1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
56 static bool vgic_present;
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
66 int kvm_arch_hardware_setup(void *opaque)
71 int kvm_arch_check_processor_compat(void *opaque)
76 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
77 struct kvm_enable_cap *cap)
85 case KVM_CAP_ARM_NISV_TO_USER:
87 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
91 mutex_lock(&kvm->lock);
92 if (!system_supports_mte() || kvm->created_vcpus) {
96 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
98 mutex_unlock(&kvm->lock);
100 case KVM_CAP_ARM_SYSTEM_SUSPEND:
102 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
112 static int kvm_arm_default_max_vcpus(void)
114 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
117 static void set_default_spectre(struct kvm *kvm)
120 * The default is to expose CSV2 == 1 if the HW isn't affected.
121 * Although this is a per-CPU feature, we make it global because
122 * asymmetric systems are just a nuisance.
124 * Userspace can override this as long as it doesn't promise
127 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128 kvm->arch.pfr0_csv2 = 1;
129 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130 kvm->arch.pfr0_csv3 = 1;
134 * kvm_arch_init_vm - initializes a VM data structure
135 * @kvm: pointer to the KVM struct
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
141 ret = kvm_arm_setup_stage2(kvm, type);
145 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
149 ret = kvm_share_hyp(kvm, kvm + 1);
151 goto out_free_stage2_pgd;
153 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL))
154 goto out_free_stage2_pgd;
155 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
157 kvm_vgic_early_init(kvm);
159 /* The maximum number of VCPUs is limited by the host's GIC model */
160 kvm->max_vcpus = kvm_arm_default_max_vcpus();
162 set_default_spectre(kvm);
163 kvm_arm_init_hypercalls(kvm);
167 kvm_free_stage2_pgd(&kvm->arch.mmu);
171 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
173 return VM_FAULT_SIGBUS;
178 * kvm_arch_destroy_vm - destroy the VM data structure
179 * @kvm: pointer to the KVM struct
181 void kvm_arch_destroy_vm(struct kvm *kvm)
183 bitmap_free(kvm->arch.pmu_filter);
184 free_cpumask_var(kvm->arch.supported_cpus);
186 kvm_vgic_destroy(kvm);
188 kvm_destroy_vcpus(kvm);
190 kvm_unshare_hyp(kvm, kvm + 1);
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
197 case KVM_CAP_IRQCHIP:
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 case KVM_CAP_IMMEDIATE_EXIT:
211 case KVM_CAP_VCPU_EVENTS:
212 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213 case KVM_CAP_ARM_NISV_TO_USER:
214 case KVM_CAP_ARM_INJECT_EXT_DABT:
215 case KVM_CAP_SET_GUEST_DEBUG:
216 case KVM_CAP_VCPU_ATTRIBUTES:
217 case KVM_CAP_PTP_KVM:
218 case KVM_CAP_ARM_SYSTEM_SUSPEND:
221 case KVM_CAP_SET_GUEST_DEBUG2:
222 return KVM_GUESTDBG_VALID_MASK;
223 case KVM_CAP_ARM_SET_DEVICE_ADDR:
226 case KVM_CAP_NR_VCPUS:
228 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
229 * architectures, as it does not always bound it to
230 * KVM_CAP_MAX_VCPUS. It should not matter much because
231 * this is just an advisory value.
233 r = min_t(unsigned int, num_online_cpus(),
234 kvm_arm_default_max_vcpus());
236 case KVM_CAP_MAX_VCPUS:
237 case KVM_CAP_MAX_VCPU_ID:
241 r = kvm_arm_default_max_vcpus();
243 case KVM_CAP_MSI_DEVID:
247 r = kvm->arch.vgic.msis_require_devid;
249 case KVM_CAP_ARM_USER_IRQ:
251 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
252 * (bump this number if adding more devices)
256 case KVM_CAP_ARM_MTE:
257 r = system_supports_mte();
259 case KVM_CAP_STEAL_TIME:
260 r = kvm_arm_pvtime_supported();
262 case KVM_CAP_ARM_EL1_32BIT:
263 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
265 case KVM_CAP_GUEST_DEBUG_HW_BPS:
268 case KVM_CAP_GUEST_DEBUG_HW_WPS:
271 case KVM_CAP_ARM_PMU_V3:
272 r = kvm_arm_support_pmu_v3();
274 case KVM_CAP_ARM_INJECT_SERROR_ESR:
275 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
277 case KVM_CAP_ARM_VM_IPA_SIZE:
278 r = get_kvm_ipa_limit();
280 case KVM_CAP_ARM_SVE:
281 r = system_supports_sve();
283 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
284 case KVM_CAP_ARM_PTRAUTH_GENERIC:
285 r = system_has_full_ptr_auth();
294 long kvm_arch_dev_ioctl(struct file *filp,
295 unsigned int ioctl, unsigned long arg)
300 struct kvm *kvm_arch_alloc_vm(void)
302 size_t sz = sizeof(struct kvm);
305 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
307 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
310 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
312 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
315 if (id >= kvm->max_vcpus)
321 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
325 /* Force users to call KVM_ARM_VCPU_INIT */
326 vcpu->arch.target = -1;
327 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
331 /* Set up the timer */
332 kvm_timer_vcpu_init(vcpu);
334 kvm_pmu_vcpu_init(vcpu);
336 kvm_arm_reset_debug_ptr(vcpu);
338 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
340 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
342 err = kvm_vgic_vcpu_init(vcpu);
346 return kvm_share_hyp(vcpu, vcpu + 1);
349 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
353 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
355 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
356 static_branch_dec(&userspace_irqchip_in_use);
358 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
359 kvm_timer_vcpu_terminate(vcpu);
360 kvm_pmu_vcpu_destroy(vcpu);
362 kvm_arm_vcpu_destroy(vcpu);
365 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
370 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
375 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
377 struct kvm_s2_mmu *mmu;
380 mmu = vcpu->arch.hw_mmu;
381 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
384 * We guarantee that both TLBs and I-cache are private to each
385 * vcpu. If detecting that a vcpu from the same VM has
386 * previously run on the same physical CPU, call into the
387 * hypervisor code to nuke the relevant contexts.
