Merge branch 'kvm-arm64/kill_oprofile_dependency' into kvmarm-master/next
[platform/kernel/linux-rpi.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75         return 0;
76 }
77
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80         return 0;
81 }
82
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84                             struct kvm_enable_cap *cap)
85 {
86         int r;
87
88         if (cap->flags)
89                 return -EINVAL;
90
91         switch (cap->cap) {
92         case KVM_CAP_ARM_NISV_TO_USER:
93                 r = 0;
94                 kvm->arch.return_nisv_io_abort_to_user = true;
95                 break;
96         default:
97                 r = -EINVAL;
98                 break;
99         }
100
101         return r;
102 }
103
104 static int kvm_arm_default_max_vcpus(void)
105 {
106         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108
109 static void set_default_spectre(struct kvm *kvm)
110 {
111         /*
112          * The default is to expose CSV2 == 1 if the HW isn't affected.
113          * Although this is a per-CPU feature, we make it global because
114          * asymmetric systems are just a nuisance.
115          *
116          * Userspace can override this as long as it doesn't promise
117          * the impossible.
118          */
119         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120                 kvm->arch.pfr0_csv2 = 1;
121         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122                 kvm->arch.pfr0_csv3 = 1;
123 }
124
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:        pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         int ret;
132
133         ret = kvm_arm_setup_stage2(kvm, type);
134         if (ret)
135                 return ret;
136
137         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138         if (ret)
139                 return ret;
140
141         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142         if (ret)
143                 goto out_free_stage2_pgd;
144
145         kvm_vgic_early_init(kvm);
146
147         /* The maximum number of VCPUs is limited by the host's GIC model */
148         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149
150         set_default_spectre(kvm);
151
152         return ret;
153 out_free_stage2_pgd:
154         kvm_free_stage2_pgd(&kvm->arch.mmu);
155         return ret;
156 }
157
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160         return VM_FAULT_SIGBUS;
161 }
162
163
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:        pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170         int i;
171
172         bitmap_free(kvm->arch.pmu_filter);
173
174         kvm_vgic_destroy(kvm);
175
176         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177                 if (kvm->vcpus[i]) {
178                         kvm_vcpu_destroy(kvm->vcpus[i]);
179                         kvm->vcpus[i] = NULL;
180                 }
181         }
182         atomic_set(&kvm->online_vcpus, 0);
183 }
184
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_IOEVENTFD:
193         case KVM_CAP_DEVICE_CTRL:
194         case KVM_CAP_USER_MEMORY:
195         case KVM_CAP_SYNC_MMU:
196         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197         case KVM_CAP_ONE_REG:
198         case KVM_CAP_ARM_PSCI:
199         case KVM_CAP_ARM_PSCI_0_2:
200         case KVM_CAP_READONLY_MEM:
201         case KVM_CAP_MP_STATE:
202         case KVM_CAP_IMMEDIATE_EXIT:
203         case KVM_CAP_VCPU_EVENTS:
204         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205         case KVM_CAP_ARM_NISV_TO_USER:
206         case KVM_CAP_ARM_INJECT_EXT_DABT:
207         case KVM_CAP_SET_GUEST_DEBUG:
208         case KVM_CAP_VCPU_ATTRIBUTES:
209         case KVM_CAP_PTP_KVM:
210                 r = 1;
211                 break;
212         case KVM_CAP_ARM_SET_DEVICE_ADDR:
213                 r = 1;
214                 break;
215         case KVM_CAP_NR_VCPUS:
216                 r = num_online_cpus();
217                 break;
218         case KVM_CAP_MAX_VCPUS:
219         case KVM_CAP_MAX_VCPU_ID:
220                 if (kvm)
221                         r = kvm->arch.max_vcpus;
222                 else
223                         r = kvm_arm_default_max_vcpus();
224                 break;
225         case KVM_CAP_MSI_DEVID:
226                 if (!kvm)
227                         r = -EINVAL;
228                 else
229                         r = kvm->arch.vgic.msis_require_devid;
230                 break;
231         case KVM_CAP_ARM_USER_IRQ:
232                 /*
233                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
234                  * (bump this number if adding more devices)
235                  */
236                 r = 1;
237                 break;
238         case KVM_CAP_STEAL_TIME:
239                 r = kvm_arm_pvtime_supported();
240                 break;
241         case KVM_CAP_ARM_EL1_32BIT:
242                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
243                 break;
244         case KVM_CAP_GUEST_DEBUG_HW_BPS:
245                 r = get_num_brps();
246                 break;
247         case KVM_CAP_GUEST_DEBUG_HW_WPS:
248                 r = get_num_wrps();
249                 break;
250         case KVM_CAP_ARM_PMU_V3:
251                 r = kvm_arm_support_pmu_v3();
252                 break;
253         case KVM_CAP_ARM_INJECT_SERROR_ESR:
254                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
255                 break;
256         case KVM_CAP_ARM_VM_IPA_SIZE:
257                 r = get_kvm_ipa_limit();
258                 break;
259         case KVM_CAP_ARM_SVE:
260                 r = system_supports_sve();
261                 break;
262         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
263         case KVM_CAP_ARM_PTRAUTH_GENERIC:
264                 r = system_has_full_ptr_auth();
265                 break;
266         default:
267                 r = 0;
268         }
269
270         return r;
271 }
272
273 long kvm_arch_dev_ioctl(struct file *filp,
274                         unsigned int ioctl, unsigned long arg)
275 {
276         return -EINVAL;
277 }
278
279 struct kvm *kvm_arch_alloc_vm(void)
280 {
281         if (!has_vhe())
282                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
283
284         return vzalloc(sizeof(struct kvm));
285 }
286
287 void kvm_arch_free_vm(struct kvm *kvm)
288 {
289         if (!has_vhe())
290                 kfree(kvm);
291         else
292                 vfree(kvm);
293 }
294
295 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
296 {
297         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
298                 return -EBUSY;
299
300         if (id >= kvm->arch.max_vcpus)
301                 return -EINVAL;
302
303         return 0;
304 }
305
306 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
307 {
308         int err;
309
310         /* Force users to call KVM_ARM_VCPU_INIT */
311         vcpu->arch.target = -1;
312         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
313
314         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
315
316         /* Set up the timer */
317         kvm_timer_vcpu_init(vcpu);
318
319         kvm_pmu_vcpu_init(vcpu);
320
321         kvm_arm_reset_debug_ptr(vcpu);
322
323         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
324
325         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
326
327         err = kvm_vgic_vcpu_init(vcpu);
328         if (err)
329                 return err;
330
331         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
332 }
333
334 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
335 {
336 }
337
338 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
339 {
340         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
341                 static_branch_dec(&userspace_irqchip_in_use);
342
343         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
344         kvm_timer_vcpu_terminate(vcpu);
345         kvm_pmu_vcpu_destroy(vcpu);
346
347         kvm_arm_vcpu_destroy(vcpu);
348 }
349
350 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
351 {
352         return kvm_timer_is_pending(vcpu);
353 }
354
355 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
356 {
357         /*
358          * If we're about to block (most likely because we've just hit a
359          * WFI), we need to sync back the state of the GIC CPU interface
360          * so that we have the latest PMR and group enables. This ensures
361          * that kvm_arch_vcpu_runnable has up-to-date data to decide
362          * whether we have pending interrupts.
