35b32cb6faa5e98a3cf94ac61be8ec8c2a45d52f
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_pkvm.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48
49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50
51 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
53
54 static bool vgic_present;
55
56 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
57 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
58
59 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
60 {
61         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
62 }
63
64 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
65                             struct kvm_enable_cap *cap)
66 {
67         int r;
68
69         if (cap->flags)
70                 return -EINVAL;
71
72         switch (cap->cap) {
73         case KVM_CAP_ARM_NISV_TO_USER:
74                 r = 0;
75                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
76                         &kvm->arch.flags);
77                 break;
78         case KVM_CAP_ARM_MTE:
79                 mutex_lock(&kvm->lock);
80                 if (!system_supports_mte() || kvm->created_vcpus) {
81                         r = -EINVAL;
82                 } else {
83                         r = 0;
84                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
85                 }
86                 mutex_unlock(&kvm->lock);
87                 break;
88         case KVM_CAP_ARM_SYSTEM_SUSPEND:
89                 r = 0;
90                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
91                 break;
92         default:
93                 r = -EINVAL;
94                 break;
95         }
96
97         return r;
98 }
99
100 static int kvm_arm_default_max_vcpus(void)
101 {
102         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
103 }
104
105 static void set_default_spectre(struct kvm *kvm)
106 {
107         /*
108          * The default is to expose CSV2 == 1 if the HW isn't affected.
109          * Although this is a per-CPU feature, we make it global because
110          * asymmetric systems are just a nuisance.
111          *
112          * Userspace can override this as long as it doesn't promise
113          * the impossible.
114          */
115         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
116                 kvm->arch.pfr0_csv2 = 1;
117         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
118                 kvm->arch.pfr0_csv3 = 1;
119 }
120
121 /**
122  * kvm_arch_init_vm - initializes a VM data structure
123  * @kvm:        pointer to the KVM struct
124  */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127         int ret;
128
129         mutex_init(&kvm->arch.config_lock);
130
131 #ifdef CONFIG_LOCKDEP
132         /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
133         mutex_lock(&kvm->lock);
134         mutex_lock(&kvm->arch.config_lock);
135         mutex_unlock(&kvm->arch.config_lock);
136         mutex_unlock(&kvm->lock);
137 #endif
138
139         ret = kvm_share_hyp(kvm, kvm + 1);
140         if (ret)
141                 return ret;
142
143         ret = pkvm_init_host_vm(kvm);
144         if (ret)
145                 goto err_unshare_kvm;
146
147         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
148                 ret = -ENOMEM;
149                 goto err_unshare_kvm;
150         }
151         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
152
153         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
154         if (ret)
155                 goto err_free_cpumask;
156
157         kvm_vgic_early_init(kvm);
158
159         kvm_timer_init_vm(kvm);
160
161         /* The maximum number of VCPUs is limited by the host's GIC model */
162         kvm->max_vcpus = kvm_arm_default_max_vcpus();
163
164         set_default_spectre(kvm);
165         kvm_arm_init_hypercalls(kvm);
166
167         /*
168          * Initialise the default PMUver before there is a chance to
169          * create an actual PMU.
170          */
171         kvm->arch.dfr0_pmuver.imp = kvm_arm_pmu_get_pmuver_limit();
172
173         return 0;
174
175 err_free_cpumask:
176         free_cpumask_var(kvm->arch.supported_cpus);
177 err_unshare_kvm:
178         kvm_unshare_hyp(kvm, kvm + 1);
179         return ret;
180 }
181
182 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
183 {
184         return VM_FAULT_SIGBUS;
185 }
186
187
188 /**
189  * kvm_arch_destroy_vm - destroy the VM data structure
190  * @kvm:        pointer to the KVM struct
191  */
192 void kvm_arch_destroy_vm(struct kvm *kvm)
193 {
194         bitmap_free(kvm->arch.pmu_filter);
195         free_cpumask_var(kvm->arch.supported_cpus);
196
197         kvm_vgic_destroy(kvm);
198
199         if (is_protected_kvm_enabled())
200                 pkvm_destroy_hyp_vm(kvm);
201
202         kvm_destroy_vcpus(kvm);
203
204         kvm_unshare_hyp(kvm, kvm + 1);
205
206         kvm_arm_teardown_hypercalls(kvm);
207 }
208
209 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
210 {
211         int r;
212         switch (ext) {
213         case KVM_CAP_IRQCHIP:
214                 r = vgic_present;
215                 break;
216         case KVM_CAP_IOEVENTFD:
217         case KVM_CAP_DEVICE_CTRL:
218         case KVM_CAP_USER_MEMORY:
219         case KVM_CAP_SYNC_MMU:
220         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
221         case KVM_CAP_ONE_REG:
222         case KVM_CAP_ARM_PSCI:
223         case KVM_CAP_ARM_PSCI_0_2:
224         case KVM_CAP_READONLY_MEM:
225         case KVM_CAP_MP_STATE:
226         case KVM_CAP_IMMEDIATE_EXIT:
227         case KVM_CAP_VCPU_EVENTS:
228         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
229         case KVM_CAP_ARM_NISV_TO_USER:
230         case KVM_CAP_ARM_INJECT_EXT_DABT:
231         case KVM_CAP_SET_GUEST_DEBUG:
232         case KVM_CAP_VCPU_ATTRIBUTES:
233         case KVM_CAP_PTP_KVM:
234         case KVM_CAP_ARM_SYSTEM_SUSPEND:
235         case KVM_CAP_IRQFD_RESAMPLE:
236         case KVM_CAP_COUNTER_OFFSET:
237                 r = 1;
238                 break;
239         case KVM_CAP_SET_GUEST_DEBUG2:
240                 return KVM_GUESTDBG_VALID_MASK;
241         case KVM_CAP_ARM_SET_DEVICE_ADDR:
242                 r = 1;
243                 break;
244         case KVM_CAP_NR_VCPUS:
245                 /*
246                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
247                  * architectures, as it does not always bound it to
248                  * KVM_CAP_MAX_VCPUS. It should not matter much because
249                  * this is just an advisory value.