389 * We might get preempted before the vCPU actually runs, but
390 * over-invalidation doesn't affect correctness.
392 if (*last_ran != vcpu->vcpu_id) {
393 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
394 *last_ran = vcpu->vcpu_id;
400 kvm_timer_vcpu_load(vcpu);
402 kvm_vcpu_load_sysregs_vhe(vcpu);
403 kvm_arch_vcpu_load_fp(vcpu);
404 kvm_vcpu_pmu_restore_guest(vcpu);
405 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
406 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
408 if (single_task_running())
409 vcpu_clear_wfx_traps(vcpu);
411 vcpu_set_wfx_traps(vcpu);
413 if (vcpu_has_ptrauth(vcpu))
414 vcpu_ptrauth_disable(vcpu);
415 kvm_arch_vcpu_load_debug_state_flags(vcpu);
417 if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
418 vcpu_set_on_unsupported_cpu(vcpu);
421 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
423 kvm_arch_vcpu_put_debug_state_flags(vcpu);
424 kvm_arch_vcpu_put_fp(vcpu);
426 kvm_vcpu_put_sysregs_vhe(vcpu);
427 kvm_timer_vcpu_put(vcpu);
429 kvm_vcpu_pmu_restore_host(vcpu);
430 kvm_arm_vmid_clear_active();
432 vcpu_clear_on_unsupported_cpu(vcpu);
436 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
438 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
439 kvm_make_request(KVM_REQ_SLEEP, vcpu);
443 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
445 return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
448 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
450 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
451 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
455 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
457 return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
460 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
461 struct kvm_mp_state *mp_state)
463 *mp_state = vcpu->arch.mp_state;
468 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
469 struct kvm_mp_state *mp_state)
473 switch (mp_state->mp_state) {
474 case KVM_MP_STATE_RUNNABLE:
475 vcpu->arch.mp_state = *mp_state;
477 case KVM_MP_STATE_STOPPED:
478 kvm_arm_vcpu_power_off(vcpu);
480 case KVM_MP_STATE_SUSPENDED:
481 kvm_arm_vcpu_suspend(vcpu);
491 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
492 * @v: The VCPU pointer
494 * If the guest CPU is not waiting for interrupts or an interrupt line is
495 * asserted, the CPU is by definition runnable.
497 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
499 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
500 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
501 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
504 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
506 return vcpu_mode_priv(vcpu);
509 #ifdef CONFIG_GUEST_PERF_EVENTS
510 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
512 return *vcpu_pc(vcpu);
516 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
518 return vcpu->arch.target >= 0;
522 * Handle both the initialisation that is being done when the vcpu is
523 * run for the first time, as well as the updates that must be
524 * performed each time we get a new thread dealing with this vcpu.
526 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
528 struct kvm *kvm = vcpu->kvm;
531 if (!kvm_vcpu_initialized(vcpu))
534 if (!kvm_arm_vcpu_is_finalized(vcpu))
537 ret = kvm_arch_vcpu_run_map_fp(vcpu);
541 if (likely(vcpu_has_run_once(vcpu)))
544 kvm_arm_vcpu_init_debug(vcpu);
546 if (likely(irqchip_in_kernel(kvm))) {
548 * Map the VGIC hardware resources before running a vcpu the
549 * first time on this VM.
551 ret = kvm_vgic_map_resources(kvm);
556 ret = kvm_timer_enable(vcpu);
560 ret = kvm_arm_pmu_v3_enable(vcpu);
564 if (!irqchip_in_kernel(kvm)) {
566 * Tell the rest of the code that there are userspace irqchip
569 static_branch_inc(&userspace_irqchip_in_use);
573 * Initialize traps for protected VMs.
574 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
575 * the code is in place for first run initialization at EL2.
577 if (kvm_vm_is_protected(kvm))
578 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
580 mutex_lock(&kvm->lock);
581 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
582 mutex_unlock(&kvm->lock);
587 bool kvm_arch_intc_initialized(struct kvm *kvm)
589 return vgic_initialized(kvm);
592 void kvm_arm_halt_guest(struct kvm *kvm)
595 struct kvm_vcpu *vcpu;
597 kvm_for_each_vcpu(i, vcpu, kvm)
598 vcpu->arch.pause = true;
599 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
602 void kvm_arm_resume_guest(struct kvm *kvm)
605 struct kvm_vcpu *vcpu;
607 kvm_for_each_vcpu(i, vcpu, kvm) {
608 vcpu->arch.pause = false;
609 __kvm_vcpu_wake_up(vcpu);
613 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
615 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
617 rcuwait_wait_event(wait,
618 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
621 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
622 /* Awaken to handle a signal, request we sleep again later. */
623 kvm_make_request(KVM_REQ_SLEEP, vcpu);
627 * Make sure we will observe a potential reset request if we've
628 * observed a change to the power state. Pairs with the smp_wmb() in
629 * kvm_psci_vcpu_on().