363          *
364          * For the same reason, we want to tell GICv4 that we need
365          * doorbells to be signalled, should an interrupt become pending.
366          */
367         preempt_disable();
368         kvm_vgic_vmcr_sync(vcpu);
369         vgic_v4_put(vcpu, true);
370         preempt_enable();
371 }
372
373 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
374 {
375         preempt_disable();
376         vgic_v4_load(vcpu);
377         preempt_enable();
378 }
379
380 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
381 {
382         struct kvm_s2_mmu *mmu;
383         int *last_ran;
384
385         mmu = vcpu->arch.hw_mmu;
386         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
387
388         /*
389          * We guarantee that both TLBs and I-cache are private to each
390          * vcpu. If detecting that a vcpu from the same VM has
391          * previously run on the same physical CPU, call into the
392          * hypervisor code to nuke the relevant contexts.
393          *
394          * We might get preempted before the vCPU actually runs, but
395          * over-invalidation doesn't affect correctness.
396          */
397         if (*last_ran != vcpu->vcpu_id) {
398                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
399                 *last_ran = vcpu->vcpu_id;
400         }
401
402         vcpu->cpu = cpu;
403
404         kvm_vgic_load(vcpu);
405         kvm_timer_vcpu_load(vcpu);
406         if (has_vhe())
407                 kvm_vcpu_load_sysregs_vhe(vcpu);
408         kvm_arch_vcpu_load_fp(vcpu);
409         kvm_vcpu_pmu_restore_guest(vcpu);
410         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
411                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
412
413         if (single_task_running())
414                 vcpu_clear_wfx_traps(vcpu);
415         else
416                 vcpu_set_wfx_traps(vcpu);
417
418         if (vcpu_has_ptrauth(vcpu))
419                 vcpu_ptrauth_disable(vcpu);
420         kvm_arch_vcpu_load_debug_state_flags(vcpu);
421 }
422
423 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
424 {
425         kvm_arch_vcpu_put_debug_state_flags(vcpu);
426         kvm_arch_vcpu_put_fp(vcpu);
427         if (has_vhe())
428                 kvm_vcpu_put_sysregs_vhe(vcpu);
429         kvm_timer_vcpu_put(vcpu);
430         kvm_vgic_put(vcpu);
431         kvm_vcpu_pmu_restore_host(vcpu);
432
433         vcpu->cpu = -1;
434 }
435
436 static void vcpu_power_off(struct kvm_vcpu *vcpu)
437 {
438         vcpu->arch.power_off = true;
439         kvm_make_request(KVM_REQ_SLEEP, vcpu);
440         kvm_vcpu_kick(vcpu);
441 }
442
443 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
444                                     struct kvm_mp_state *mp_state)
445 {
446         if (vcpu->arch.power_off)
447                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
448         else
449                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
450
451         return 0;
452 }
453
454 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
455                                     struct kvm_mp_state *mp_state)
456 {
457         int ret = 0;
458
459         switch (mp_state->mp_state) {
460         case KVM_MP_STATE_RUNNABLE:
461                 vcpu->arch.power_off = false;
462                 break;
463         case KVM_MP_STATE_STOPPED:
464                 vcpu_power_off(vcpu);
465                 break;
466         default:
467                 ret = -EINVAL;
468         }
469
470         return ret;
471 }
472
473 /**
474  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
475  * @v:          The VCPU pointer
476  *
477  * If the guest CPU is not waiting for interrupts or an interrupt line is
478  * asserted, the CPU is by definition runnable.
479  */
480 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
481 {
482         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
483         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
484                 && !v->arch.power_off && !v->arch.pause);
485 }
486
487 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
488 {
489         return vcpu_mode_priv(vcpu);
490 }
491
492 /* Just ensure a guest exit from a particular CPU */
493 static void exit_vm_noop(void *info)
494 {
495 }
496
497 void force_vm_exit(const cpumask_t *mask)
498 {
499         preempt_disable();
500         smp_call_function_many(mask, exit_vm_noop, NULL, true);
501         preempt_enable();
502 }
503
504 /**
505  * need_new_vmid_gen - check that the VMID is still valid
506  * @vmid: The VMID to check
507  *
508  * return true if there is a new generation of VMIDs being used
509  *
510  * The hardware supports a limited set of values with the value zero reserved
511  * for the host, so we check if an assigned value belongs to a previous
512  * generation, which requires us to assign a new value. If we're the first to
513  * use a VMID for the new generation, we must flush necessary caches and TLBs
514  * on all CPUs.
515  */
516 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
517 {
518         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
519         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
520         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
521 }
522
523 /**
524  * update_vmid - Update the vmid with a valid VMID for the current generation
525  * @vmid: The stage-2 VMID information struct
526  */
527 static void update_vmid(struct kvm_vmid *vmid)
528 {
529         if (!need_new_vmid_gen(vmid))
530                 return;
531
532         spin_lock(&kvm_vmid_lock);
533
534         /*
535          * We need to re-check the vmid_gen here to ensure that if another vcpu
536          * already allocated a valid vmid for this vm, then this vcpu should
537          * use the same vmid.
538          */
539         if (!need_new_vmid_gen(vmid)) {
540                 spin_unlock(&kvm_vmid_lock);
541                 return;
542         }
543
544         /* First user of a new VMID generation? */
545         if (unlikely(kvm_next_vmid == 0)) {
546                 atomic64_inc(&kvm_vmid_gen);
547                 kvm_next_vmid = 1;
548
549                 /*
550                  * On SMP we know no other CPUs can use this CPU's or each
551                  * other's VMID after force_vm_exit returns since the
552                  * kvm_vmid_lock blocks them from reentry to the guest.
553                  */
554                 force_vm_exit(cpu_all_mask);
555                 /*
556                  * Now broadcast TLB + ICACHE invalidation over the inner
557                  * shareable domain to make sure all data structures are
558                  * clean.
559                  */
560                 kvm_call_hyp(__kvm_flush_vm_context);
561         }
562
563         vmid->vmid = kvm_next_vmid;
564         kvm_next_vmid++;
565         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566
567         smp_wmb();
568         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569
570         spin_unlock(&kvm_vmid_lock);
571 }
572
573 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
574 {
575         struct kvm *kvm = vcpu->kvm;
576         int ret = 0;
577
578         if (likely(vcpu->arch.has_run_once))
579                 return 0;
580
581         if (!kvm_arm_vcpu_is_finalized(vcpu))
582                 return -EPERM;
583
584         vcpu->arch.has_run_once = true;
585
586         kvm_arm_vcpu_init_debug(vcpu);
587
588         if (likely(irqchip_in_kernel(kvm))) {
589                 /*
590                  * Map the VGIC hardware resources before running a vcpu the
591                  * first time on this VM.