250                  */
251                 r = min_t(unsigned int, num_online_cpus(),
252                           kvm_arm_default_max_vcpus());
253                 break;
254         case KVM_CAP_MAX_VCPUS:
255         case KVM_CAP_MAX_VCPU_ID:
256                 if (kvm)
257                         r = kvm->max_vcpus;
258                 else
259                         r = kvm_arm_default_max_vcpus();
260                 break;
261         case KVM_CAP_MSI_DEVID:
262                 if (!kvm)
263                         r = -EINVAL;
264                 else
265                         r = kvm->arch.vgic.msis_require_devid;
266                 break;
267         case KVM_CAP_ARM_USER_IRQ:
268                 /*
269                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
270                  * (bump this number if adding more devices)
271                  */
272                 r = 1;
273                 break;
274         case KVM_CAP_ARM_MTE:
275                 r = system_supports_mte();
276                 break;
277         case KVM_CAP_STEAL_TIME:
278                 r = kvm_arm_pvtime_supported();
279                 break;
280         case KVM_CAP_ARM_EL1_32BIT:
281                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
282                 break;
283         case KVM_CAP_GUEST_DEBUG_HW_BPS:
284                 r = get_num_brps();
285                 break;
286         case KVM_CAP_GUEST_DEBUG_HW_WPS:
287                 r = get_num_wrps();
288                 break;
289         case KVM_CAP_ARM_PMU_V3:
290                 r = kvm_arm_support_pmu_v3();
291                 break;
292         case KVM_CAP_ARM_INJECT_SERROR_ESR:
293                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
294                 break;
295         case KVM_CAP_ARM_VM_IPA_SIZE:
296                 r = get_kvm_ipa_limit();
297                 break;
298         case KVM_CAP_ARM_SVE:
299                 r = system_supports_sve();
300                 break;
301         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
302         case KVM_CAP_ARM_PTRAUTH_GENERIC:
303                 r = system_has_full_ptr_auth();
304                 break;
305         default:
306                 r = 0;
307         }
308
309         return r;
310 }
311
312 long kvm_arch_dev_ioctl(struct file *filp,
313                         unsigned int ioctl, unsigned long arg)
314 {
315         return -EINVAL;
316 }
317
318 struct kvm *kvm_arch_alloc_vm(void)
319 {
320         size_t sz = sizeof(struct kvm);
321
322         if (!has_vhe())
323                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
324
325         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
326 }
327
328 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
329 {
330         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
331                 return -EBUSY;
332
333         if (id >= kvm->max_vcpus)
334                 return -EINVAL;
335
336         return 0;
337 }
338
339 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
340 {
341         int err;
342
343         spin_lock_init(&vcpu->arch.mp_state_lock);
344
345 #ifdef CONFIG_LOCKDEP
346         /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
347         mutex_lock(&vcpu->mutex);
348         mutex_lock(&vcpu->kvm->arch.config_lock);
349         mutex_unlock(&vcpu->kvm->arch.config_lock);
350         mutex_unlock(&vcpu->mutex);
351 #endif
352
353         /* Force users to call KVM_ARM_VCPU_INIT */
354         vcpu->arch.target = -1;
355         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
356
357         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
358
359         /*
360          * Default value for the FP state, will be overloaded at load
361          * time if we support FP (pretty likely)
362          */
363         vcpu->arch.fp_state = FP_STATE_FREE;
364
365         /* Set up the timer */
366         kvm_timer_vcpu_init(vcpu);
367
368         kvm_pmu_vcpu_init(vcpu);
369
370         kvm_arm_reset_debug_ptr(vcpu);
371
372         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
373
374         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
375
376         err = kvm_vgic_vcpu_init(vcpu);
377         if (err)
378                 return err;
379
380         return kvm_share_hyp(vcpu, vcpu + 1);
381 }
382
383 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
384 {
385 }
386
387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
388 {
389         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
390                 static_branch_dec(&userspace_irqchip_in_use);
391
392         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
393         kvm_timer_vcpu_terminate(vcpu);
394         kvm_pmu_vcpu_destroy(vcpu);
395
396         kvm_arm_vcpu_destroy(vcpu);
397 }
398
399 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
400 {
401
402 }
403
404 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
405 {
406
407 }
408
409 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
410 {
411         struct kvm_s2_mmu *mmu;
412         int *last_ran;
413
414         mmu = vcpu->arch.hw_mmu;
415         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
416
417         /*
418          * We guarantee that both TLBs and I-cache are private to each
419          * vcpu. If detecting that a vcpu from the same VM has
420          * previously run on the same physical CPU, call into the
421          * hypervisor code to nuke the relevant contexts.
422          *
423          * We might get preempted before the vCPU actually runs, but
424          * over-invalidation doesn't affect correctness.
425          */
426         if (*last_ran != vcpu->vcpu_id) {
427                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
428                 *last_ran = vcpu->vcpu_id;
429         }
430
431         vcpu->cpu = cpu;
432
433         kvm_vgic_load(vcpu);
434         kvm_timer_vcpu_load(vcpu);
435         if (has_vhe())
436                 kvm_vcpu_load_sysregs_vhe(vcpu);
437         kvm_arch_vcpu_load_fp(vcpu);
438         kvm_vcpu_pmu_restore_guest(vcpu);
439         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
440                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
441
442         if (single_task_running())
443                 vcpu_clear_wfx_traps(vcpu);
444         else
445                 vcpu_set_wfx_traps(vcpu);
446
447         if (vcpu_has_ptrauth(vcpu))
448                 vcpu_ptrauth_disable(vcpu);
449         kvm_arch_vcpu_load_debug_state_flags(vcpu);
450
451         if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
452                 vcpu_set_on_unsupported_cpu(vcpu);
453 }
454
455 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
456 {
457         kvm_arch_vcpu_put_debug_state_flags(vcpu);
458         kvm_arch_vcpu_put_fp(vcpu);
459         if (has_vhe())
460                 kvm_vcpu_put_sysregs_vhe(vcpu);
461         kvm_timer_vcpu_put(vcpu);
462         kvm_vgic_put(vcpu);
463         kvm_vcpu_pmu_restore_host(vcpu);
464         kvm_arm_vmid_clear_active();
465
466         vcpu_clear_on_unsupported_cpu(vcpu);
467         vcpu->cpu = -1;
468 }
469
470 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
471 {
472         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
473         kvm_make_request(KVM_REQ_SLEEP, vcpu);
474         kvm_vcpu_kick(vcpu);
475 }
476
477 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
478 {
479         spin_lock(&vcpu->arch.mp_state_lock);
480         __kvm_arm_vcpu_power_off(vcpu);
481         spin_unlock(&vcpu->arch.mp_state_lock);
482 }
483
484 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
485 {
486         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
487 }
488
489 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
490 {
491         WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
492         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
493         kvm_vcpu_kick(vcpu);
494 }
495
496 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
497 {
498         return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
499 }
500
501 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
502                                     struct kvm_mp_state *mp_state)
503 {
504         *mp_state = READ_ONCE(vcpu->arch.mp_state);
505
506         return 0;
507 }
508
509 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
510                                     struct kvm_mp_state *mp_state)
511 {
512         int ret = 0;
513
514         spin_lock(&vcpu->arch.mp_state_lock);
515
516         switch (mp_state->mp_state) {
517         case KVM_MP_STATE_RUNNABLE:
518                 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
519                 break;
520         case KVM_MP_STATE_STOPPED:
521                 __kvm_arm_vcpu_power_off(vcpu);
522                 break;
523         case KVM_MP_STATE_SUSPENDED:
524                 kvm_arm_vcpu_suspend(vcpu);
525                 break;
526         default:
527                 ret = -EINVAL;
528         }
529
530         spin_unlock(&vcpu->arch.mp_state_lock);
531
532         return ret;
533 }
534
535 /**
536  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
537  * @v:          The VCPU pointer
538  *
539  * If the guest CPU is not waiting for interrupts or an interrupt line is
540  * asserted, the CPU is by definition runnable.
541  */
542 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
543 {
544         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
545         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
546                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
547 }
548
549 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
550 {
551         return vcpu_mode_priv(vcpu);
552 }
553
554 #ifdef CONFIG_GUEST_PERF_EVENTS
555 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
556 {
557         return *vcpu_pc(vcpu);
558 }
559 #endif
560
561 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
562 {
563         return vcpu->arch.target >= 0;
564 }
565
566 /*
567  * Handle both the initialisation that is being done when the vcpu is
568  * run for the first time, as well as the updates that must be
569  * performed each time we get a new thread dealing with this vcpu.
570  */
571 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
572 {
573         struct kvm *kvm = vcpu->kvm;
574         int ret;
575
576         if (!kvm_vcpu_initialized(vcpu))
577                 return -ENOEXEC;
578
579         if (!kvm_arm_vcpu_is_finalized(vcpu))
580                 return -EPERM;
581
582         ret = kvm_arch_vcpu_run_map_fp(vcpu);
583         if (ret)
584                 return ret;
585
586         if (likely(vcpu_has_run_once(vcpu)))
587                 return 0;
588
589         kvm_arm_vcpu_init_debug(vcpu);
590
591         if (likely(irqchip_in_kernel(kvm))) {
592                 /*
593                  * Map the VGIC hardware resources before running a vcpu the
594                  * first time on this VM.
595                  */
596                 ret = kvm_vgic_map_resources(kvm);
597                 if (ret)
598                         return ret;
599         }
600
601         ret = kvm_timer_enable(vcpu);
602         if (ret)
603                 return ret;
604
605         ret = kvm_arm_pmu_v3_enable(vcpu);
606         if (ret)
607                 return ret;
608
609         if (is_protected_kvm_enabled()) {
610                 ret = pkvm_create_hyp_vm(kvm);
611                 if (ret)
612                         return ret;
613         }
614
615         if (!irqchip_in_kernel(kvm)) {
616                 /*
617                  * Tell the rest of the code that there are userspace irqchip
618                  * VMs in the wild.
619                  */
620                 static_branch_inc(&userspace_irqchip_in_use);
621         }
622
623         /*
624          * Initialize traps for protected VMs.
625          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
626          * the code is in place for first run initialization at EL2.