635 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
636 * @vcpu: The VCPU pointer
638 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
639 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
640 * on when a wake event arrives, e.g. there may already be a pending wake event.
642 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
645 * Sync back the state of the GIC CPU interface so that we have
646 * the latest PMR and group enables. This ensures that
647 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
648 * we have pending interrupts, e.g. when determining if the
651 * For the same reason, we want to tell GICv4 that we need
652 * doorbells to be signalled, should an interrupt become pending.
655 kvm_vgic_vmcr_sync(vcpu);
656 vgic_v4_put(vcpu, true);
660 vcpu->arch.flags &= ~KVM_ARM64_WFIT;
661 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
668 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
670 if (!kvm_arm_vcpu_suspended(vcpu))
676 * The suspend state is sticky; we do not leave it until userspace
677 * explicitly marks the vCPU as runnable. Request that we suspend again
680 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
683 * Check to make sure the vCPU is actually runnable. If so, exit to
684 * userspace informing it of the wakeup condition.
686 if (kvm_arch_vcpu_runnable(vcpu)) {
687 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
688 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
689 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
694 * Otherwise, we were unblocked to process a different event, such as a
695 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
702 * check_vcpu_requests - check and handle pending vCPU requests
703 * @vcpu: the VCPU pointer
705 * Return: 1 if we should enter the guest
706 * 0 if we should exit to userspace
707 * < 0 if we should exit to userspace, where the return value indicates
710 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
712 if (kvm_request_pending(vcpu)) {
713 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
714 kvm_vcpu_sleep(vcpu);
716 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
717 kvm_reset_vcpu(vcpu);
720 * Clear IRQ_PENDING requests that were made to guarantee
721 * that a VCPU sees new virtual interrupts.
723 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
725 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
726 kvm_update_stolen_time(vcpu);
728 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
729 /* The distributor enable bits were changed */
731 vgic_v4_put(vcpu, false);
736 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
737 kvm_pmu_handle_pmcr(vcpu,
738 __vcpu_sys_reg(vcpu, PMCR_EL0));
740 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
741 return kvm_vcpu_suspend(vcpu);
747 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
749 if (likely(!vcpu_mode_is_32bit(vcpu)))
752 return !system_supports_32bit_el0() ||
753 static_branch_unlikely(&arm64_mismatched_32bit_el0);
757 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
758 * @vcpu: The VCPU pointer
759 * @ret: Pointer to write optional return code
761 * Returns: true if the VCPU needs to return to a preemptible + interruptible
762 * and skip guest entry.
764 * This function disambiguates between two different types of exits: exits to a
765 * preemptible + interruptible kernel context and exits to userspace. For an
766 * exit to userspace, this function will write the return code to ret and return
767 * true. For an exit to preemptible + interruptible kernel context (i.e. check
768 * for pending work and re-enter), return true without writing to ret.
770 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
772 struct kvm_run *run = vcpu->run;
775 * If we're using a userspace irqchip, then check if we need
776 * to tell a userspace irqchip about timer or PMU level
777 * changes and if so, exit to userspace (the actual level
778 * state gets updated in kvm_timer_update_run and
779 * kvm_pmu_update_run below).
781 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
782 if (kvm_timer_should_notify_user(vcpu) ||
783 kvm_pmu_should_notify_user(vcpu)) {
785 run->exit_reason = KVM_EXIT_INTR;
790 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
791 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
792 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
793 run->fail_entry.cpu = smp_processor_id();
798 return kvm_request_pending(vcpu) ||
799 xfer_to_guest_mode_work_pending();
803 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
804 * the vCPU is running.
806 * This must be noinstr as instrumentation may make use of RCU, and this is not
807 * safe during the EQS.
809 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
813 guest_state_enter_irqoff();
814 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
815 guest_state_exit_irqoff();
821 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
822 * @vcpu: The VCPU pointer
824 * This function is called through the VCPU_RUN ioctl called from user space. It
825 * will execute VM code in a loop until the time slice for the process is used
826 * or some emulation is needed from user space in which case the function will
827 * return with return value 0 and with the kvm_run structure filled in with the
828 * required data for the requested emulation.
830 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
832 struct kvm_run *run = vcpu->run;
835 if (run->exit_reason == KVM_EXIT_MMIO) {
836 ret = kvm_handle_mmio_return(vcpu);
843 if (run->immediate_exit) {
848 kvm_sigset_activate(vcpu);
851 run->exit_reason = KVM_EXIT_UNKNOWN;
855 * Check conditions before entering the guest
857 ret = xfer_to_guest_mode_handle_work(vcpu);
862 ret = check_vcpu_requests(vcpu);
865 * Preparing the interrupts to be injected also
866 * involves poking the GIC, which must be done in a
867 * non-preemptible context.
872 * The VMID allocator only tracks active VMIDs per
873 * physical CPU, and therefore the VMID allocated may not be
874 * preserved on VMID roll-over if the task was preempted,
875 * making a thread's VMID inactive. So we need to call
876 * kvm_arm_vmid_update() in non-premptible context.