592                  */
593                 ret = kvm_vgic_map_resources(kvm);
594                 if (ret)
595                         return ret;
596         } else {
597                 /*
598                  * Tell the rest of the code that there are userspace irqchip
599                  * VMs in the wild.
600                  */
601                 static_branch_inc(&userspace_irqchip_in_use);
602         }
603
604         ret = kvm_timer_enable(vcpu);
605         if (ret)
606                 return ret;
607
608         ret = kvm_arm_pmu_v3_enable(vcpu);
609
610         return ret;
611 }
612
613 bool kvm_arch_intc_initialized(struct kvm *kvm)
614 {
615         return vgic_initialized(kvm);
616 }
617
618 void kvm_arm_halt_guest(struct kvm *kvm)
619 {
620         int i;
621         struct kvm_vcpu *vcpu;
622
623         kvm_for_each_vcpu(i, vcpu, kvm)
624                 vcpu->arch.pause = true;
625         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
626 }
627
628 void kvm_arm_resume_guest(struct kvm *kvm)
629 {
630         int i;
631         struct kvm_vcpu *vcpu;
632
633         kvm_for_each_vcpu(i, vcpu, kvm) {
634                 vcpu->arch.pause = false;
635                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
636         }
637 }
638
639 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
640 {
641         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
642
643         rcuwait_wait_event(wait,
644                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
645                            TASK_INTERRUPTIBLE);
646
647         if (vcpu->arch.power_off || vcpu->arch.pause) {
648                 /* Awaken to handle a signal, request we sleep again later. */
649                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
650         }
651
652         /*
653          * Make sure we will observe a potential reset request if we've
654          * observed a change to the power state. Pairs with the smp_wmb() in
655          * kvm_psci_vcpu_on().
656          */
657         smp_rmb();
658 }
659
660 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
661 {
662         return vcpu->arch.target >= 0;
663 }
664
665 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
666 {
667         if (kvm_request_pending(vcpu)) {
668                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
669                         vcpu_req_sleep(vcpu);
670
671                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
672                         kvm_reset_vcpu(vcpu);
673
674                 /*
675                  * Clear IRQ_PENDING requests that were made to guarantee
676                  * that a VCPU sees new virtual interrupts.
677                  */
678                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
679
680                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
681                         kvm_update_stolen_time(vcpu);
682
683                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
684                         /* The distributor enable bits were changed */
685                         preempt_disable();
686                         vgic_v4_put(vcpu, false);
687                         vgic_v4_load(vcpu);
688                         preempt_enable();
689                 }
690         }
691 }
692
693 /**
694  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
695  * @vcpu:       The VCPU pointer
696  *
697  * This function is called through the VCPU_RUN ioctl called from user space. It
698  * will execute VM code in a loop until the time slice for the process is used
699  * or some emulation is needed from user space in which case the function will
700  * return with return value 0 and with the kvm_run structure filled in with the
701  * required data for the requested emulation.
702  */
703 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
704 {
705         struct kvm_run *run = vcpu->run;
706         int ret;
707
708         if (unlikely(!kvm_vcpu_initialized(vcpu)))
709                 return -ENOEXEC;
710
711         ret = kvm_vcpu_first_run_init(vcpu);
712         if (ret)
713                 return ret;
714
715         if (run->exit_reason == KVM_EXIT_MMIO) {
716                 ret = kvm_handle_mmio_return(vcpu);
717                 if (ret)
718                         return ret;
719         }
720
721         if (run->immediate_exit)
722                 return -EINTR;
723
724         vcpu_load(vcpu);
725
726         kvm_sigset_activate(vcpu);
727
728         ret = 1;
729         run->exit_reason = KVM_EXIT_UNKNOWN;
730         while (ret > 0) {
731                 /*
732                  * Check conditions before entering the guest
733                  */
734                 cond_resched();
735
736                 update_vmid(&vcpu->arch.hw_mmu->vmid);
737
738                 check_vcpu_requests(vcpu);
739
740                 /*
741                  * Preparing the interrupts to be injected also
742                  * involves poking the GIC, which must be done in a
743                  * non-preemptible context.
744                  */
745                 preempt_disable();
746
747                 kvm_pmu_flush_hwstate(vcpu);
748
749                 local_irq_disable();
750
751                 kvm_vgic_flush_hwstate(vcpu);
752
753                 /*
754                  * Exit if we have a signal pending so that we can deliver the
755                  * signal to user space.
756                  */
757                 if (signal_pending(current)) {
758                         ret = -EINTR;
759                         run->exit_reason = KVM_EXIT_INTR;
760                 }
761
762                 /*
763                  * If we're using a userspace irqchip, then check if we need
764                  * to tell a userspace irqchip about timer or PMU level
765                  * changes and if so, exit to userspace (the actual level
766                  * state gets updated in kvm_timer_update_run and
767                  * kvm_pmu_update_run below).
768                  */
769                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
770                         if (kvm_timer_should_notify_user(vcpu) ||
771                             kvm_pmu_should_notify_user(vcpu)) {
772                                 ret = -EINTR;
773                                 run->exit_reason = KVM_EXIT_INTR;
774                         }
775                 }
776
777                 /*
778                  * Ensure we set mode to IN_GUEST_MODE after we disable
779                  * interrupts and before the final VCPU requests check.
780                  * See the comment in kvm_vcpu_exiting_guest_mode() and
781                  * Documentation/virt/kvm/vcpu-requests.rst
782                  */
783                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
784
785                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
786                     kvm_request_pending(vcpu)) {
787                         vcpu->mode = OUTSIDE_GUEST_MODE;
788                         isb(); /* Ensure work in x_flush_hwstate is committed */
789                         kvm_pmu_sync_hwstate(vcpu);
790                         if (static_branch_unlikely(&userspace_irqchip_in_use))
791                                 kvm_timer_sync_user(vcpu);
792                         kvm_vgic_sync_hwstate(vcpu);
793                         local_irq_enable();
794                         preempt_enable();
795                         continue;
796                 }
797
798                 kvm_arm_setup_debug(vcpu);
799
800                 /**************************************************************
801                  * Enter the guest
802                  */
803                 trace_kvm_entry(*vcpu_pc(vcpu));
804                 guest_enter_irqoff();
805
806                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
807
808                 vcpu->mode = OUTSIDE_GUEST_MODE;
809                 vcpu->stat.exits++;
810                 /*
811                  * Back from guest
812                  *************************************************************/
813
814                 kvm_arm_clear_debug(vcpu);
815
816                 /*
817                  * We must sync the PMU state before the vgic state so
818                  * that the vgic can properly sample the updated state of the
819                  * interrupt line.
820                  */
821                 kvm_pmu_sync_hwstate(vcpu);
822
823                 /*
824                  * Sync the vgic state before syncing the timer state because
825                  * the timer code needs to know if the virtual timer
826                  * interrupts are active.
