Merge tag 'timers-core-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / arch / arm64 / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sizes.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm_types.h>
28 #include <linux/kasan.h>
29
30 #include <asm/atomic.h>
31 #include <asm/bug.h>
32 #include <asm/cpufeature.h>
33 #include <asm/daifflags.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/extable.h>
38 #include <asm/insn.h>
39 #include <asm/kprobes.h>
40 #include <asm/patching.h>
41 #include <asm/traps.h>
42 #include <asm/smp.h>
43 #include <asm/stack_pointer.h>
44 #include <asm/stacktrace.h>
45 #include <asm/system_misc.h>
46 #include <asm/sysreg.h>
47
48 static bool __kprobes __check_eq(unsigned long pstate)
49 {
50         return (pstate & PSR_Z_BIT) != 0;
51 }
52
53 static bool __kprobes __check_ne(unsigned long pstate)
54 {
55         return (pstate & PSR_Z_BIT) == 0;
56 }
57
58 static bool __kprobes __check_cs(unsigned long pstate)
59 {
60         return (pstate & PSR_C_BIT) != 0;
61 }
62
63 static bool __kprobes __check_cc(unsigned long pstate)
64 {
65         return (pstate & PSR_C_BIT) == 0;
66 }
67
68 static bool __kprobes __check_mi(unsigned long pstate)
69 {
70         return (pstate & PSR_N_BIT) != 0;
71 }
72
73 static bool __kprobes __check_pl(unsigned long pstate)
74 {
75         return (pstate & PSR_N_BIT) == 0;
76 }
77
78 static bool __kprobes __check_vs(unsigned long pstate)
79 {
80         return (pstate & PSR_V_BIT) != 0;
81 }
82
83 static bool __kprobes __check_vc(unsigned long pstate)
84 {
85         return (pstate & PSR_V_BIT) == 0;
86 }
87
88 static bool __kprobes __check_hi(unsigned long pstate)
89 {
90         pstate &= ~(pstate >> 1);       /* PSR_C_BIT &= ~PSR_Z_BIT */
91         return (pstate & PSR_C_BIT) != 0;
92 }
93
94 static bool __kprobes __check_ls(unsigned long pstate)
95 {
96         pstate &= ~(pstate >> 1);       /* PSR_C_BIT &= ~PSR_Z_BIT */
97         return (pstate & PSR_C_BIT) == 0;
98 }
99
100 static bool __kprobes __check_ge(unsigned long pstate)
101 {
102         pstate ^= (pstate << 3);        /* PSR_N_BIT ^= PSR_V_BIT */
103         return (pstate & PSR_N_BIT) == 0;
104 }
105
106 static bool __kprobes __check_lt(unsigned long pstate)
107 {
108         pstate ^= (pstate << 3);        /* PSR_N_BIT ^= PSR_V_BIT */
109         return (pstate & PSR_N_BIT) != 0;
110 }
111
112 static bool __kprobes __check_gt(unsigned long pstate)
113 {
114         /*PSR_N_BIT ^= PSR_V_BIT */
115         unsigned long temp = pstate ^ (pstate << 3);
116
117         temp |= (pstate << 1);  /*PSR_N_BIT |= PSR_Z_BIT */
118         return (temp & PSR_N_BIT) == 0;
119 }
120
121 static bool __kprobes __check_le(unsigned long pstate)
122 {
123         /*PSR_N_BIT ^= PSR_V_BIT */
124         unsigned long temp = pstate ^ (pstate << 3);
125
126         temp |= (pstate << 1);  /*PSR_N_BIT |= PSR_Z_BIT */
127         return (temp & PSR_N_BIT) != 0;
128 }
129
130 static bool __kprobes __check_al(unsigned long pstate)
131 {
132         return true;
133 }
134
135 /*
136  * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
137  * it behaves identically to 0b1110 ("al").