878 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
880 kvm_pmu_flush_hwstate(vcpu);
884 kvm_vgic_flush_hwstate(vcpu);
886 kvm_pmu_update_vcpu_events(vcpu);
889 * Ensure we set mode to IN_GUEST_MODE after we disable
890 * interrupts and before the final VCPU requests check.
891 * See the comment in kvm_vcpu_exiting_guest_mode() and
892 * Documentation/virt/kvm/vcpu-requests.rst
894 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
896 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
897 vcpu->mode = OUTSIDE_GUEST_MODE;
898 isb(); /* Ensure work in x_flush_hwstate is committed */
899 kvm_pmu_sync_hwstate(vcpu);
900 if (static_branch_unlikely(&userspace_irqchip_in_use))
901 kvm_timer_sync_user(vcpu);
902 kvm_vgic_sync_hwstate(vcpu);
908 kvm_arm_setup_debug(vcpu);
909 kvm_arch_vcpu_ctxflush_fp(vcpu);
911 /**************************************************************
914 trace_kvm_entry(*vcpu_pc(vcpu));
915 guest_timing_enter_irqoff();
917 ret = kvm_arm_vcpu_enter_exit(vcpu);
919 vcpu->mode = OUTSIDE_GUEST_MODE;
923 *************************************************************/
925 kvm_arm_clear_debug(vcpu);
928 * We must sync the PMU state before the vgic state so
929 * that the vgic can properly sample the updated state of the
932 kvm_pmu_sync_hwstate(vcpu);
935 * Sync the vgic state before syncing the timer state because
936 * the timer code needs to know if the virtual timer
937 * interrupts are active.
939 kvm_vgic_sync_hwstate(vcpu);
942 * Sync the timer hardware state before enabling interrupts as
943 * we don't want vtimer interrupts to race with syncing the
944 * timer virtual interrupt state.
946 if (static_branch_unlikely(&userspace_irqchip_in_use))
947 kvm_timer_sync_user(vcpu);
949 kvm_arch_vcpu_ctxsync_fp(vcpu);
952 * We must ensure that any pending interrupts are taken before
953 * we exit guest timing so that timer ticks are accounted as
954 * guest time. Transiently unmask interrupts so that any
955 * pending interrupts are taken.
957 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
958 * context synchronization event) is necessary to ensure that
959 * pending interrupts are taken.
961 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
967 guest_timing_exit_irqoff();
971 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
973 /* Exit types that need handling before we can be preempted */
974 handle_exit_early(vcpu, ret);
979 * The ARMv8 architecture doesn't give the hypervisor
980 * a mechanism to prevent a guest from dropping to AArch32 EL0
981 * if implemented by the CPU. If we spot the guest in such
982 * state and that we decided it wasn't supposed to do so (like
983 * with the asymmetric AArch32 case), return to userspace with
986 if (vcpu_mode_is_bad_32bit(vcpu)) {
988 * As we have caught the guest red-handed, decide that
989 * it isn't fit for purpose anymore by making the vcpu
990 * invalid. The VMM can try and fix it by issuing a
991 * KVM_ARM_VCPU_INIT if it really wants to.
993 vcpu->arch.target = -1;
994 ret = ARM_EXCEPTION_IL;
997 ret = handle_exit(vcpu, ret);
1000 /* Tell userspace about in-kernel device output levels */
1001 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1002 kvm_timer_update_run(vcpu);
1003 kvm_pmu_update_run(vcpu);
1006 kvm_sigset_deactivate(vcpu);
1010 * In the unlikely event that we are returning to userspace
1011 * with pending exceptions or PC adjustment, commit these
1012 * adjustments in order to give userspace a consistent view of
1013 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1014 * being preempt-safe on VHE.
1016 if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
1017 KVM_ARM64_INCREMENT_PC)))
1018 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1024 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1030 if (number == KVM_ARM_IRQ_CPU_IRQ)
1031 bit_index = __ffs(HCR_VI);
1032 else /* KVM_ARM_IRQ_CPU_FIQ */
1033 bit_index = __ffs(HCR_VF);
1035 hcr = vcpu_hcr(vcpu);
1037 set = test_and_set_bit(bit_index, hcr);
1039 set = test_and_clear_bit(bit_index, hcr);
1042 * If we didn't change anything, no need to wake up or kick other CPUs
1048 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1049 * trigger a world-switch round on the running physical CPU to set the
1050 * virtual IRQ/FIQ fields in the HCR appropriately.
1052 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1053 kvm_vcpu_kick(vcpu);
1058 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1061 u32 irq = irq_level->irq;
1062 unsigned int irq_type, vcpu_idx, irq_num;
1063 int nrcpus = atomic_read(&kvm->online_vcpus);
1064 struct kvm_vcpu *vcpu = NULL;
1065 bool level = irq_level->level;
1067 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1068 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1069 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1070 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1072 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1075 case KVM_ARM_IRQ_TYPE_CPU:
1076 if (irqchip_in_kernel(kvm))
1079 if (vcpu_idx >= nrcpus)
1082 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1086 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1089 return vcpu_interrupt_line(vcpu, irq_num, level);
1090 case KVM_ARM_IRQ_TYPE_PPI:
1091 if (!irqchip_in_kernel(kvm))
1094 if (vcpu_idx >= nrcpus)
1097 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1101 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1104 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1105 case KVM_ARM_IRQ_TYPE_SPI:
1106 if (!irqchip_in_kernel(kvm))
1109 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1112 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1118 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1119 const struct kvm_vcpu_init *init)
1121 unsigned int i, ret;
1122 u32 phys_target = kvm_target_cpu();
1124 if (init->target != phys_target)
1128 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1129 * use the same target.