627          */
628         if (kvm_vm_is_protected(kvm))
629                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
630
631         mutex_lock(&kvm->arch.config_lock);
632         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
633         mutex_unlock(&kvm->arch.config_lock);
634
635         return ret;
636 }
637
638 bool kvm_arch_intc_initialized(struct kvm *kvm)
639 {
640         return vgic_initialized(kvm);
641 }
642
643 void kvm_arm_halt_guest(struct kvm *kvm)
644 {
645         unsigned long i;
646         struct kvm_vcpu *vcpu;
647
648         kvm_for_each_vcpu(i, vcpu, kvm)
649                 vcpu->arch.pause = true;
650         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
651 }
652
653 void kvm_arm_resume_guest(struct kvm *kvm)
654 {
655         unsigned long i;
656         struct kvm_vcpu *vcpu;
657
658         kvm_for_each_vcpu(i, vcpu, kvm) {
659                 vcpu->arch.pause = false;
660                 __kvm_vcpu_wake_up(vcpu);
661         }
662 }
663
664 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
665 {
666         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
667
668         rcuwait_wait_event(wait,
669                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
670                            TASK_INTERRUPTIBLE);
671
672         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
673                 /* Awaken to handle a signal, request we sleep again later. */
674                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
675         }
676
677         /*
678          * Make sure we will observe a potential reset request if we've
679          * observed a change to the power state. Pairs with the smp_wmb() in
680          * kvm_psci_vcpu_on().
681          */
682         smp_rmb();
683 }
684
685 /**
686  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
687  * @vcpu:       The VCPU pointer
688  *
689  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
690  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
691  * on when a wake event arrives, e.g. there may already be a pending wake event.
692  */
693 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
694 {
695         /*
696          * Sync back the state of the GIC CPU interface so that we have
697          * the latest PMR and group enables. This ensures that
698          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
699          * we have pending interrupts, e.g. when determining if the
700          * vCPU should block.
701          *
702          * For the same reason, we want to tell GICv4 that we need
703          * doorbells to be signalled, should an interrupt become pending.
704          */
705         preempt_disable();
706         kvm_vgic_vmcr_sync(vcpu);
707         vgic_v4_put(vcpu, true);
708         preempt_enable();
709
710         kvm_vcpu_halt(vcpu);
711         vcpu_clear_flag(vcpu, IN_WFIT);
712
713         preempt_disable();
714         vgic_v4_load(vcpu);
715         preempt_enable();
716 }
717
718 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
719 {
720         if (!kvm_arm_vcpu_suspended(vcpu))
721                 return 1;
722
723         kvm_vcpu_wfi(vcpu);
724
725         /*
726          * The suspend state is sticky; we do not leave it until userspace
727          * explicitly marks the vCPU as runnable. Request that we suspend again
728          * later.
729          */
730         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
731
732         /*
733          * Check to make sure the vCPU is actually runnable. If so, exit to
734          * userspace informing it of the wakeup condition.
735          */
736         if (kvm_arch_vcpu_runnable(vcpu)) {
737                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
738                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
739                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
740                 return 0;
741         }
742
743         /*
744          * Otherwise, we were unblocked to process a different event, such as a
745          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
746          * process the event.
747          */
748         return 1;
749 }
750
751 /**
752  * check_vcpu_requests - check and handle pending vCPU requests
753  * @vcpu:       the VCPU pointer
754  *
755  * Return: 1 if we should enter the guest
756  *         0 if we should exit to userspace
757  *         < 0 if we should exit to userspace, where the return value indicates
758  *         an error
759  */
760 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
761 {
762         if (kvm_request_pending(vcpu)) {
763                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
764                         kvm_vcpu_sleep(vcpu);
765
766                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
767                         kvm_reset_vcpu(vcpu);
768
769                 /*
770                  * Clear IRQ_PENDING requests that were made to guarantee
771                  * that a VCPU sees new virtual interrupts.
772                  */
773                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
774
775                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
776                         kvm_update_stolen_time(vcpu);
777
778                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
779                         /* The distributor enable bits were changed */
780                         preempt_disable();
781                         vgic_v4_put(vcpu, false);
782                         vgic_v4_load(vcpu);
783                         preempt_enable();
784                 }
785
786                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
787                         kvm_pmu_handle_pmcr(vcpu,
788                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
789
790                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
791                         return kvm_vcpu_suspend(vcpu);
792
793                 if (kvm_dirty_ring_check_request(vcpu))
794                         return 0;
795         }
796
797         return 1;
798 }
799
800 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
801 {
802         if (likely(!vcpu_mode_is_32bit(vcpu)))
803                 return false;
804
805         return !kvm_supports_32bit_el0();
806 }
807
808 /**
809  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
810  * @vcpu:       The VCPU pointer
811  * @ret:        Pointer to write optional return code
812  *
813  * Returns: true if the VCPU needs to return to a preemptible + interruptible
814  *          and skip guest entry.
815  *
816  * This function disambiguates between two different types of exits: exits to a
817  * preemptible + interruptible kernel context and exits to userspace. For an
818  * exit to userspace, this function will write the return code to ret and return
819  * true. For an exit to preemptible + interruptible kernel context (i.e. check
820  * for pending work and re-enter), return true without writing to ret.
821  */
822 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
823 {
824         struct kvm_run *run = vcpu->run;
825
826         /*
827          * If we're using a userspace irqchip, then check if we need
828          * to tell a userspace irqchip about timer or PMU level
829          * changes and if so, exit to userspace (the actual level
830          * state gets updated in kvm_timer_update_run and
831          * kvm_pmu_update_run below).
832          */
833         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
834                 if (kvm_timer_should_notify_user(vcpu) ||
835                     kvm_pmu_should_notify_user(vcpu)) {
836                         *ret = -EINTR;
837                         run->exit_reason = KVM_EXIT_INTR;
838                         return true;
839                 }
840         }
841
842         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
843                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
844                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
845                 run->fail_entry.cpu = smp_processor_id();
846                 *ret = 0;
847                 return true;
848         }
849
850         return kvm_request_pending(vcpu) ||
851                         xfer_to_guest_mode_work_pending();
852 }
853
854 /*
855  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
856  * the vCPU is running.
857  *
858  * This must be noinstr as instrumentation may make use of RCU, and this is not
859  * safe during the EQS.
860  */
861 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
862 {
863         int ret;
864
865         guest_state_enter_irqoff();
866         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
867         guest_state_exit_irqoff();
868
869         return ret;
870 }
871
872 /**
873  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
874  * @vcpu:       The VCPU pointer
875  *
876  * This function is called through the VCPU_RUN ioctl called from user space. It
877  * will execute VM code in a loop until the time slice for the process is used
878  * or some emulation is needed from user space in which case the function will
879  * return with return value 0 and with the kvm_run structure filled in with the
880  * required data for the requested emulation.
881  */
882 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
883 {
884         struct kvm_run *run = vcpu->run;
885         int ret;
886
887         if (run->exit_reason == KVM_EXIT_MMIO) {
888                 ret = kvm_handle_mmio_return(vcpu);
889                 if (ret)
890                         return ret;
891         }
892
893         vcpu_load(vcpu);
894
895         if (run->immediate_exit) {
896                 ret = -EINTR;
897                 goto out;
898         }
899
900         kvm_sigset_activate(vcpu);
901
902         ret = 1;
903         run->exit_reason = KVM_EXIT_UNKNOWN;
904         run->flags = 0;
905         while (ret > 0) {
906                 /*
907                  * Check conditions before entering the guest
908                  */
909                 ret = xfer_to_guest_mode_handle_work(vcpu);
910                 if (!ret)
911                         ret = 1;
912
913                 if (ret > 0)
914                         ret = check_vcpu_requests(vcpu);
915
916                 /*
917                  * Preparing the interrupts to be injected also
918                  * involves poking the GIC, which must be done in a
919                  * non-preemptible context.
920                  */
921                 preempt_disable();
922
923                 /*
924                  * The VMID allocator only tracks active VMIDs per
925                  * physical CPU, and therefore the VMID allocated may not be
926                  * preserved on VMID roll-over if the task was preempted,
927                  * making a thread's VMID inactive. So we need to call
928                  * kvm_arm_vmid_update() in non-premptible context.
929                  */
930                 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
931
932                 kvm_pmu_flush_hwstate(vcpu);
933
934                 local_irq_disable();
935
936                 kvm_vgic_flush_hwstate(vcpu);
937
938                 kvm_pmu_update_vcpu_events(vcpu);
939
940                 /*
941                  * Ensure we set mode to IN_GUEST_MODE after we disable
942                  * interrupts and before the final VCPU requests check.