827                  */
828                 kvm_vgic_sync_hwstate(vcpu);
829
830                 /*
831                  * Sync the timer hardware state before enabling interrupts as
832                  * we don't want vtimer interrupts to race with syncing the
833                  * timer virtual interrupt state.
834                  */
835                 if (static_branch_unlikely(&userspace_irqchip_in_use))
836                         kvm_timer_sync_user(vcpu);
837
838                 kvm_arch_vcpu_ctxsync_fp(vcpu);
839
840                 /*
841                  * We may have taken a host interrupt in HYP mode (ie
842                  * while executing the guest). This interrupt is still
843                  * pending, as we haven't serviced it yet!
844                  *
845                  * We're now back in SVC mode, with interrupts
846                  * disabled.  Enabling the interrupts now will have
847                  * the effect of taking the interrupt again, in SVC
848                  * mode this time.
849                  */
850                 local_irq_enable();
851
852                 /*
853                  * We do local_irq_enable() before calling guest_exit() so
854                  * that if a timer interrupt hits while running the guest we
855                  * account that tick as being spent in the guest.  We enable
856                  * preemption after calling guest_exit() so that if we get
857                  * preempted we make sure ticks after that is not counted as
858                  * guest time.
859                  */
860                 guest_exit();
861                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
862
863                 /* Exit types that need handling before we can be preempted */
864                 handle_exit_early(vcpu, ret);
865
866                 preempt_enable();
867
868                 /*
869                  * The ARMv8 architecture doesn't give the hypervisor
870                  * a mechanism to prevent a guest from dropping to AArch32 EL0
871                  * if implemented by the CPU. If we spot the guest in such
872                  * state and that we decided it wasn't supposed to do so (like
873                  * with the asymmetric AArch32 case), return to userspace with
874                  * a fatal error.
875                  */
876                 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
877                         /*
878                          * As we have caught the guest red-handed, decide that
879                          * it isn't fit for purpose anymore by making the vcpu
880                          * invalid. The VMM can try and fix it by issuing  a
881                          * KVM_ARM_VCPU_INIT if it really wants to.
882                          */
883                         vcpu->arch.target = -1;
884                         ret = ARM_EXCEPTION_IL;
885                 }
886
887                 ret = handle_exit(vcpu, ret);
888         }
889
890         /* Tell userspace about in-kernel device output levels */
891         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
892                 kvm_timer_update_run(vcpu);
893                 kvm_pmu_update_run(vcpu);
894         }
895
896         kvm_sigset_deactivate(vcpu);
897
898         vcpu_put(vcpu);
899         return ret;
900 }
901
902 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
903 {
904         int bit_index;
905         bool set;
906         unsigned long *hcr;
907
908         if (number == KVM_ARM_IRQ_CPU_IRQ)
909                 bit_index = __ffs(HCR_VI);
910         else /* KVM_ARM_IRQ_CPU_FIQ */
911                 bit_index = __ffs(HCR_VF);
912
913         hcr = vcpu_hcr(vcpu);
914         if (level)
915                 set = test_and_set_bit(bit_index, hcr);
916         else
917                 set = test_and_clear_bit(bit_index, hcr);
918
919         /*
920          * If we didn't change anything, no need to wake up or kick other CPUs
921          */
922         if (set == level)
923                 return 0;
924
925         /*
926          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
927          * trigger a world-switch round on the running physical CPU to set the
928          * virtual IRQ/FIQ fields in the HCR appropriately.
929          */
930         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
931         kvm_vcpu_kick(vcpu);
932
933         return 0;
934 }
935
936 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
937                           bool line_status)
938 {
939         u32 irq = irq_level->irq;
940         unsigned int irq_type, vcpu_idx, irq_num;
941         int nrcpus = atomic_read(&kvm->online_vcpus);
942         struct kvm_vcpu *vcpu = NULL;
943         bool level = irq_level->level;
944
945         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
946         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
947         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
948         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
949
950         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
951
952         switch (irq_type) {
953         case KVM_ARM_IRQ_TYPE_CPU:
954                 if (irqchip_in_kernel(kvm))
955                         return -ENXIO;
956
957                 if (vcpu_idx >= nrcpus)
958                         return -EINVAL;
959
960                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
961                 if (!vcpu)
962                         return -EINVAL;
963
964                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
965                         return -EINVAL;
966
967                 return vcpu_interrupt_line(vcpu, irq_num, level);
968         case KVM_ARM_IRQ_TYPE_PPI:
969                 if (!irqchip_in_kernel(kvm))
970                         return -ENXIO;
971
972                 if (vcpu_idx >= nrcpus)
973                         return -EINVAL;
974
975                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
976                 if (!vcpu)
977                         return -EINVAL;
978
979                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
980                         return -EINVAL;
981
982                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
983         case KVM_ARM_IRQ_TYPE_SPI:
984                 if (!irqchip_in_kernel(kvm))
985                         return -ENXIO;
986
987                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
988                         return -EINVAL;
989
990                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
991         }
992
993         return -EINVAL;
994 }
995
996 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
997                                const struct kvm_vcpu_init *init)
998 {
999         unsigned int i, ret;
1000         int phys_target = kvm_target_cpu();
1001
1002         if (init->target != phys_target)
1003                 return -EINVAL;
1004
1005         /*
1006          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1007          * use the same target.
1008          */
1009         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1010                 return -EINVAL;
1011
1012         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1013         for (i = 0; i < sizeof(init->features) * 8; i++) {
1014                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1015
1016                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1017                         return -ENOENT;
1018
1019                 /*
1020                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1021                  * use the same feature set.
1022                  */
1023                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1024                     test_bit(i, vcpu->arch.features) != set)
1025                         return -EINVAL;
1026
1027                 if (set)
1028                         set_bit(i, vcpu->arch.features);
1029         }
1030
1031         vcpu->arch.target = phys_target;
1032
1033         /* Now we know what it is, we can reset it. */
1034         ret = kvm_reset_vcpu(vcpu);
1035         if (ret) {
1036                 vcpu->arch.target = -1;
1037                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1038         }
1039
1040         return ret;
1041 }
1042
1043 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1044                                          struct kvm_vcpu_init *init)
1045 {
1046         int ret;
1047
1048         ret = kvm_vcpu_set_target(vcpu, init);
1049         if (ret)
1050                 return ret;
1051
1052         /*
1053          * Ensure a rebooted VM will fault in RAM pages and detect if the
1054          * guest MMU is turned off and flush the caches as needed.
1055          *
1056          * S2FWB enforces all memory accesses to RAM being cacheable,
1057          * ensuring that the data side is always coherent. We still
1058          * need to invalidate the I-cache though, as FWB does *not*
1059          * imply CTR_EL0.DIC.
1060          */
1061         if (vcpu->arch.has_run_once) {
1062                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1063                         stage2_unmap_vm(vcpu->kvm);
1064                 else
1065                         __flush_icache_all();
1066         }
1067
1068         vcpu_reset_hcr(vcpu);
1069
1070         /*
1071          * Handle the "start in power-off" case.