1131 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1134 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1135 for (i = 0; i < sizeof(init->features) * 8; i++) {
1136 bool set = (init->features[i / 32] & (1 << (i % 32)));
1138 if (set && i >= KVM_VCPU_MAX_FEATURES)
1142 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1143 * use the same feature set.
1145 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1146 test_bit(i, vcpu->arch.features) != set)
1150 set_bit(i, vcpu->arch.features);
1153 vcpu->arch.target = phys_target;
1155 /* Now we know what it is, we can reset it. */
1156 ret = kvm_reset_vcpu(vcpu);
1158 vcpu->arch.target = -1;
1159 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1165 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1166 struct kvm_vcpu_init *init)
1170 ret = kvm_vcpu_set_target(vcpu, init);
1175 * Ensure a rebooted VM will fault in RAM pages and detect if the
1176 * guest MMU is turned off and flush the caches as needed.
1178 * S2FWB enforces all memory accesses to RAM being cacheable,
1179 * ensuring that the data side is always coherent. We still
1180 * need to invalidate the I-cache though, as FWB does *not*
1181 * imply CTR_EL0.DIC.
1183 if (vcpu_has_run_once(vcpu)) {
1184 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1185 stage2_unmap_vm(vcpu->kvm);
1187 icache_inval_all_pou();
1190 vcpu_reset_hcr(vcpu);
1191 vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1194 * Handle the "start in power-off" case.
1196 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1197 kvm_arm_vcpu_power_off(vcpu);
1199 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1204 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1205 struct kvm_device_attr *attr)
1209 switch (attr->group) {
1211 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1218 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1219 struct kvm_device_attr *attr)
1223 switch (attr->group) {
1225 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1232 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1233 struct kvm_device_attr *attr)
1237 switch (attr->group) {
1239 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1246 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1247 struct kvm_vcpu_events *events)
1249 memset(events, 0, sizeof(*events));
1251 return __kvm_arm_vcpu_get_events(vcpu, events);
1254 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1255 struct kvm_vcpu_events *events)
1259 /* check whether the reserved field is zero */
1260 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1261 if (events->reserved[i])
1264 /* check whether the pad field is zero */
1265 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1266 if (events->exception.pad[i])
1269 return __kvm_arm_vcpu_set_events(vcpu, events);
1272 long kvm_arch_vcpu_ioctl(struct file *filp,
1273 unsigned int ioctl, unsigned long arg)
1275 struct kvm_vcpu *vcpu = filp->private_data;
1276 void __user *argp = (void __user *)arg;
1277 struct kvm_device_attr attr;
1281 case KVM_ARM_VCPU_INIT: {
1282 struct kvm_vcpu_init init;
1285 if (copy_from_user(&init, argp, sizeof(init)))
1288 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1291 case KVM_SET_ONE_REG:
1292 case KVM_GET_ONE_REG: {
1293 struct kvm_one_reg reg;
1296 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1300 if (copy_from_user(®, argp, sizeof(reg)))
1304 * We could owe a reset due to PSCI. Handle the pending reset
1305 * here to ensure userspace register accesses are ordered after
1308 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1309 kvm_reset_vcpu(vcpu);
1311 if (ioctl == KVM_SET_ONE_REG)
1312 r = kvm_arm_set_reg(vcpu, ®);
1314 r = kvm_arm_get_reg(vcpu, ®);
1317 case KVM_GET_REG_LIST: {
1318 struct kvm_reg_list __user *user_list = argp;
1319 struct kvm_reg_list reg_list;
1323 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1327 if (!kvm_arm_vcpu_is_finalized(vcpu))
1331 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1334 reg_list.n = kvm_arm_num_regs(vcpu);
1335 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1340 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1343 case KVM_SET_DEVICE_ATTR: {
1345 if (copy_from_user(&attr, argp, sizeof(attr)))
1347 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1350 case KVM_GET_DEVICE_ATTR: {
1352 if (copy_from_user(&attr, argp, sizeof(attr)))
1354 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1357 case KVM_HAS_DEVICE_ATTR: {
1359 if (copy_from_user(&attr, argp, sizeof(attr)))
1361 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1364 case KVM_GET_VCPU_EVENTS: {
1365 struct kvm_vcpu_events events;
1367 if (kvm_arm_vcpu_get_events(vcpu, &events))
1370 if (copy_to_user(argp, &events, sizeof(events)))
1375 case KVM_SET_VCPU_EVENTS: {
1376 struct kvm_vcpu_events events;
1378 if (copy_from_user(&events, argp, sizeof(events)))
1381 return kvm_arm_vcpu_set_events(vcpu, &events);
1383 case KVM_ARM_VCPU_FINALIZE: {
1386 if (!kvm_vcpu_initialized(vcpu))
1389 if (get_user(what, (const int __user *)argp))
1392 return kvm_arm_vcpu_finalize(vcpu, what);
1401 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1406 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1407 const struct kvm_memory_slot *memslot)
1409 kvm_flush_remote_tlbs(kvm);
1412 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1413 struct kvm_arm_device_addr *dev_addr)
1415 unsigned long dev_id, type;
1417 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1418 KVM_ARM_DEVICE_ID_SHIFT;
1419 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1420 KVM_ARM_DEVICE_TYPE_SHIFT;
1423 case KVM_ARM_DEVICE_VGIC_V2:
