
1926         /*
1927          * Allocate stack pages for Hypervisor-mode
1928          */
1929         for_each_possible_cpu(cpu) {
1930                 unsigned long stack_page;
1931
1932                 stack_page = __get_free_page(GFP_KERNEL);
1933                 if (!stack_page) {
1934                         err = -ENOMEM;
1935                         goto out_err;
1936                 }
1937
1938                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1939         }
1940
1941         /*
1942          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1943          */
1944         for_each_possible_cpu(cpu) {
1945                 struct page *page;
1946                 void *page_addr;
1947
1948                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1949                 if (!page) {
1950                         err = -ENOMEM;
1951                         goto out_err;
1952                 }
1953
1954                 page_addr = page_address(page);
1955                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1956                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1957         }
1958
1959         /*
1960          * Map the Hyp-code called directly from the host
1961          */
1962         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1963                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1964         if (err) {
1965                 kvm_err("Cannot map world-switch code\n");
1966                 goto out_err;
1967         }
1968
1969         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1970                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1971         if (err) {
1972                 kvm_err("Cannot map .hyp.rodata section\n");
1973                 goto out_err;
1974         }
1975
1976         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1977                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1978         if (err) {
1979                 kvm_err("Cannot map rodata section\n");
1980                 goto out_err;
1981         }
1982
1983         /*
1984          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1985          * section thanks to an assertion in the linker script. Map it RW and
1986          * the rest of .bss RO.
1987          */
1988         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1989                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1990         if (err) {
1991                 kvm_err("Cannot map hyp bss section: %d\n", err);
1992                 goto out_err;
1993         }
1994
1995         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1996                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1997         if (err) {
1998                 kvm_err("Cannot map bss section\n");
1999                 goto out_err;
2000         }
2001
2002         /*
2003          * Map the Hyp stack pages
2004          */
2005         for_each_possible_cpu(cpu) {
2006                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2007                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2008                 unsigned long hyp_addr;
2009
2010                 /*
2011                  * Allocate a contiguous HYP private VA range for the stack
2012                  * and guard page. The allocation is also aligned based on
2013                  * the order of its size.
2014                  */
2015                 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2016                 if (err) {
2017                         kvm_err("Cannot allocate hyp stack guard page\n");
2018                         goto out_err;
2019                 }
2020
2021                 /*
2022                  * Since the stack grows downwards, map the stack to the page
2023                  * at the higher address and leave the lower guard page
2024                  * unbacked.
2025                  *
2026                  * Any valid stack address now has the PAGE_SHIFT bit as 1
2027                  * and addresses corresponding to the guard page have the
2028                  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2029                  */
2030                 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2031                                             __pa(stack_page), PAGE_HYP);
2032                 if (err) {
2033                         kvm_err("Cannot map hyp stack\n");
2034                         goto out_err;
2035                 }
2036
2037                 /*
2038                  * Save the stack PA in nvhe_init_params. This will be needed
2039                  * to recreate the stack mapping in protected nVHE mode.
2040                  * __hyp_pa() won't do the right thing there, since the stack
2041                  * has been mapped in the flexible private VA space.
2042                  */
2043                 params->stack_pa = __pa(stack_page);
2044
2045                 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2046         }
2047
2048         for_each_possible_cpu(cpu) {
2049                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
2050                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2051
2052                 /* Map Hyp percpu pages */
2053                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2054                 if (err) {
2055                         kvm_err("Cannot map hyp percpu region\n");
2056                         goto out_err;
2057                 }
2058
2059                 /* Prepare the CPU initialization parameters */
2060                 cpu_prepare_hyp_mode(cpu);
2061         }
2062
2063         if (is_protected_kvm_enabled()) {
2064                 init_cpu_logical_map();
2065
2066                 if (!init_psci_relay()) {
2067                         err = -ENODEV;
2068                         goto out_err;
2069                 }
2070         }
2071
2072         if (is_protected_kvm_enabled()) {
2073                 err = kvm_hyp_init_protection(hyp_va_bits);
2074                 if (err) {
2075                         kvm_err("Failed to init hyp memory protection\n");
2076                         goto out_err;
2077                 }
2078         }
2079
2080         return 0;
2081
2082 out_err:
2083         teardown_hyp_mode();
2084         kvm_err("error initializing Hyp mode: %d\n", err);
2085         return err;
2086 }
2087
2088 static void _kvm_host_prot_finalize(void *arg)
2089 {
2090         int *err = arg;
2091
2092         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2093                 WRITE_ONCE(*err, -EINVAL);
2094 }
2095
2096 static int pkvm_drop_host_privileges(void)
2097 {
2098         int ret = 0;
2099
2100         /*
2101          * Flip the static key upfront as that may no longer be possible
2102          * once the host stage 2 is installed.
2103          */
2104         static_branch_enable(&kvm_protected_mode_initialized);
2105         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2106         return ret;
2107 }
2108
2109 static int finalize_hyp_mode(void)
2110 {
2111         if (!is_protected_kvm_enabled())
2112                 return 0;
2113
2114         /*
2115          * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2116          * at, which would end badly once the section is inaccessible.
2117          * None of other sections should ever be introspected.