1072          */
1073         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1074                 vcpu_power_off(vcpu);
1075         else
1076                 vcpu->arch.power_off = false;
1077
1078         return 0;
1079 }
1080
1081 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1082                                  struct kvm_device_attr *attr)
1083 {
1084         int ret = -ENXIO;
1085
1086         switch (attr->group) {
1087         default:
1088                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1089                 break;
1090         }
1091
1092         return ret;
1093 }
1094
1095 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1096                                  struct kvm_device_attr *attr)
1097 {
1098         int ret = -ENXIO;
1099
1100         switch (attr->group) {
1101         default:
1102                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1103                 break;
1104         }
1105
1106         return ret;
1107 }
1108
1109 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1110                                  struct kvm_device_attr *attr)
1111 {
1112         int ret = -ENXIO;
1113
1114         switch (attr->group) {
1115         default:
1116                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1117                 break;
1118         }
1119
1120         return ret;
1121 }
1122
1123 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1124                                    struct kvm_vcpu_events *events)
1125 {
1126         memset(events, 0, sizeof(*events));
1127
1128         return __kvm_arm_vcpu_get_events(vcpu, events);
1129 }
1130
1131 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1132                                    struct kvm_vcpu_events *events)
1133 {
1134         int i;
1135
1136         /* check whether the reserved field is zero */
1137         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1138                 if (events->reserved[i])
1139                         return -EINVAL;
1140
1141         /* check whether the pad field is zero */
1142         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1143                 if (events->exception.pad[i])
1144                         return -EINVAL;
1145
1146         return __kvm_arm_vcpu_set_events(vcpu, events);
1147 }
1148
1149 long kvm_arch_vcpu_ioctl(struct file *filp,
1150                          unsigned int ioctl, unsigned long arg)
1151 {
1152         struct kvm_vcpu *vcpu = filp->private_data;
1153         void __user *argp = (void __user *)arg;
1154         struct kvm_device_attr attr;
1155         long r;
1156
1157         switch (ioctl) {
1158         case KVM_ARM_VCPU_INIT: {
1159                 struct kvm_vcpu_init init;
1160
1161                 r = -EFAULT;
1162                 if (copy_from_user(&init, argp, sizeof(init)))
1163                         break;
1164
1165                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1166                 break;
1167         }
1168         case KVM_SET_ONE_REG:
1169         case KVM_GET_ONE_REG: {
1170                 struct kvm_one_reg reg;
1171
1172                 r = -ENOEXEC;
1173                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1174                         break;
1175
1176                 r = -EFAULT;
1177                 if (copy_from_user(&reg, argp, sizeof(reg)))
1178                         break;
1179
1180                 if (ioctl == KVM_SET_ONE_REG)
1181                         r = kvm_arm_set_reg(vcpu, &reg);
1182                 else
1183                         r = kvm_arm_get_reg(vcpu, &reg);
1184                 break;
1185         }
1186         case KVM_GET_REG_LIST: {
1187                 struct kvm_reg_list __user *user_list = argp;
1188                 struct kvm_reg_list reg_list;
1189                 unsigned n;
1190
1191                 r = -ENOEXEC;
1192                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1193                         break;
1194
1195                 r = -EPERM;
1196                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1197                         break;
1198
1199                 r = -EFAULT;
1200                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1201                         break;
1202                 n = reg_list.n;
1203                 reg_list.n = kvm_arm_num_regs(vcpu);
1204                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1205                         break;
1206                 r = -E2BIG;
1207                 if (n < reg_list.n)
1208                         break;
1209                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1210                 break;
1211         }
1212         case KVM_SET_DEVICE_ATTR: {
1213                 r = -EFAULT;
1214                 if (copy_from_user(&attr, argp, sizeof(attr)))
1215                         break;
1216                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1217                 break;
1218         }
1219         case KVM_GET_DEVICE_ATTR: {
1220                 r = -EFAULT;
1221                 if (copy_from_user(&attr, argp, sizeof(attr)))
1222                         break;
1223                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1224                 break;
1225         }
1226         case KVM_HAS_DEVICE_ATTR: {
1227                 r = -EFAULT;
1228                 if (copy_from_user(&attr, argp, sizeof(attr)))
1229                         break;
1230                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1231                 break;
1232         }
1233         case KVM_GET_VCPU_EVENTS: {
1234                 struct kvm_vcpu_events events;
1235
1236                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1237                         return -EINVAL;
1238
1239                 if (copy_to_user(argp, &events, sizeof(events)))
1240                         return -EFAULT;
1241
1242                 return 0;
1243         }
1244         case KVM_SET_VCPU_EVENTS: {
1245                 struct kvm_vcpu_events events;
1246
1247                 if (copy_from_user(&events, argp, sizeof(events)))
1248                         return -EFAULT;
1249
1250                 return kvm_arm_vcpu_set_events(vcpu, &events);
1251         }
1252         case KVM_ARM_VCPU_FINALIZE: {
1253                 int what;
1254
1255                 if (!kvm_vcpu_initialized(vcpu))
1256                         return -ENOEXEC;
1257
1258                 if (get_user(what, (const int __user *)argp))
1259                         return -EFAULT;
1260
1261                 return kvm_arm_vcpu_finalize(vcpu, what);
1262         }
1263         default:
1264                 r = -EINVAL;
1265         }
1266
1267         return r;
1268 }
1269
1270 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1271 {
1272
1273 }
1274
1275 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1276                                         struct kvm_memory_slot *memslot)
1277 {
1278         kvm_flush_remote_tlbs(kvm);
1279 }
1280
1281 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1282                                         struct kvm_arm_device_addr *dev_addr)
1283 {
1284         unsigned long dev_id, type;
1285
1286         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1287                 KVM_ARM_DEVICE_ID_SHIFT;
1288         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1289                 KVM_ARM_DEVICE_TYPE_SHIFT;
1290
1291         switch (dev_id) {
1292         case KVM_ARM_DEVICE_VGIC_V2:
1293                 if (!vgic_present)
1294                         return -ENXIO;
1295                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1296         default:
1297                 return -ENODEV;
1298         }
1299 }
1300
1301 long kvm_arch_vm_ioctl(struct file *filp,
1302                        unsigned int ioctl, unsigned long arg)
1303 {
1304         struct kvm *kvm = filp->private_data;
1305         void __user *argp = (void __user *)arg;
1306
1307         switch (ioctl) {
1308         case KVM_CREATE_IRQCHIP: {
1309                 int ret;
1310                 if (!vgic_present)
1311                         return -ENXIO;
1312                 mutex_lock(&kvm->lock);
1313                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1314                 mutex_unlock(&kvm->lock);
1315                 return ret;
1316         }
1317         case KVM_ARM_SET_DEVICE_ADDR: {
1318                 struct kvm_arm_device_addr dev_addr;
1319
1320                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1321                         return -EFAULT;
1322                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1323         }
1324         case KVM_ARM_PREFERRED_TARGET: {
1325                 int err;
1326                 struct kvm_vcpu_init init;
1327
1328                 err = kvm_vcpu_preferred_target(&init);
1329                 if (err)
1330                         return err;
1331
1332                 if (copy_to_user(argp, &init, sizeof(init)))
1333                         return -EFAULT;
1334
1335                 return 0;
1336         }
1337         default:
1338                 return -EINVAL;
1339         }
1340 }
1341
1342 static unsigned long nvhe_percpu_size(void)
1343 {
1344         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1345                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1346 }
1347
1348 static unsigned long nvhe_percpu_order(void)
1349 {
1350         unsigned long size = nvhe_percpu_size();
1351
1352         return size ? get_order(size) : 0;
1353 }
1354
1355 /* A lookup table holding the hypervisor VA for each vector slot */
1356 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1357
1358 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1359 {
1360         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1361 }
1362
1363 static int kvm_init_vector_slots(void)
1364 {
1365         int err;
1366         void *base;
1367
1368         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1369         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1370
1371         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1372         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1373
1374         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1375                 return 0;
1376
1377         if (!has_vhe()) {
1378                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1379                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1380                 if (err)
1381                         return err;
1382         }
1383
1384         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1385         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1386         return 0;
1387 }
1388
1389 static void cpu_prepare_hyp_mode(int cpu)
1390 {
1391         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1392         unsigned long tcr;
1393
1394         /*
1395          * Calculate the raw per-cpu offset without a translation from the
1396          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1397          * so that we can use adr_l to access per-cpu variables in EL2.