1426 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1432 long kvm_arch_vm_ioctl(struct file *filp,
1433 unsigned int ioctl, unsigned long arg)
1435 struct kvm *kvm = filp->private_data;
1436 void __user *argp = (void __user *)arg;
1439 case KVM_CREATE_IRQCHIP: {
1443 mutex_lock(&kvm->lock);
1444 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1445 mutex_unlock(&kvm->lock);
1448 case KVM_ARM_SET_DEVICE_ADDR: {
1449 struct kvm_arm_device_addr dev_addr;
1451 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1453 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1455 case KVM_ARM_PREFERRED_TARGET: {
1456 struct kvm_vcpu_init init;
1458 kvm_vcpu_preferred_target(&init);
1460 if (copy_to_user(argp, &init, sizeof(init)))
1465 case KVM_ARM_MTE_COPY_TAGS: {
1466 struct kvm_arm_copy_mte_tags copy_tags;
1468 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1470 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1477 static unsigned long nvhe_percpu_size(void)
1479 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1480 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1483 static unsigned long nvhe_percpu_order(void)
1485 unsigned long size = nvhe_percpu_size();
1487 return size ? get_order(size) : 0;
1490 /* A lookup table holding the hypervisor VA for each vector slot */
1491 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1493 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1495 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1498 static int kvm_init_vector_slots(void)
1503 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1504 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1506 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1507 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1509 if (kvm_system_needs_idmapped_vectors() &&
1510 !is_protected_kvm_enabled()) {
1511 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1512 __BP_HARDEN_HYP_VECS_SZ, &base);
1517 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1518 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1522 static void cpu_prepare_hyp_mode(int cpu)
1524 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1528 * Calculate the raw per-cpu offset without a translation from the
1529 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1530 * so that we can use adr_l to access per-cpu variables in EL2.
1531 * Also drop the KASAN tag which gets in the way...
1533 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1534 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1536 params->mair_el2 = read_sysreg(mair_el1);
1539 * The ID map may be configured to use an extended virtual address
1540 * range. This is only the case if system RAM is out of range for the
1541 * currently configured page size and VA_BITS, in which case we will
1542 * also need the extended virtual range for the HYP ID map, or we won't
1543 * be able to enable the EL2 MMU.
1545 * However, at EL2, there is only one TTBR register, and we can't switch
1546 * between translation tables *and* update TCR_EL2.T0SZ at the same
1547 * time. Bottom line: we need to use the extended range with *both* our
1548 * translation tables.
1550 * So use the same T0SZ value we use for the ID map.
1552 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1553 tcr &= ~TCR_T0SZ_MASK;
1554 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1555 params->tcr_el2 = tcr;
1557 params->pgd_pa = kvm_mmu_get_httbr();
1558 if (is_protected_kvm_enabled())
1559 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1561 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1562 params->vttbr = params->vtcr = 0;
1565 * Flush the init params from the data cache because the struct will
1566 * be read while the MMU is off.
1568 kvm_flush_dcache_to_poc(params, sizeof(*params));
1571 static void hyp_install_host_vector(void)
1573 struct kvm_nvhe_init_params *params;
1574 struct arm_smccc_res res;
1576 /* Switch from the HYP stub to our own HYP init vector */
1577 __hyp_set_vectors(kvm_get_idmap_vector());
1580 * Call initialization code, and switch to the full blown HYP code.
1581 * If the cpucaps haven't been finalized yet, something has gone very
1582 * wrong, and hyp will crash and burn when it uses any
1583 * cpus_have_const_cap() wrapper.
1585 BUG_ON(!system_capabilities_finalized());
1586 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1587 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1588 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1591 static void cpu_init_hyp_mode(void)
1593 hyp_install_host_vector();
1596 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1599 if (this_cpu_has_cap(ARM64_SSBS) &&
1600 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1601 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1605 static void cpu_hyp_reset(void)
1607 if (!is_kernel_in_hyp_mode())
1608 __hyp_reset_vectors();
1612 * EL2 vectors can be mapped and rerouted in a number of ways,
1613 * depending on the kernel configuration and CPU present:
1615 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1616 * placed in one of the vector slots, which is executed before jumping
1617 * to the real vectors.
1619 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1620 * containing the hardening sequence is mapped next to the idmap page,
1621 * and executed before jumping to the real vectors.
1623 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1624 * empty slot is selected, mapped next to the idmap page, and
1625 * executed before jumping to the real vectors.
1627 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1628 * VHE, as we don't have hypervisor-specific mappings. If the system
1629 * is VHE and yet selects this capability, it will be ignored.