2118          */
2119         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2120         return pkvm_drop_host_privileges();
2121 }
2122
2123 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2124 {
2125         struct kvm_vcpu *vcpu;
2126         unsigned long i;
2127
2128         mpidr &= MPIDR_HWID_BITMASK;
2129         kvm_for_each_vcpu(i, vcpu, kvm) {
2130                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2131                         return vcpu;
2132         }
2133         return NULL;
2134 }
2135
2136 bool kvm_arch_has_irq_bypass(void)
2137 {
2138         return true;
2139 }
2140
2141 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2142                                       struct irq_bypass_producer *prod)
2143 {
2144         struct kvm_kernel_irqfd *irqfd =
2145                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2146
2147         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2148                                           &irqfd->irq_entry);
2149 }
2150 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2151                                       struct irq_bypass_producer *prod)
2152 {
2153         struct kvm_kernel_irqfd *irqfd =
2154                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2155
2156         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2157                                      &irqfd->irq_entry);
2158 }
2159
2160 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2161 {
2162         struct kvm_kernel_irqfd *irqfd =
2163                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2164
2165         kvm_arm_halt_guest(irqfd->kvm);
2166 }
2167
2168 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2169 {
2170         struct kvm_kernel_irqfd *irqfd =
2171                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2172
2173         kvm_arm_resume_guest(irqfd->kvm);
2174 }
2175
2176 /**
2177  * Initialize Hyp-mode and memory mappings on all CPUs.
2178  */
2179 int kvm_arch_init(void *opaque)
2180 {
2181         int err;
2182         bool in_hyp_mode;
2183
2184         if (!is_hyp_mode_available()) {
2185                 kvm_info("HYP mode not available\n");
2186                 return -ENODEV;
2187         }
2188
2189         if (kvm_get_mode() == KVM_MODE_NONE) {
2190                 kvm_info("KVM disabled from command line\n");
2191                 return -ENODEV;
2192         }
2193
2194         err = kvm_sys_reg_table_init();
2195         if (err) {
2196                 kvm_info("Error initializing system register tables");
2197                 return err;
2198         }
2199
2200         in_hyp_mode = is_kernel_in_hyp_mode();
2201
2202         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2203             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2204                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2205                          "Only trusted guests should be used on this system.\n");
2206
2207         err = kvm_set_ipa_limit();
2208         if (err)
2209                 return err;
2210
2211         err = kvm_arm_init_sve();
2212         if (err)
2213                 return err;
2214
2215         err = kvm_arm_vmid_alloc_init();
2216         if (err) {
2217                 kvm_err("Failed to initialize VMID allocator.\n");
2218                 return err;
2219         }
2220
2221         if (!in_hyp_mode) {
2222                 err = init_hyp_mode();
2223                 if (err)
2224                         goto out_err;
2225         }
2226
2227         err = kvm_init_vector_slots();
2228         if (err) {
2229                 kvm_err("Cannot initialise vector slots\n");
2230                 goto out_err;
2231         }
2232
2233         err = init_subsystems();
2234         if (err)
2235                 goto out_hyp;
2236
2237         if (!in_hyp_mode) {
2238                 err = finalize_hyp_mode();
2239                 if (err) {
2240                         kvm_err("Failed to finalize Hyp protection\n");
2241                         goto out_hyp;
2242                 }
2243         }
2244
2245         if (is_protected_kvm_enabled()) {
2246                 kvm_info("Protected nVHE mode initialized successfully\n");
2247         } else if (in_hyp_mode) {
2248                 kvm_info("VHE mode initialized successfully\n");
2249         } else {
2250                 kvm_info("Hyp mode initialized successfully\n");
2251         }
2252
2253         return 0;
2254
2255 out_hyp:
2256         hyp_cpu_pm_exit();
2257         if (!in_hyp_mode)
2258                 teardown_hyp_mode();
2259 out_err:
2260         kvm_arm_vmid_alloc_free();
2261         return err;
2262 }
2263
2264 /* NOP: Compiling as a module not supported */
2265 void kvm_arch_exit(void)
2266 {
2267         kvm_unregister_perf_callbacks();
2268 }
2269
2270 static int __init early_kvm_mode_cfg(char *arg)
2271 {
2272         if (!arg)
2273                 return -EINVAL;
2274
2275         if (strcmp(arg, "protected") == 0) {
2276                 if (!is_kernel_in_hyp_mode())
2277                         kvm_mode = KVM_MODE_PROTECTED;
2278                 else
2279                         pr_warn_once("Protected KVM not available with VHE\n");
2280
2281                 return 0;
2282         }
2283
2284         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2285                 kvm_mode = KVM_MODE_DEFAULT;
2286                 return 0;
2287         }
2288
2289         if (strcmp(arg, "none") == 0) {
2290                 kvm_mode = KVM_MODE_NONE;
2291                 return 0;
2292         }
2293
2294         return -EINVAL;
2295 }
2296 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2297
2298 enum kvm_mode kvm_get_mode(void)
2299 {
2300         return kvm_mode;
2301 }
2302
2303 static int arm_init(void)
2304 {
2305         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2306         return rc;
2307 }
2308
2309 module_init(arm_init);