943                  * See the comment in kvm_vcpu_exiting_guest_mode() and
944                  * Documentation/virt/kvm/vcpu-requests.rst
945                  */
946                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
947
948                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
949                         vcpu->mode = OUTSIDE_GUEST_MODE;
950                         isb(); /* Ensure work in x_flush_hwstate is committed */
951                         kvm_pmu_sync_hwstate(vcpu);
952                         if (static_branch_unlikely(&userspace_irqchip_in_use))
953                                 kvm_timer_sync_user(vcpu);
954                         kvm_vgic_sync_hwstate(vcpu);
955                         local_irq_enable();
956                         preempt_enable();
957                         continue;
958                 }
959
960                 kvm_arm_setup_debug(vcpu);
961                 kvm_arch_vcpu_ctxflush_fp(vcpu);
962
963                 /**************************************************************
964                  * Enter the guest
965                  */
966                 trace_kvm_entry(*vcpu_pc(vcpu));
967                 guest_timing_enter_irqoff();
968
969                 ret = kvm_arm_vcpu_enter_exit(vcpu);
970
971                 vcpu->mode = OUTSIDE_GUEST_MODE;
972                 vcpu->stat.exits++;
973                 /*
974                  * Back from guest
975                  *************************************************************/
976
977                 kvm_arm_clear_debug(vcpu);
978
979                 /*
980                  * We must sync the PMU state before the vgic state so
981                  * that the vgic can properly sample the updated state of the
982                  * interrupt line.
983                  */
984                 kvm_pmu_sync_hwstate(vcpu);
985
986                 /*
987                  * Sync the vgic state before syncing the timer state because
988                  * the timer code needs to know if the virtual timer
989                  * interrupts are active.
990                  */
991                 kvm_vgic_sync_hwstate(vcpu);
992
993                 /*
994                  * Sync the timer hardware state before enabling interrupts as
995                  * we don't want vtimer interrupts to race with syncing the
996                  * timer virtual interrupt state.
997                  */
998                 if (static_branch_unlikely(&userspace_irqchip_in_use))
999                         kvm_timer_sync_user(vcpu);
1000
1001                 kvm_arch_vcpu_ctxsync_fp(vcpu);
1002
1003                 /*
1004                  * We must ensure that any pending interrupts are taken before
1005                  * we exit guest timing so that timer ticks are accounted as
1006                  * guest time. Transiently unmask interrupts so that any
1007                  * pending interrupts are taken.
1008                  *
1009                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1010                  * context synchronization event) is necessary to ensure that
1011                  * pending interrupts are taken.
1012                  */
1013                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1014                         local_irq_enable();
1015                         isb();
1016                         local_irq_disable();
1017                 }
1018
1019                 guest_timing_exit_irqoff();
1020
1021                 local_irq_enable();
1022
1023                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1024
1025                 /* Exit types that need handling before we can be preempted */
1026                 handle_exit_early(vcpu, ret);
1027
1028                 preempt_enable();
1029
1030                 /*
1031                  * The ARMv8 architecture doesn't give the hypervisor
1032                  * a mechanism to prevent a guest from dropping to AArch32 EL0
1033                  * if implemented by the CPU. If we spot the guest in such
1034                  * state and that we decided it wasn't supposed to do so (like
1035                  * with the asymmetric AArch32 case), return to userspace with
1036                  * a fatal error.
1037                  */
1038                 if (vcpu_mode_is_bad_32bit(vcpu)) {
1039                         /*
1040                          * As we have caught the guest red-handed, decide that
1041                          * it isn't fit for purpose anymore by making the vcpu
1042                          * invalid. The VMM can try and fix it by issuing  a
1043                          * KVM_ARM_VCPU_INIT if it really wants to.
1044                          */
1045                         vcpu->arch.target = -1;
1046                         ret = ARM_EXCEPTION_IL;
1047                 }
1048
1049                 ret = handle_exit(vcpu, ret);
1050         }
1051
1052         /* Tell userspace about in-kernel device output levels */
1053         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1054                 kvm_timer_update_run(vcpu);
1055                 kvm_pmu_update_run(vcpu);
1056         }
1057
1058         kvm_sigset_deactivate(vcpu);
1059
1060 out:
1061         /*
1062          * In the unlikely event that we are returning to userspace
1063          * with pending exceptions or PC adjustment, commit these
1064          * adjustments in order to give userspace a consistent view of
1065          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1066          * being preempt-safe on VHE.
1067          */
1068         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1069                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1070                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1071
1072         vcpu_put(vcpu);
1073         return ret;
1074 }
1075
1076 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1077 {
1078         int bit_index;
1079         bool set;
1080         unsigned long *hcr;
1081
1082         if (number == KVM_ARM_IRQ_CPU_IRQ)
1083                 bit_index = __ffs(HCR_VI);
1084         else /* KVM_ARM_IRQ_CPU_FIQ */
1085                 bit_index = __ffs(HCR_VF);
1086
1087         hcr = vcpu_hcr(vcpu);
1088         if (level)
1089                 set = test_and_set_bit(bit_index, hcr);
1090         else
1091                 set = test_and_clear_bit(bit_index, hcr);
1092
1093         /*
1094          * If we didn't change anything, no need to wake up or kick other CPUs
1095          */
1096         if (set == level)
1097                 return 0;
1098
1099         /*
1100          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1101          * trigger a world-switch round on the running physical CPU to set the
1102          * virtual IRQ/FIQ fields in the HCR appropriately.
1103          */
1104         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1105         kvm_vcpu_kick(vcpu);
1106
1107         return 0;
1108 }
1109
1110 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1111                           bool line_status)
1112 {
1113         u32 irq = irq_level->irq;
1114         unsigned int irq_type, vcpu_idx, irq_num;
1115         int nrcpus = atomic_read(&kvm->online_vcpus);
1116         struct kvm_vcpu *vcpu = NULL;
1117         bool level = irq_level->level;
1118
1119         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1120         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1121         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1122         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1123
1124         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1125
1126         switch (irq_type) {
1127         case KVM_ARM_IRQ_TYPE_CPU:
1128                 if (irqchip_in_kernel(kvm))
1129                         return -ENXIO;
1130
1131                 if (vcpu_idx >= nrcpus)
1132                         return -EINVAL;
1133
1134                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1135                 if (!vcpu)
1136                         return -EINVAL;
1137
1138                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1139                         return -EINVAL;
1140
1141                 return vcpu_interrupt_line(vcpu, irq_num, level);
1142         case KVM_ARM_IRQ_TYPE_PPI:
1143                 if (!irqchip_in_kernel(kvm))
1144                         return -ENXIO;
1145
1146                 if (vcpu_idx >= nrcpus)
1147                         return -EINVAL;
1148
1149                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1150                 if (!vcpu)
1151                         return -EINVAL;
1152
1153                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1154                         return -EINVAL;
1155
1156                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1157         case KVM_ARM_IRQ_TYPE_SPI:
1158                 if (!irqchip_in_kernel(kvm))
1159                         return -ENXIO;
1160
1161                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1162                         return -EINVAL;
1163
1164                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1165         }
1166
1167         return -EINVAL;
1168 }
1169
1170 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1171                                const struct kvm_vcpu_init *init)
1172 {
1173         unsigned int i, ret;
1174         u32 phys_target = kvm_target_cpu();
1175
1176         if (init->target != phys_target)
1177                 return -EINVAL;
1178
1179         /*
1180          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1181          * use the same target.
1182          */
1183         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1184                 return -EINVAL;
1185
1186         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1187         for (i = 0; i < sizeof(init->features) * 8; i++) {
1188                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1189
1190                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1191                         return -ENOENT;
1192
1193                 /*
1194                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1195                  * use the same feature set.
1196                  */
1197                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1198                     test_bit(i, vcpu->arch.features) != set)
1199                         return -EINVAL;
1200
1201                 if (set)
1202                         set_bit(i, vcpu->arch.features);
1203         }
1204
1205         vcpu->arch.target = phys_target;
1206
1207         /* Now we know what it is, we can reset it. */
1208         ret = kvm_reset_vcpu(vcpu);
1209         if (ret) {
1210                 vcpu->arch.target = -1;
1211                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1212         }
1213
1214         return ret;
1215 }
1216
1217 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1218                                          struct kvm_vcpu_init *init)
1219 {
1220         int ret;
1221
1222         ret = kvm_vcpu_set_target(vcpu, init);
1223         if (ret)
1224                 return ret;
1225
1226         /*
1227          * Ensure a rebooted VM will fault in RAM pages and detect if the
1228          * guest MMU is turned off and flush the caches as needed.