1631 static void cpu_set_hyp_vector(void)
1633 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1634 void *vector = hyp_spectre_vector_selector[data->slot];
1636 if (!is_protected_kvm_enabled())
1637 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1639 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1642 static void cpu_hyp_init_context(void)
1644 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1646 if (!is_kernel_in_hyp_mode())
1647 cpu_init_hyp_mode();
1650 static void cpu_hyp_init_features(void)
1652 cpu_set_hyp_vector();
1653 kvm_arm_init_debug();
1655 if (is_kernel_in_hyp_mode())
1656 kvm_timer_init_vhe();
1659 kvm_vgic_init_cpu_hardware();
1662 static void cpu_hyp_reinit(void)
1665 cpu_hyp_init_context();
1666 cpu_hyp_init_features();
1669 static void _kvm_arch_hardware_enable(void *discard)
1671 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1673 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1677 int kvm_arch_hardware_enable(void)
1679 _kvm_arch_hardware_enable(NULL);
1683 static void _kvm_arch_hardware_disable(void *discard)
1685 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1687 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1691 void kvm_arch_hardware_disable(void)
1693 if (!is_protected_kvm_enabled())
1694 _kvm_arch_hardware_disable(NULL);
1697 #ifdef CONFIG_CPU_PM
1698 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1703 * kvm_arm_hardware_enabled is left with its old value over
1704 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1709 if (__this_cpu_read(kvm_arm_hardware_enabled))
1711 * don't update kvm_arm_hardware_enabled here
1712 * so that the hardware will be re-enabled
1713 * when we resume. See below.
1718 case CPU_PM_ENTER_FAILED:
1720 if (__this_cpu_read(kvm_arm_hardware_enabled))
1721 /* The hardware was enabled before suspend. */
1731 static struct notifier_block hyp_init_cpu_pm_nb = {
1732 .notifier_call = hyp_init_cpu_pm_notifier,
1735 static void hyp_cpu_pm_init(void)
1737 if (!is_protected_kvm_enabled())
1738 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1740 static void hyp_cpu_pm_exit(void)
1742 if (!is_protected_kvm_enabled())
1743 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1746 static inline void hyp_cpu_pm_init(void)
1749 static inline void hyp_cpu_pm_exit(void)
1754 static void init_cpu_logical_map(void)
1759 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1760 * Only copy the set of online CPUs whose features have been checked
1761 * against the finalized system capabilities. The hypervisor will not
1762 * allow any other CPUs from the `possible` set to boot.
1764 for_each_online_cpu(cpu)
1765 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1768 #define init_psci_0_1_impl_state(config, what) \
1769 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1771 static bool init_psci_relay(void)
1774 * If PSCI has not been initialized, protected KVM cannot install
1775 * itself on newly booted CPUs.
1777 if (!psci_ops.get_version) {
1778 kvm_err("Cannot initialize protected mode without PSCI\n");
1782 kvm_host_psci_config.version = psci_ops.get_version();
1784 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1785 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1786 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1787 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1788 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1789 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1794 static int init_subsystems(void)
1799 * Enable hardware so that subsystem initialisation can access EL2.
1801 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1804 * Register CPU lower-power notifier
1809 * Init HYP view of VGIC
1811 err = kvm_vgic_hyp_init();
1814 vgic_present = true;
1818 vgic_present = false;
1826 * Init HYP architected timer support
1828 err = kvm_timer_hyp_init(vgic_present);
1832 kvm_register_perf_callbacks(NULL);
1835 if (err || !is_protected_kvm_enabled())
1836 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1841 static void teardown_hyp_mode(void)
1846 for_each_possible_cpu(cpu) {
1847 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1848 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1852 static int do_pkvm_init(u32 hyp_va_bits)
1854 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1858 cpu_hyp_init_context();
1859 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1860 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1862 cpu_hyp_init_features();
1865 * The stub hypercalls are now disabled, so set our local flag to
1866 * prevent a later re-init attempt in kvm_arch_hardware_enable().
1868 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1874 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1876 void *addr = phys_to_virt(hyp_mem_base);
1879 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1880 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1881 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1882 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1883 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1884 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1885 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1886 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1888 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1892 ret = do_pkvm_init(hyp_va_bits);
1902 * Inits Hyp-mode on all online CPUs
1904 static int init_hyp_mode(void)
1911 * The protected Hyp-mode cannot be initialized if the memory pool
1912 * allocation has failed.
1914 if (is_protected_kvm_enabled() && !hyp_mem_base)
1918 * Allocate Hyp PGD and setup Hyp identity mapping
1920 err = kvm_mmu_init(&hyp_va_bits);
1925 * Allocate stack pages for Hypervisor-mode
1927 for_each_possible_cpu(cpu) {
1928 unsigned long stack_page;
1930 stack_page = __get_free_page(GFP_KERNEL);
1936 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1940 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1942 for_each_possible_cpu(cpu) {
1946 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1952 page_addr = page_address(page);
1953 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1954 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1958 * Map the Hyp-code called directly from the host
1960 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1961 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1963 kvm_err("Cannot map world-switch code\n");
1967 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1968 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1970 kvm_err("Cannot map .hyp.rodata section\n");
1974 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1975 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1977 kvm_err("Cannot map rodata section\n");
1982 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1983 * section thanks to an assertion in the linker script. Map it RW and
1984 * the rest of .bss RO.
1986 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1987 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1989 kvm_err("Cannot map hyp bss section: %d\n", err);
1993 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1994 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1996 kvm_err("Cannot map bss section\n");
2001 * Map the Hyp stack pages
2003 for_each_possible_cpu(cpu) {
2004 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2005 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2006 unsigned long hyp_addr;
2009 * Allocate a contiguous HYP private VA range for the stack
2010 * and guard page. The allocation is also aligned based on
2011 * the order of its size.