1398          * Also drop the KASAN tag which gets in the way...
1399          */
1400         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1401                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1402
1403         params->mair_el2 = read_sysreg(mair_el1);
1404
1405         /*
1406          * The ID map may be configured to use an extended virtual address
1407          * range. This is only the case if system RAM is out of range for the
1408          * currently configured page size and VA_BITS, in which case we will
1409          * also need the extended virtual range for the HYP ID map, or we won't
1410          * be able to enable the EL2 MMU.
1411          *
1412          * However, at EL2, there is only one TTBR register, and we can't switch
1413          * between translation tables *and* update TCR_EL2.T0SZ at the same
1414          * time. Bottom line: we need to use the extended range with *both* our
1415          * translation tables.
1416          *
1417          * So use the same T0SZ value we use for the ID map.
1418          */
1419         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1420         tcr &= ~TCR_T0SZ_MASK;
1421         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1422         params->tcr_el2 = tcr;
1423
1424         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1425         params->pgd_pa = kvm_mmu_get_httbr();
1426         if (is_protected_kvm_enabled())
1427                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1428         else
1429                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1430         params->vttbr = params->vtcr = 0;
1431
1432         /*
1433          * Flush the init params from the data cache because the struct will
1434          * be read while the MMU is off.
1435          */
1436         kvm_flush_dcache_to_poc(params, sizeof(*params));
1437 }
1438
1439 static void hyp_install_host_vector(void)
1440 {
1441         struct kvm_nvhe_init_params *params;
1442         struct arm_smccc_res res;
1443
1444         /* Switch from the HYP stub to our own HYP init vector */
1445         __hyp_set_vectors(kvm_get_idmap_vector());
1446
1447         /*
1448          * Call initialization code, and switch to the full blown HYP code.
1449          * If the cpucaps haven't been finalized yet, something has gone very
1450          * wrong, and hyp will crash and burn when it uses any
1451          * cpus_have_const_cap() wrapper.
1452          */
1453         BUG_ON(!system_capabilities_finalized());
1454         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1455         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1456         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1457 }
1458
1459 static void cpu_init_hyp_mode(void)
1460 {
1461         hyp_install_host_vector();
1462
1463         /*
1464          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1465          * at EL2.
1466          */
1467         if (this_cpu_has_cap(ARM64_SSBS) &&
1468             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1469                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1470         }
1471 }
1472
1473 static void cpu_hyp_reset(void)
1474 {
1475         if (!is_kernel_in_hyp_mode())
1476                 __hyp_reset_vectors();
1477 }
1478
1479 /*
1480  * EL2 vectors can be mapped and rerouted in a number of ways,
1481  * depending on the kernel configuration and CPU present:
1482  *
1483  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1484  *   placed in one of the vector slots, which is executed before jumping
1485  *   to the real vectors.
1486  *
1487  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1488  *   containing the hardening sequence is mapped next to the idmap page,
1489  *   and executed before jumping to the real vectors.
1490  *
1491  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1492  *   empty slot is selected, mapped next to the idmap page, and
1493  *   executed before jumping to the real vectors.
1494  *
1495  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1496  * VHE, as we don't have hypervisor-specific mappings. If the system
1497  * is VHE and yet selects this capability, it will be ignored.
1498  */
1499 static void cpu_set_hyp_vector(void)
1500 {
1501         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1502         void *vector = hyp_spectre_vector_selector[data->slot];
1503
1504         if (!is_protected_kvm_enabled())
1505                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1506         else
1507                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1508 }
1509
1510 static void cpu_hyp_reinit(void)
1511 {
1512         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1513
1514         cpu_hyp_reset();
1515
1516         if (is_kernel_in_hyp_mode())
1517                 kvm_timer_init_vhe();
1518         else
1519                 cpu_init_hyp_mode();
1520
1521         cpu_set_hyp_vector();
1522
1523         kvm_arm_init_debug();
1524
1525         if (vgic_present)
1526                 kvm_vgic_init_cpu_hardware();
1527 }
1528
1529 static void _kvm_arch_hardware_enable(void *discard)
1530 {
1531         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1532                 cpu_hyp_reinit();
1533                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1534         }
1535 }
1536
1537 int kvm_arch_hardware_enable(void)
1538 {
1539         _kvm_arch_hardware_enable(NULL);
1540         return 0;
1541 }
1542
1543 static void _kvm_arch_hardware_disable(void *discard)
1544 {
1545         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1546                 cpu_hyp_reset();
1547                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1548         }
1549 }
1550
1551 void kvm_arch_hardware_disable(void)
1552 {
1553         if (!is_protected_kvm_enabled())
1554                 _kvm_arch_hardware_disable(NULL);
1555 }
1556
1557 #ifdef CONFIG_CPU_PM
1558 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1559                                     unsigned long cmd,
1560                                     void *v)
1561 {
1562         /*
1563          * kvm_arm_hardware_enabled is left with its old value over
1564          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1565          * re-enable hyp.
1566          */
1567         switch (cmd) {
1568         case CPU_PM_ENTER:
1569                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1570                         /*
1571                          * don't update kvm_arm_hardware_enabled here
1572                          * so that the hardware will be re-enabled
1573                          * when we resume. See below.