1229          *
1230          * S2FWB enforces all memory accesses to RAM being cacheable,
1231          * ensuring that the data side is always coherent. We still
1232          * need to invalidate the I-cache though, as FWB does *not*
1233          * imply CTR_EL0.DIC.
1234          */
1235         if (vcpu_has_run_once(vcpu)) {
1236                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1237                         stage2_unmap_vm(vcpu->kvm);
1238                 else
1239                         icache_inval_all_pou();
1240         }
1241
1242         vcpu_reset_hcr(vcpu);
1243         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1244
1245         /*
1246          * Handle the "start in power-off" case.
1247          */
1248         spin_lock(&vcpu->arch.mp_state_lock);
1249
1250         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1251                 __kvm_arm_vcpu_power_off(vcpu);
1252         else
1253                 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1254
1255         spin_unlock(&vcpu->arch.mp_state_lock);
1256
1257         return 0;
1258 }
1259
1260 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1261                                  struct kvm_device_attr *attr)
1262 {
1263         int ret = -ENXIO;
1264
1265         switch (attr->group) {
1266         default:
1267                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1268                 break;
1269         }
1270
1271         return ret;
1272 }
1273
1274 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1275                                  struct kvm_device_attr *attr)
1276 {
1277         int ret = -ENXIO;
1278
1279         switch (attr->group) {
1280         default:
1281                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1282                 break;
1283         }
1284
1285         return ret;
1286 }
1287
1288 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1289                                  struct kvm_device_attr *attr)
1290 {
1291         int ret = -ENXIO;
1292
1293         switch (attr->group) {
1294         default:
1295                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1296                 break;
1297         }
1298
1299         return ret;
1300 }
1301
1302 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1303                                    struct kvm_vcpu_events *events)
1304 {
1305         memset(events, 0, sizeof(*events));
1306
1307         return __kvm_arm_vcpu_get_events(vcpu, events);
1308 }
1309
1310 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1311                                    struct kvm_vcpu_events *events)
1312 {
1313         int i;
1314
1315         /* check whether the reserved field is zero */
1316         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1317                 if (events->reserved[i])
1318                         return -EINVAL;
1319
1320         /* check whether the pad field is zero */
1321         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1322                 if (events->exception.pad[i])
1323                         return -EINVAL;
1324
1325         return __kvm_arm_vcpu_set_events(vcpu, events);
1326 }
1327
1328 long kvm_arch_vcpu_ioctl(struct file *filp,
1329                          unsigned int ioctl, unsigned long arg)
1330 {
1331         struct kvm_vcpu *vcpu = filp->private_data;
1332         void __user *argp = (void __user *)arg;
1333         struct kvm_device_attr attr;
1334         long r;
1335
1336         switch (ioctl) {
1337         case KVM_ARM_VCPU_INIT: {
1338                 struct kvm_vcpu_init init;
1339
1340                 r = -EFAULT;
1341                 if (copy_from_user(&init, argp, sizeof(init)))
1342                         break;
1343
1344                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1345                 break;
1346         }
1347         case KVM_SET_ONE_REG:
1348         case KVM_GET_ONE_REG: {
1349                 struct kvm_one_reg reg;
1350
1351                 r = -ENOEXEC;
1352                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1353                         break;
1354
1355                 r = -EFAULT;
1356                 if (copy_from_user(&reg, argp, sizeof(reg)))
1357                         break;
1358
1359                 /*
1360                  * We could owe a reset due to PSCI. Handle the pending reset
1361                  * here to ensure userspace register accesses are ordered after
1362                  * the reset.
1363                  */
1364                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1365                         kvm_reset_vcpu(vcpu);
1366
1367                 if (ioctl == KVM_SET_ONE_REG)
1368                         r = kvm_arm_set_reg(vcpu, &reg);
1369                 else
1370                         r = kvm_arm_get_reg(vcpu, &reg);
1371                 break;
1372         }
1373         case KVM_GET_REG_LIST: {
1374                 struct kvm_reg_list __user *user_list = argp;
1375                 struct kvm_reg_list reg_list;
1376                 unsigned n;
1377
1378                 r = -ENOEXEC;
1379                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1380                         break;
1381
1382                 r = -EPERM;
1383                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1384                         break;
1385
1386                 r = -EFAULT;
1387                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1388                         break;
1389                 n = reg_list.n;
1390                 reg_list.n = kvm_arm_num_regs(vcpu);
1391                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1392                         break;
1393                 r = -E2BIG;
1394                 if (n < reg_list.n)
1395                         break;
1396                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1397                 break;
1398         }
1399         case KVM_SET_DEVICE_ATTR: {
1400                 r = -EFAULT;
1401                 if (copy_from_user(&attr, argp, sizeof(attr)))
1402                         break;
1403                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1404                 break;
1405         }
1406         case KVM_GET_DEVICE_ATTR: {
1407                 r = -EFAULT;
1408                 if (copy_from_user(&attr, argp, sizeof(attr)))
1409                         break;
1410                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1411                 break;
1412         }
1413         case KVM_HAS_DEVICE_ATTR: {
1414                 r = -EFAULT;
1415                 if (copy_from_user(&attr, argp, sizeof(attr)))
1416                         break;
1417                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1418                 break;
1419         }
1420         case KVM_GET_VCPU_EVENTS: {
1421                 struct kvm_vcpu_events events;
1422
1423                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1424                         return -EINVAL;
1425
1426                 if (copy_to_user(argp, &events, sizeof(events)))
1427                         return -EFAULT;
1428
1429                 return 0;
1430         }
1431         case KVM_SET_VCPU_EVENTS: {
1432                 struct kvm_vcpu_events events;
1433
1434                 if (copy_from_user(&events, argp, sizeof(events)))
1435                         return -EFAULT;
1436
1437                 return kvm_arm_vcpu_set_events(vcpu, &events);
1438         }
1439         case KVM_ARM_VCPU_FINALIZE: {
1440                 int what;
1441
1442                 if (!kvm_vcpu_initialized(vcpu))
1443                         return -ENOEXEC;
1444
1445                 if (get_user(what, (const int __user *)argp))
1446                         return -EFAULT;
1447
1448                 return kvm_arm_vcpu_finalize(vcpu, what);
1449         }
1450         default:
1451                 r = -EINVAL;
1452         }
1453
1454         return r;
1455 }
1456
1457 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1458 {
1459
1460 }
1461
1462 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1463                                         const struct kvm_memory_slot *memslot)
1464 {
1465         kvm_flush_remote_tlbs(kvm);
1466 }
1467
1468 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1469                                         struct kvm_arm_device_addr *dev_addr)
1470 {
1471         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1472         case KVM_ARM_DEVICE_VGIC_V2:
1473                 if (!vgic_present)
1474                         return -ENXIO;
1475                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1476         default:
1477                 return -ENODEV;
1478         }
1479 }
1480
1481 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1482 {
1483         switch (attr->group) {
1484         case KVM_ARM_VM_SMCCC_CTRL:
1485                 return kvm_vm_smccc_has_attr(kvm, attr);
1486         default:
1487                 return -ENXIO;
1488         }
1489 }
1490
1491 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1492 {
1493         switch (attr->group) {
1494         case KVM_ARM_VM_SMCCC_CTRL:
1495                 return kvm_vm_smccc_set_attr(kvm, attr);
1496         default:
1497                 return -ENXIO;
1498         }
1499 }
1500
1501 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1502 {
1503         struct kvm *kvm = filp->private_data;
1504         void __user *argp = (void __user *)arg;
1505         struct kvm_device_attr attr;
1506
1507         switch (ioctl) {
1508         case KVM_CREATE_IRQCHIP: {
1509                 int ret;
1510                 if (!vgic_present)
1511                         return -ENXIO;
1512                 mutex_lock(&kvm->lock);
1513                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1514                 mutex_unlock(&kvm->lock);
1515                 return ret;
1516         }
1517         case KVM_ARM_SET_DEVICE_ADDR: {
1518                 struct kvm_arm_device_addr dev_addr;
1519
1520                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1521                         return -EFAULT;
1522                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1523         }
1524         case KVM_ARM_PREFERRED_TARGET: {
1525                 struct kvm_vcpu_init init;
1526
1527                 kvm_vcpu_preferred_target(&init);
1528
1529                 if (copy_to_user(argp, &init, sizeof(init)))
1530                         return -EFAULT;
1531
1532                 return 0;
1533         }
1534         case KVM_ARM_MTE_COPY_TAGS: {
1535                 struct kvm_arm_copy_mte_tags copy_tags;
1536
1537                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1538                         return -EFAULT;
1539                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1540         }
1541         case KVM_ARM_SET_COUNTER_OFFSET: {
1542                 struct kvm_arm_counter_offset offset;
1543
1544                 if (copy_from_user(&offset, argp, sizeof(offset)))
1545                         return -EFAULT;
1546                 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1547         }
1548         case KVM_HAS_DEVICE_ATTR: {
1549                 if (copy_from_user(&attr, argp, sizeof(attr)))
1550                         return -EFAULT;
1551
1552                 return kvm_vm_has_attr(kvm, &attr);
1553         }
1554         case KVM_SET_DEVICE_ATTR: {
1555                 if (copy_from_user(&attr, argp, sizeof(attr)))
1556                         return -EFAULT;
1557
1558                 return kvm_vm_set_attr(kvm, &attr);
1559         }
1560         default:
1561                 return -EINVAL;
1562         }
1563 }
1564
1565 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1566 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1567 {
1568         struct kvm_vcpu *tmp_vcpu;
1569
1570         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1571                 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1572                 mutex_unlock(&tmp_vcpu->mutex);
1573         }
1574 }
1575
1576 void unlock_all_vcpus(struct kvm *kvm)
1577 {
1578         lockdep_assert_held(&kvm->lock);
1579
1580         unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1581 }
1582
1583 /* Returns true if all vcpus were locked, false otherwise */
1584 bool lock_all_vcpus(struct kvm *kvm)
1585 {
1586         struct kvm_vcpu *tmp_vcpu;
1587         unsigned long c;
1588
1589         lockdep_assert_held(&kvm->lock);
1590
1591         /*
1592          * Any time a vcpu is in an ioctl (including running), the
1593          * core KVM code tries to grab the vcpu->mutex.