2013 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2015 kvm_err("Cannot allocate hyp stack guard page\n");
2020 * Since the stack grows downwards, map the stack to the page
2021 * at the higher address and leave the lower guard page
2024 * Any valid stack address now has the PAGE_SHIFT bit as 1
2025 * and addresses corresponding to the guard page have the
2026 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2028 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2029 __pa(stack_page), PAGE_HYP);
2031 kvm_err("Cannot map hyp stack\n");
2036 * Save the stack PA in nvhe_init_params. This will be needed
2037 * to recreate the stack mapping in protected nVHE mode.
2038 * __hyp_pa() won't do the right thing there, since the stack
2039 * has been mapped in the flexible private VA space.
2041 params->stack_pa = __pa(stack_page);
2043 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2046 for_each_possible_cpu(cpu) {
2047 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
2048 char *percpu_end = percpu_begin + nvhe_percpu_size();
2050 /* Map Hyp percpu pages */
2051 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2053 kvm_err("Cannot map hyp percpu region\n");
2057 /* Prepare the CPU initialization parameters */
2058 cpu_prepare_hyp_mode(cpu);
2061 if (is_protected_kvm_enabled()) {
2062 init_cpu_logical_map();
2064 if (!init_psci_relay()) {
2070 if (is_protected_kvm_enabled()) {
2071 err = kvm_hyp_init_protection(hyp_va_bits);
2073 kvm_err("Failed to init hyp memory protection\n");
2081 teardown_hyp_mode();
2082 kvm_err("error initializing Hyp mode: %d\n", err);
2086 static void _kvm_host_prot_finalize(void *arg)
2090 if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2091 WRITE_ONCE(*err, -EINVAL);
2094 static int pkvm_drop_host_privileges(void)
2099 * Flip the static key upfront as that may no longer be possible
2100 * once the host stage 2 is installed.
2102 static_branch_enable(&kvm_protected_mode_initialized);
2103 on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2107 static int finalize_hyp_mode(void)
2109 if (!is_protected_kvm_enabled())
2113 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2114 * at, which would end badly once the section is inaccessible.
2115 * None of other sections should ever be introspected.
2117 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2118 return pkvm_drop_host_privileges();
2121 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2123 struct kvm_vcpu *vcpu;
2126 mpidr &= MPIDR_HWID_BITMASK;
2127 kvm_for_each_vcpu(i, vcpu, kvm) {
2128 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2134 bool kvm_arch_has_irq_bypass(void)
2139 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2140 struct irq_bypass_producer *prod)
2142 struct kvm_kernel_irqfd *irqfd =
2143 container_of(cons, struct kvm_kernel_irqfd, consumer);
2145 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2148 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2149 struct irq_bypass_producer *prod)
2151 struct kvm_kernel_irqfd *irqfd =
2152 container_of(cons, struct kvm_kernel_irqfd, consumer);
2154 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2158 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2160 struct kvm_kernel_irqfd *irqfd =
2161 container_of(cons, struct kvm_kernel_irqfd, consumer);
2163 kvm_arm_halt_guest(irqfd->kvm);
2166 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2168 struct kvm_kernel_irqfd *irqfd =
2169 container_of(cons, struct kvm_kernel_irqfd, consumer);
2171 kvm_arm_resume_guest(irqfd->kvm);
2175 * Initialize Hyp-mode and memory mappings on all CPUs.
2177 int kvm_arch_init(void *opaque)
2182 if (!is_hyp_mode_available()) {
2183 kvm_info("HYP mode not available\n");
2187 if (kvm_get_mode() == KVM_MODE_NONE) {
2188 kvm_info("KVM disabled from command line\n");
2192 err = kvm_sys_reg_table_init();
2194 kvm_info("Error initializing system register tables");
2198 in_hyp_mode = is_kernel_in_hyp_mode();
2200 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2201 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2202 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2203 "Only trusted guests should be used on this system.\n");
2205 err = kvm_set_ipa_limit();
2209 err = kvm_arm_init_sve();
2213 err = kvm_arm_vmid_alloc_init();
2215 kvm_err("Failed to initialize VMID allocator.\n");
2220 err = init_hyp_mode();
2225 err = kvm_init_vector_slots();
2227 kvm_err("Cannot initialise vector slots\n");
2231 err = init_subsystems();
2236 err = finalize_hyp_mode();
2238 kvm_err("Failed to finalize Hyp protection\n");
2243 if (is_protected_kvm_enabled()) {
2244 kvm_info("Protected nVHE mode initialized successfully\n");
2245 } else if (in_hyp_mode) {
2246 kvm_info("VHE mode initialized successfully\n");
2248 kvm_info("Hyp mode initialized successfully\n");
2256 teardown_hyp_mode();
2258 kvm_arm_vmid_alloc_free();
2262 /* NOP: Compiling as a module not supported */
2263 void kvm_arch_exit(void)
2265 kvm_unregister_perf_callbacks();
2268 static int __init early_kvm_mode_cfg(char *arg)
2273 if (strcmp(arg, "protected") == 0) {
2274 kvm_mode = KVM_MODE_PROTECTED;
2278 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2279 kvm_mode = KVM_MODE_DEFAULT;
2283 if (strcmp(arg, "none") == 0) {
2284 kvm_mode = KVM_MODE_NONE;
2290 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2292 enum kvm_mode kvm_get_mode(void)
2297 static int arm_init(void)
2299 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2303 module_init(arm_init);