1574                          */
1575                         cpu_hyp_reset();
1576
1577                 return NOTIFY_OK;
1578         case CPU_PM_ENTER_FAILED:
1579         case CPU_PM_EXIT:
1580                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1581                         /* The hardware was enabled before suspend. */
1582                         cpu_hyp_reinit();
1583
1584                 return NOTIFY_OK;
1585
1586         default:
1587                 return NOTIFY_DONE;
1588         }
1589 }
1590
1591 static struct notifier_block hyp_init_cpu_pm_nb = {
1592         .notifier_call = hyp_init_cpu_pm_notifier,
1593 };
1594
1595 static void hyp_cpu_pm_init(void)
1596 {
1597         if (!is_protected_kvm_enabled())
1598                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1599 }
1600 static void hyp_cpu_pm_exit(void)
1601 {
1602         if (!is_protected_kvm_enabled())
1603                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1604 }
1605 #else
1606 static inline void hyp_cpu_pm_init(void)
1607 {
1608 }
1609 static inline void hyp_cpu_pm_exit(void)
1610 {
1611 }
1612 #endif
1613
1614 static void init_cpu_logical_map(void)
1615 {
1616         unsigned int cpu;
1617
1618         /*
1619          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1620          * Only copy the set of online CPUs whose features have been chacked
1621          * against the finalized system capabilities. The hypervisor will not
1622          * allow any other CPUs from the `possible` set to boot.
1623          */
1624         for_each_online_cpu(cpu)
1625                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1626 }
1627
1628 #define init_psci_0_1_impl_state(config, what)  \
1629         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1630
1631 static bool init_psci_relay(void)
1632 {
1633         /*
1634          * If PSCI has not been initialized, protected KVM cannot install
1635          * itself on newly booted CPUs.
1636          */
1637         if (!psci_ops.get_version) {
1638                 kvm_err("Cannot initialize protected mode without PSCI\n");
1639                 return false;
1640         }
1641
1642         kvm_host_psci_config.version = psci_ops.get_version();
1643
1644         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1645                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1646                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1647                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1648                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1649                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1650         }
1651         return true;
1652 }
1653
1654 static int init_common_resources(void)
1655 {
1656         return kvm_set_ipa_limit();
1657 }
1658
1659 static int init_subsystems(void)
1660 {
1661         int err = 0;
1662
1663         /*
1664          * Enable hardware so that subsystem initialisation can access EL2.
1665          */
1666         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1667
1668         /*
1669          * Register CPU lower-power notifier
1670          */
1671         hyp_cpu_pm_init();
1672
1673         /*
1674          * Init HYP view of VGIC
1675          */
1676         err = kvm_vgic_hyp_init();
1677         switch (err) {
1678         case 0:
1679                 vgic_present = true;
1680                 break;
1681         case -ENODEV:
1682         case -ENXIO:
1683                 vgic_present = false;
1684                 err = 0;
1685                 break;
1686         default:
1687                 goto out;
1688         }
1689
1690         /*
1691          * Init HYP architected timer support
1692          */
1693         err = kvm_timer_hyp_init(vgic_present);
1694         if (err)
1695                 goto out;
1696
1697         kvm_perf_init();
1698         kvm_sys_reg_table_init();
1699
1700 out:
1701         if (err || !is_protected_kvm_enabled())
1702                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1703
1704         return err;
1705 }
1706
1707 static void teardown_hyp_mode(void)
1708 {
1709         int cpu;
1710
1711         free_hyp_pgds();
1712         for_each_possible_cpu(cpu) {
1713                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1714                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1715         }
1716 }
1717
1718 static int do_pkvm_init(u32 hyp_va_bits)
1719 {
1720         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1721         int ret;
1722
1723         preempt_disable();
1724         hyp_install_host_vector();
1725         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1726                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1727                                 hyp_va_bits);
1728         preempt_enable();
1729
1730         return ret;
1731 }
1732
1733 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1734 {
1735         void *addr = phys_to_virt(hyp_mem_base);
1736         int ret;
1737
1738         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1739         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1740
1741         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1742         if (ret)
1743                 return ret;
1744
1745         ret = do_pkvm_init(hyp_va_bits);
1746         if (ret)
1747                 return ret;
1748
1749         free_hyp_pgds();
1750
1751         return 0;
1752 }
1753
1754 /**
1755  * Inits Hyp-mode on all online CPUs
1756  */
1757 static int init_hyp_mode(void)
1758 {
1759         u32 hyp_va_bits;
1760         int cpu;
1761         int err = -ENOMEM;
1762
1763         /*
1764          * The protected Hyp-mode cannot be initialized if the memory pool
1765          * allocation has failed.
1766          */
1767         if (is_protected_kvm_enabled() && !hyp_mem_base)
1768                 goto out_err;
1769
1770         /*
1771          * Allocate Hyp PGD and setup Hyp identity mapping
1772          */
1773         err = kvm_mmu_init(&hyp_va_bits);
1774         if (err)
1775                 goto out_err;
1776
1777         /*
1778          * Allocate stack pages for Hypervisor-mode
1779          */
1780         for_each_possible_cpu(cpu) {
1781                 unsigned long stack_page;
1782
1783                 stack_page = __get_free_page(GFP_KERNEL);
1784                 if (!stack_page) {
1785                         err = -ENOMEM;
1786                         goto out_err;
1787                 }
1788
1789                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1790         }
1791
1792         /*
1793          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1794          */
1795         for_each_possible_cpu(cpu) {
1796                 struct page *page;
1797                 void *page_addr;
1798
1799                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1800                 if (!page) {
1801                         err = -ENOMEM;
1802                         goto out_err;
1803                 }
1804
1805                 page_addr = page_address(page);
1806                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1807                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1808         }
1809
1810         /*
1811          * Map the Hyp-code called directly from the host
1812          */
1813         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1814                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1815         if (err) {
1816                 kvm_err("Cannot map world-switch code\n");
1817                 goto out_err;
1818         }
1819
1820         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1821                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1822         if (err) {
1823                 kvm_err("Cannot map .hyp.rodata section\n");
1824                 goto out_err;
1825         }
1826
1827         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1828                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1829         if (err) {
1830                 kvm_err("Cannot map rodata section\n");
1831                 goto out_err;
1832         }
1833
1834         /*
1835          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1836          * section thanks to an assertion in the linker script. Map it RW and
1837          * the rest of .bss RO.