1594          *
1595          * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1596          * other VCPUs can fiddle with the state while we access it.
1597          */
1598         kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1599                 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1600                         unlock_vcpus(kvm, c - 1);
1601                         return false;
1602                 }
1603         }
1604
1605         return true;
1606 }
1607
1608 static unsigned long nvhe_percpu_size(void)
1609 {
1610         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1611                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1612 }
1613
1614 static unsigned long nvhe_percpu_order(void)
1615 {
1616         unsigned long size = nvhe_percpu_size();
1617
1618         return size ? get_order(size) : 0;
1619 }
1620
1621 /* A lookup table holding the hypervisor VA for each vector slot */
1622 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1623
1624 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1625 {
1626         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1627 }
1628
1629 static int kvm_init_vector_slots(void)
1630 {
1631         int err;
1632         void *base;
1633
1634         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1635         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1636
1637         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1638         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1639
1640         if (kvm_system_needs_idmapped_vectors() &&
1641             !is_protected_kvm_enabled()) {
1642                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1643                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1644                 if (err)
1645                         return err;
1646         }
1647
1648         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1649         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1650         return 0;
1651 }
1652
1653 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1654 {
1655         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1656         unsigned long tcr;
1657
1658         /*
1659          * Calculate the raw per-cpu offset without a translation from the
1660          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1661          * so that we can use adr_l to access per-cpu variables in EL2.
1662          * Also drop the KASAN tag which gets in the way...
1663          */
1664         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1665                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1666
1667         params->mair_el2 = read_sysreg(mair_el1);
1668
1669         tcr = read_sysreg(tcr_el1);
1670         if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1671                 tcr |= TCR_EPD1_MASK;
1672         } else {
1673                 tcr &= TCR_EL2_MASK;
1674                 tcr |= TCR_EL2_RES1;
1675         }
1676         tcr &= ~TCR_T0SZ_MASK;
1677         tcr |= TCR_T0SZ(hyp_va_bits);
1678         params->tcr_el2 = tcr;
1679
1680         params->pgd_pa = kvm_mmu_get_httbr();
1681         if (is_protected_kvm_enabled())
1682                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1683         else
1684                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1685         if (cpus_have_final_cap(ARM64_KVM_HVHE))
1686                 params->hcr_el2 |= HCR_E2H;
1687         params->vttbr = params->vtcr = 0;
1688
1689         /*
1690          * Flush the init params from the data cache because the struct will
1691          * be read while the MMU is off.
1692          */
1693         kvm_flush_dcache_to_poc(params, sizeof(*params));
1694 }
1695
1696 static void hyp_install_host_vector(void)
1697 {
1698         struct kvm_nvhe_init_params *params;
1699         struct arm_smccc_res res;
1700
1701         /* Switch from the HYP stub to our own HYP init vector */
1702         __hyp_set_vectors(kvm_get_idmap_vector());
1703
1704         /*
1705          * Call initialization code, and switch to the full blown HYP code.
1706          * If the cpucaps haven't been finalized yet, something has gone very
1707          * wrong, and hyp will crash and burn when it uses any
1708          * cpus_have_const_cap() wrapper.
1709          */
1710         BUG_ON(!system_capabilities_finalized());
1711         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1712         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1713         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1714 }
1715
1716 static void cpu_init_hyp_mode(void)
1717 {
1718         hyp_install_host_vector();
1719
1720         /*
1721          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1722          * at EL2.
1723          */
1724         if (this_cpu_has_cap(ARM64_SSBS) &&
1725             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1726                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1727         }
1728 }
1729
1730 static void cpu_hyp_reset(void)
1731 {
1732         if (!is_kernel_in_hyp_mode())
1733                 __hyp_reset_vectors();
1734 }
1735
1736 /*
1737  * EL2 vectors can be mapped and rerouted in a number of ways,
1738  * depending on the kernel configuration and CPU present:
1739  *
1740  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1741  *   placed in one of the vector slots, which is executed before jumping
1742  *   to the real vectors.
1743  *
1744  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1745  *   containing the hardening sequence is mapped next to the idmap page,
1746  *   and executed before jumping to the real vectors.
1747  *
1748  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1749  *   empty slot is selected, mapped next to the idmap page, and
1750  *   executed before jumping to the real vectors.
1751  *
1752  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1753  * VHE, as we don't have hypervisor-specific mappings. If the system
1754  * is VHE and yet selects this capability, it will be ignored.
1755  */
1756 static void cpu_set_hyp_vector(void)
1757 {
1758         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1759         void *vector = hyp_spectre_vector_selector[data->slot];
1760
1761         if (!is_protected_kvm_enabled())
1762                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1763         else
1764                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1765 }
1766
1767 static void cpu_hyp_init_context(void)
1768 {
1769         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1770
1771         if (!is_kernel_in_hyp_mode())
1772                 cpu_init_hyp_mode();
1773 }
1774
1775 static void cpu_hyp_init_features(void)
1776 {
1777         cpu_set_hyp_vector();
1778         kvm_arm_init_debug();
1779
1780         if (is_kernel_in_hyp_mode())
1781                 kvm_timer_init_vhe();
1782
1783         if (vgic_present)
1784                 kvm_vgic_init_cpu_hardware();
1785 }
1786
1787 static void cpu_hyp_reinit(void)
1788 {
1789         cpu_hyp_reset();
1790         cpu_hyp_init_context();
1791         cpu_hyp_init_features();
1792 }
1793
1794 static void _kvm_arch_hardware_enable(void *discard)
1795 {
1796         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1797                 cpu_hyp_reinit();
1798                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1799         }
1800 }
1801
1802 int kvm_arch_hardware_enable(void)
1803 {
1804         int was_enabled = __this_cpu_read(kvm_arm_hardware_enabled);
1805
1806         _kvm_arch_hardware_enable(NULL);
1807
1808         if (!was_enabled) {
1809                 kvm_vgic_cpu_up();
1810                 kvm_timer_cpu_up();
1811         }
1812
1813         return 0;
1814 }
1815
1816 static void _kvm_arch_hardware_disable(void *discard)
1817 {
1818         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1819                 cpu_hyp_reset();
1820                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1821         }
1822 }
1823
1824 void kvm_arch_hardware_disable(void)
1825 {
1826         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1827                 kvm_timer_cpu_down();
1828                 kvm_vgic_cpu_down();
1829         }
1830
1831         if (!is_protected_kvm_enabled())
1832                 _kvm_arch_hardware_disable(NULL);
1833 }
1834
1835 #ifdef CONFIG_CPU_PM
1836 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1837                                     unsigned long cmd,
1838                                     void *v)
1839 {
1840         /*
1841          * kvm_arm_hardware_enabled is left with its old value over
1842          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1843          * re-enable hyp.