1838          */
1839         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1840                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1841         if (err) {
1842                 kvm_err("Cannot map hyp bss section: %d\n", err);
1843                 goto out_err;
1844         }
1845
1846         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1847                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1848         if (err) {
1849                 kvm_err("Cannot map bss section\n");
1850                 goto out_err;
1851         }
1852
1853         /*
1854          * Map the Hyp stack pages
1855          */
1856         for_each_possible_cpu(cpu) {
1857                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1858                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1859                                           PAGE_HYP);
1860
1861                 if (err) {
1862                         kvm_err("Cannot map hyp stack\n");
1863                         goto out_err;
1864                 }
1865         }
1866
1867         for_each_possible_cpu(cpu) {
1868                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1869                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1870
1871                 /* Map Hyp percpu pages */
1872                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1873                 if (err) {
1874                         kvm_err("Cannot map hyp percpu region\n");
1875                         goto out_err;
1876                 }
1877
1878                 /* Prepare the CPU initialization parameters */
1879                 cpu_prepare_hyp_mode(cpu);
1880         }
1881
1882         if (is_protected_kvm_enabled()) {
1883                 init_cpu_logical_map();
1884
1885                 if (!init_psci_relay()) {
1886                         err = -ENODEV;
1887                         goto out_err;
1888                 }
1889         }
1890
1891         if (is_protected_kvm_enabled()) {
1892                 err = kvm_hyp_init_protection(hyp_va_bits);
1893                 if (err) {
1894                         kvm_err("Failed to init hyp memory protection\n");
1895                         goto out_err;
1896                 }
1897         }
1898
1899         return 0;
1900
1901 out_err:
1902         teardown_hyp_mode();
1903         kvm_err("error initializing Hyp mode: %d\n", err);
1904         return err;
1905 }
1906
1907 static void _kvm_host_prot_finalize(void *discard)
1908 {
1909         WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1910 }
1911
1912 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1913 {
1914         return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1915 }
1916
1917 #define pkvm_mark_hyp_section(__section)                \
1918         pkvm_mark_hyp(__pa_symbol(__section##_start),   \
1919                         __pa_symbol(__section##_end))
1920
1921 static int finalize_hyp_mode(void)
1922 {
1923         int cpu, ret;
1924
1925         if (!is_protected_kvm_enabled())
1926                 return 0;
1927
1928         ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1929         if (ret)
1930                 return ret;
1931
1932         ret = pkvm_mark_hyp_section(__hyp_text);
1933         if (ret)
1934                 return ret;
1935
1936         ret = pkvm_mark_hyp_section(__hyp_rodata);
1937         if (ret)
1938                 return ret;
1939
1940         ret = pkvm_mark_hyp_section(__hyp_bss);
1941         if (ret)
1942                 return ret;
1943
1944         ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1945         if (ret)
1946                 return ret;
1947
1948         for_each_possible_cpu(cpu) {
1949                 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1950                 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1951
1952                 ret = pkvm_mark_hyp(start, end);
1953                 if (ret)
1954                         return ret;
1955
1956                 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
1957                 end = start + PAGE_SIZE;
1958                 ret = pkvm_mark_hyp(start, end);
1959                 if (ret)
1960                         return ret;
1961         }
1962
1963         /*
1964          * Flip the static key upfront as that may no longer be possible
1965          * once the host stage 2 is installed.
1966          */
1967         static_branch_enable(&kvm_protected_mode_initialized);
1968         on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1969
1970         return 0;
1971 }
1972
1973 static void check_kvm_target_cpu(void *ret)
1974 {
1975         *(int *)ret = kvm_target_cpu();
1976 }
1977
1978 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1979 {
1980         struct kvm_vcpu *vcpu;
1981         int i;
1982
1983         mpidr &= MPIDR_HWID_BITMASK;
1984         kvm_for_each_vcpu(i, vcpu, kvm) {
1985                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1986                         return vcpu;
1987         }
1988         return NULL;
1989 }
1990
1991 bool kvm_arch_has_irq_bypass(void)
1992 {
1993         return true;
1994 }
1995
1996 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1997                                       struct irq_bypass_producer *prod)
1998 {
1999         struct kvm_kernel_irqfd *irqfd =
2000                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2001
2002         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2003                                           &irqfd->irq_entry);
2004 }
2005 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2006                                       struct irq_bypass_producer *prod)
2007 {
2008         struct kvm_kernel_irqfd *irqfd =
2009                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2010
2011         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2012                                      &irqfd->irq_entry);
2013 }
2014
2015 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2016 {
2017         struct kvm_kernel_irqfd *irqfd =
2018                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2019
2020         kvm_arm_halt_guest(irqfd->kvm);
2021 }
2022
2023 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2024 {
2025         struct kvm_kernel_irqfd *irqfd =
2026                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2027
2028         kvm_arm_resume_guest(irqfd->kvm);
2029 }
2030
2031 /**
2032  * Initialize Hyp-mode and memory mappings on all CPUs.
2033  */
2034 int kvm_arch_init(void *opaque)
2035 {
2036         int err;
2037         int ret, cpu;
2038         bool in_hyp_mode;
2039
2040         if (!is_hyp_mode_available()) {
2041                 kvm_info("HYP mode not available\n");
2042                 return -ENODEV;
2043         }
2044
2045         in_hyp_mode = is_kernel_in_hyp_mode();
2046
2047         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2048             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2049                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2050                          "Only trusted guests should be used on this system.\n");
2051
2052         for_each_online_cpu(cpu) {
2053                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2054                 if (ret < 0) {
2055                         kvm_err("Error, CPU %d not supported!\n", cpu);
2056                         return -ENODEV;
2057                 }
2058         }
2059
2060         err = init_common_resources();
2061         if (err)
2062                 return err;
2063
2064         err = kvm_arm_init_sve();
2065         if (err)
2066                 return err;
2067
2068         if (!in_hyp_mode) {
2069                 err = init_hyp_mode();
2070                 if (err)
2071                         goto out_err;
2072         }
2073
2074         err = kvm_init_vector_slots();
2075         if (err) {
2076                 kvm_err("Cannot initialise vector slots\n");
2077                 goto out_err;
2078         }
2079
2080         err = init_subsystems();
2081         if (err)
2082                 goto out_hyp;
2083
2084         if (!in_hyp_mode) {
2085                 err = finalize_hyp_mode();
2086                 if (err) {
2087                         kvm_err("Failed to finalize Hyp protection\n");
2088                         goto out_hyp;
2089                 }
2090         }
2091
2092         if (is_protected_kvm_enabled()) {
2093                 kvm_info("Protected nVHE mode initialized successfully\n");
2094         } else if (in_hyp_mode) {
2095                 kvm_info("VHE mode initialized successfully\n");
2096         } else {
2097                 kvm_info("Hyp mode initialized successfully\n");
2098         }
2099
2100         return 0;
2101
2102 out_hyp:
2103         hyp_cpu_pm_exit();
2104         if (!in_hyp_mode)
2105                 teardown_hyp_mode();
2106 out_err:
2107         return err;
2108 }
2109
2110 /* NOP: Compiling as a module not supported */
2111 void kvm_arch_exit(void)
2112 {
2113         kvm_perf_teardown();
2114 }
2115
2116 static int __init early_kvm_mode_cfg(char *arg)
2117 {
2118         if (!arg)
2119                 return -EINVAL;
2120
2121         if (strcmp(arg, "protected") == 0) {
2122                 kvm_mode = KVM_MODE_PROTECTED;
2123                 return 0;
2124         }
2125
2126         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2127                 return 0;
2128
2129         return -EINVAL;
2130 }
2131 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2132
2133 enum kvm_mode kvm_get_mode(void)
2134 {
2135         return kvm_mode;
2136 }
2137
2138 static int arm_init(void)
2139 {
2140         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2141         return rc;
2142 }
2143
2144 module_init(arm_init);