1844          */
1845         switch (cmd) {
1846         case CPU_PM_ENTER:
1847                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1848                         /*
1849                          * don't update kvm_arm_hardware_enabled here
1850                          * so that the hardware will be re-enabled
1851                          * when we resume. See below.
1852                          */
1853                         cpu_hyp_reset();
1854
1855                 return NOTIFY_OK;
1856         case CPU_PM_ENTER_FAILED:
1857         case CPU_PM_EXIT:
1858                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1859                         /* The hardware was enabled before suspend. */
1860                         cpu_hyp_reinit();
1861
1862                 return NOTIFY_OK;
1863
1864         default:
1865                 return NOTIFY_DONE;
1866         }
1867 }
1868
1869 static struct notifier_block hyp_init_cpu_pm_nb = {
1870         .notifier_call = hyp_init_cpu_pm_notifier,
1871 };
1872
1873 static void __init hyp_cpu_pm_init(void)
1874 {
1875         if (!is_protected_kvm_enabled())
1876                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1877 }
1878 static void __init hyp_cpu_pm_exit(void)
1879 {
1880         if (!is_protected_kvm_enabled())
1881                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1882 }
1883 #else
1884 static inline void __init hyp_cpu_pm_init(void)
1885 {
1886 }
1887 static inline void __init hyp_cpu_pm_exit(void)
1888 {
1889 }
1890 #endif
1891
1892 static void __init init_cpu_logical_map(void)
1893 {
1894         unsigned int cpu;
1895
1896         /*
1897          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1898          * Only copy the set of online CPUs whose features have been checked
1899          * against the finalized system capabilities. The hypervisor will not
1900          * allow any other CPUs from the `possible` set to boot.
1901          */
1902         for_each_online_cpu(cpu)
1903                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1904 }
1905
1906 #define init_psci_0_1_impl_state(config, what)  \
1907         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1908
1909 static bool __init init_psci_relay(void)
1910 {
1911         /*
1912          * If PSCI has not been initialized, protected KVM cannot install
1913          * itself on newly booted CPUs.
1914          */
1915         if (!psci_ops.get_version) {
1916                 kvm_err("Cannot initialize protected mode without PSCI\n");
1917                 return false;
1918         }
1919
1920         kvm_host_psci_config.version = psci_ops.get_version();
1921
1922         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1923                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1924                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1925                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1926                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1927                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1928         }
1929         return true;
1930 }
1931
1932 static int __init init_subsystems(void)
1933 {
1934         int err = 0;
1935
1936         /*
1937          * Enable hardware so that subsystem initialisation can access EL2.
1938          */
1939         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1940
1941         /*
1942          * Register CPU lower-power notifier
1943          */
1944         hyp_cpu_pm_init();
1945
1946         /*
1947          * Init HYP view of VGIC
1948          */
1949         err = kvm_vgic_hyp_init();
1950         switch (err) {
1951         case 0:
1952                 vgic_present = true;
1953                 break;
1954         case -ENODEV:
1955         case -ENXIO:
1956                 vgic_present = false;
1957                 err = 0;
1958                 break;
1959         default:
1960                 goto out;
1961         }
1962
1963         /*
1964          * Init HYP architected timer support
1965          */
1966         err = kvm_timer_hyp_init(vgic_present);
1967         if (err)
1968                 goto out;
1969
1970         kvm_register_perf_callbacks(NULL);
1971
1972 out:
1973         if (err)
1974                 hyp_cpu_pm_exit();
1975
1976         if (err || !is_protected_kvm_enabled())
1977                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1978
1979         return err;
1980 }
1981
1982 static void __init teardown_subsystems(void)
1983 {
1984         kvm_unregister_perf_callbacks();
1985         hyp_cpu_pm_exit();
1986 }
1987
1988 static void __init teardown_hyp_mode(void)
1989 {
1990         int cpu;
1991
1992         free_hyp_pgds();
1993         for_each_possible_cpu(cpu) {
1994                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1995                 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
1996         }
1997 }
1998
1999 static int __init do_pkvm_init(u32 hyp_va_bits)
2000 {
2001         void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2002         int ret;
2003
2004         preempt_disable();
2005         cpu_hyp_init_context();
2006         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2007                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2008                                 hyp_va_bits);
2009         cpu_hyp_init_features();
2010
2011         /*
2012          * The stub hypercalls are now disabled, so set our local flag to
2013          * prevent a later re-init attempt in kvm_arch_hardware_enable().
2014          */
2015         __this_cpu_write(kvm_arm_hardware_enabled, 1);
2016         preempt_enable();
2017
2018         return ret;
2019 }
2020
2021 static u64 get_hyp_id_aa64pfr0_el1(void)
2022 {
2023         /*
2024          * Track whether the system isn't affected by spectre/meltdown in the
2025          * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2026          * Although this is per-CPU, we make it global for simplicity, e.g., not
2027          * to have to worry about vcpu migration.
2028          *
2029          * Unlike for non-protected VMs, userspace cannot override this for
2030          * protected VMs.
2031          */
2032         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2033
2034         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2035                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2036
2037         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2038                           arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2039         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2040                           arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2041
2042         return val;
2043 }
2044
2045 static void kvm_hyp_init_symbols(void)
2046 {
2047         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2048         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2049         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2050         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2051         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2052         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2053         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2054         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2055         kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2056         kvm_nvhe_sym(__icache_flags) = __icache_flags;
2057         kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2058 }
2059
2060 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2061 {
2062         void *addr = phys_to_virt(hyp_mem_base);
2063         int ret;
2064
2065         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2066         if (ret)
2067                 return ret;
2068
2069         ret = do_pkvm_init(hyp_va_bits);
2070         if (ret)
2071                 return ret;
2072
2073         free_hyp_pgds();
2074
2075         return 0;
2076 }
2077
2078 /* Inits Hyp-mode on all online CPUs */
2079 static int __init init_hyp_mode(void)
2080 {
2081         u32 hyp_va_bits;
2082         int cpu;
2083         int err = -ENOMEM;
2084
2085         /*
2086          * The protected Hyp-mode cannot be initialized if the memory pool
2087          * allocation has failed.
2088          */
2089         if (is_protected_kvm_enabled() && !hyp_mem_base)
2090                 goto out_err;
2091
2092         /*
2093          * Allocate Hyp PGD and setup Hyp identity mapping
2094          */
2095         err = kvm_mmu_init(&hyp_va_bits);
2096         if (err)
2097                 goto out_err;
2098
2099         /*
2100          * Allocate stack pages for Hypervisor-mode
2101          */
2102         for_each_possible_cpu(cpu) {
2103                 unsigned long stack_page;
2104
2105                 stack_page = __get_free_page(GFP_KERNEL);
2106                 if (!stack_page) {
2107                         err = -ENOMEM;
2108                         goto out_err;
2109                 }
2110
2111                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2112         }
2113
2114         /*
2115          * Allocate and initialize pages for Hypervisor-mode percpu regions.
2116          */
2117         for_each_possible_cpu(cpu) {
2118                 struct page *page;
2119                 void *page_addr;
2120
2121                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2122                 if (!page) {
2123                         err = -ENOMEM;
2124                         goto out_err;
2125                 }
2126
2127                 page_addr = page_address(page);
2128                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2129                 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2130         }
2131
2132         /*
2133          * Map the Hyp-code called directly from the host
2134          */
2135         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2136                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2137         if (err) {
2138                 kvm_err("Cannot map world-switch code\n");
2139                 goto out_err;
2140         }
2141
2142         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2143                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2144         if (err) {
2145                 kvm_err("Cannot map .hyp.rodata section\n");
2146                 goto out_err;
2147         }
2148
2149         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2150                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2151         if (err) {
2152                 kvm_err("Cannot map rodata section\n");
2153                 goto out_err;
2154         }
2155
2156         /*
2157          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2158          * section thanks to an assertion in the linker script. Map it RW and
2159          * the rest of .bss RO.
2160          */
2161         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2162                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2163         if (err) {
2164                 kvm_err("Cannot map hyp bss section: %d\n", err);
2165                 goto out_err;
2166         }
2167
2168         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2169                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2170         if (err) {
2171                 kvm_err("Cannot map bss section\n");
2172                 goto out_err;
2173         }
2174
2175         /*
2176          * Map the Hyp stack pages
2177          */
2178         for_each_possible_cpu(cpu) {
2179                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2180                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2181                 unsigned long hyp_addr;
2182
2183                 /*
2184                  * Allocate a contiguous HYP private VA range for the stack
2185                  * and guard page. The allocation is also aligned based on
2186                  * the order of its size.
2187                  */
2188                 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2189                 if (err) {
2190                         kvm_err("Cannot allocate hyp stack guard page\n");
2191                         goto out_err;
2192                 }
2193
2194                 /*
2195                  * Since the stack grows downwards, map the stack to the page
2196                  * at the higher address and leave the lower guard page
2197                  * unbacked.
2198                  *
2199                  * Any valid stack address now has the PAGE_SHIFT bit as 1
2200                  * and addresses corresponding to the guard page have the
2201                  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2202                  */
2203                 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2204                                             __pa(stack_page), PAGE_HYP);
2205                 if (err) {
2206                         kvm_err("Cannot map hyp stack\n");
2207                         goto out_err;
2208                 }
2209
2210                 /*
2211                  * Save the stack PA in nvhe_init_params. This will be needed
2212                  * to recreate the stack mapping in protected nVHE mode.
2213                  * __hyp_pa() won't do the right thing there, since the stack
2214                  * has been mapped in the flexible private VA space.
2215                  */
2216                 params->stack_pa = __pa(stack_page);
2217
2218                 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2219         }
2220
2221         for_each_possible_cpu(cpu) {
2222                 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2223                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2224
2225                 /* Map Hyp percpu pages */
2226                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2227                 if (err) {
2228                         kvm_err("Cannot map hyp percpu region\n");
2229                         goto out_err;
2230                 }
2231
2232                 /* Prepare the CPU initialization parameters */
2233                 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2234         }
2235
2236         kvm_hyp_init_symbols();
2237
2238         if (is_protected_kvm_enabled()) {
2239                 init_cpu_logical_map();
2240
2241                 if (!init_psci_relay()) {
2242                         err = -ENODEV;
2243                         goto out_err;
2244                 }
2245
2246                 err = kvm_hyp_init_protection(hyp_va_bits);
2247                 if (err) {
2248                         kvm_err("Failed to init hyp memory protection\n");
2249                         goto out_err;
2250                 }
2251         }
2252
2253         return 0;
2254
2255 out_err:
2256         teardown_hyp_mode();
2257         kvm_err("error initializing Hyp mode: %d\n", err);
2258         return err;
2259 }
2260
2261 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2262 {
2263         struct kvm_vcpu *vcpu;
2264         unsigned long i;
2265
2266         mpidr &= MPIDR_HWID_BITMASK;
2267         kvm_for_each_vcpu(i, vcpu, kvm) {
2268                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2269                         return vcpu;
2270         }
2271         return NULL;
2272 }
2273
2274 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2275 {
2276         return irqchip_in_kernel(kvm);
2277 }
2278
2279 bool kvm_arch_has_irq_bypass(void)
2280 {
2281         return true;
2282 }
2283
2284 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2285                                       struct irq_bypass_producer *prod)
2286 {
2287         struct kvm_kernel_irqfd *irqfd =
2288                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2289
2290         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2291                                           &irqfd->irq_entry);
2292 }
2293 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2294                                       struct irq_bypass_producer *prod)
2295 {
2296         struct kvm_kernel_irqfd *irqfd =
2297                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2298
2299         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2300                                      &irqfd->irq_entry);
2301 }
2302
2303 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2304 {
2305         struct kvm_kernel_irqfd *irqfd =
2306                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2307
2308         kvm_arm_halt_guest(irqfd->kvm);
2309 }
2310
2311 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2312 {
2313         struct kvm_kernel_irqfd *irqfd =
2314                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2315
2316         kvm_arm_resume_guest(irqfd->kvm);
2317 }
2318
2319 /* Initialize Hyp-mode and memory mappings on all CPUs */
2320 static __init int kvm_arm_init(void)
2321 {
2322         int err;
2323         bool in_hyp_mode;
2324
2325         if (!is_hyp_mode_available()) {
2326                 kvm_info("HYP mode not available\n");
2327                 return -ENODEV;
2328         }
2329
2330         if (kvm_get_mode() == KVM_MODE_NONE) {
2331                 kvm_info("KVM disabled from command line\n");
2332                 return -ENODEV;
2333         }
2334
2335         err = kvm_sys_reg_table_init();
2336         if (err) {
2337                 kvm_info("Error initializing system register tables");
2338                 return err;
2339         }
2340
2341         in_hyp_mode = is_kernel_in_hyp_mode();
2342
2343         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2344             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2345                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2346                          "Only trusted guests should be used on this system.\n");
2347
2348         err = kvm_set_ipa_limit();
2349         if (err)
2350                 return err;
2351
2352         err = kvm_arm_init_sve();
2353         if (err)
2354                 return err;
2355
2356         err = kvm_arm_vmid_alloc_init();
2357         if (err) {
2358                 kvm_err("Failed to initialize VMID allocator.\n");
2359                 return err;
2360         }
2361
2362         if (!in_hyp_mode) {
2363                 err = init_hyp_mode();
2364                 if (err)
2365                         goto out_err;
2366         }
2367
2368         err = kvm_init_vector_slots();
2369         if (err) {
2370                 kvm_err("Cannot initialise vector slots\n");
2371                 goto out_hyp;
2372         }
2373
2374         err = init_subsystems();
2375         if (err)
2376                 goto out_hyp;
2377
2378         if (is_protected_kvm_enabled()) {
2379                 kvm_info("Protected nVHE mode initialized successfully\n");
2380         } else if (in_hyp_mode) {
2381                 kvm_info("VHE mode initialized successfully\n");
2382         } else {
2383                 kvm_info("Hyp mode initialized successfully\n");
2384         }
2385
2386         /*
2387          * FIXME: Do something reasonable if kvm_init() fails after pKVM
2388          * hypervisor protection is finalized.
2389          */
2390         err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2391         if (err)
2392                 goto out_subs;
2393
2394         return 0;
2395
2396 out_subs:
2397         teardown_subsystems();
2398 out_hyp:
2399         if (!in_hyp_mode)
2400                 teardown_hyp_mode();
2401 out_err:
2402         kvm_arm_vmid_alloc_free();
2403         return err;
2404 }
2405
2406 static int __init early_kvm_mode_cfg(char *arg)
2407 {
2408         if (!arg)
2409                 return -EINVAL;
2410
2411         if (strcmp(arg, "none") == 0) {
2412                 kvm_mode = KVM_MODE_NONE;
2413                 return 0;
2414         }
2415
2416         if (!is_hyp_mode_available()) {
2417                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2418                 return 0;
2419         }
2420
2421         if (strcmp(arg, "protected") == 0) {
2422                 if (!is_kernel_in_hyp_mode())
2423                         kvm_mode = KVM_MODE_PROTECTED;
2424                 else
2425                         pr_warn_once("Protected KVM not available with VHE\n");
2426
2427                 return 0;
2428         }
2429
2430         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2431                 kvm_mode = KVM_MODE_DEFAULT;
2432                 return 0;
2433         }
2434
2435         if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2436                 kvm_mode = KVM_MODE_NV;
2437                 return 0;
2438         }
2439
2440         return -EINVAL;
2441 }
2442 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2443
2444 enum kvm_mode kvm_get_mode(void)
2445 {
2446         return kvm_mode;
2447 }
2448
2449 module_init(kvm_arm_init);