138  */
139 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
140         __check_eq, __check_ne, __check_cs, __check_cc,
141         __check_mi, __check_pl, __check_vs, __check_vc,
142         __check_hi, __check_ls, __check_ge, __check_lt,
143         __check_gt, __check_le, __check_al, __check_al
144 };
145
146 int show_unhandled_signals = 0;
147
148 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
149 {
150         unsigned long addr = instruction_pointer(regs);
151         char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
152         int i;
153
154         if (user_mode(regs))
155                 return;
156
157         for (i = -4; i < 1; i++) {
158                 unsigned int val, bad;
159
160                 bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
161
162                 if (!bad)
163                         p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
164                 else {
165                         p += sprintf(p, "bad PC value");
166                         break;
167                 }
168         }
169
170         printk("%sCode: %s\n", lvl, str);
171 }
172
173 #ifdef CONFIG_PREEMPT
174 #define S_PREEMPT " PREEMPT"
175 #elif defined(CONFIG_PREEMPT_RT)
176 #define S_PREEMPT " PREEMPT_RT"
177 #else
178 #define S_PREEMPT ""
179 #endif
180
181 #define S_SMP " SMP"
182
183 static int __die(const char *str, int err, struct pt_regs *regs)
184 {
185         static int die_counter;
186         int ret;
187
188         pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
189                  str, err, ++die_counter);
190
191         /* trap and error numbers are mostly meaningless on ARM */
192         ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
193         if (ret == NOTIFY_STOP)
194                 return ret;
195
196         print_modules();
197         show_regs(regs);
198
199         dump_kernel_instr(KERN_EMERG, regs);
200
201         return ret;
202 }
203
204 static DEFINE_RAW_SPINLOCK(die_lock);
205
206 /*
207  * This function is protected against re-entrancy.
208  */
209 void die(const char *str, struct pt_regs *regs, int err)
210 {
211         int ret;
212         unsigned long flags;
213
214         raw_spin_lock_irqsave(&die_lock, flags);
215
216         oops_enter();
217
218         console_verbose();
219         bust_spinlocks(1);
220         ret = __die(str, err, regs);
221
222         if (regs && kexec_should_crash(current))
223                 crash_kexec(regs);
224
225         bust_spinlocks(0);
226         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
227         oops_exit();
228
229         if (in_interrupt())
230                 panic("%s: Fatal exception in interrupt", str);
231         if (panic_on_oops)
232                 panic("%s: Fatal exception", str);
233
234         raw_spin_unlock_irqrestore(&die_lock, flags);
235
236         if (ret != NOTIFY_STOP)
237                 make_task_dead(SIGSEGV);
238 }
239
240 static void arm64_show_signal(int signo, const char *str)
241 {
242         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
243                                       DEFAULT_RATELIMIT_BURST);
244         struct task_struct *tsk = current;
245         unsigned long esr = tsk->thread.fault_code;
246         struct pt_regs *regs = task_pt_regs(tsk);
247
248         /* Leave if the signal won't be shown */
249         if (!show_unhandled_signals ||
250             !unhandled_signal(tsk, signo) ||
251             !__ratelimit(&rs))
252                 return;
253
254         pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
255         if (esr)
256                 pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
257
258         pr_cont("%s", str);
259         print_vma_addr(KERN_CONT " in ", regs->pc);
260         pr_cont("\n");
261         __show_regs(regs);
262 }
263
264 void arm64_force_sig_fault(int signo, int code, unsigned long far,
265                            const char *str)
266 {
267         arm64_show_signal(signo, str);
268         if (signo == SIGKILL)
269                 force_sig(SIGKILL);
270         else
271                 force_sig_fault(signo, code, (void __user *)far);
272 }
273
274 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
275                             const char *str)
276 {
277         arm64_show_signal(SIGBUS, str);
278         force_sig_mceerr(code, (void __user *)far, lsb);
279 }
280
281 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
282                                        const char *str)
283 {
284         arm64_show_signal(SIGTRAP, str);
285         force_sig_ptrace_errno_trap(errno, (void __user *)far);
286 }
287
288 void arm64_notify_die(const char *str, struct pt_regs *regs,
289                       int signo, int sicode, unsigned long far,
290                       unsigned long err)
291 {
292         if (user_mode(regs)) {
293                 WARN_ON(regs != current_pt_regs());
294                 current->thread.fault_address = 0;
295                 current->thread.fault_code = err;
296
297                 arm64_force_sig_fault(signo, sicode, far, str);
298         } else {
299                 die(str, regs, err);
300         }
301 }
302
303 #ifdef CONFIG_COMPAT
304 #define PSTATE_IT_1_0_SHIFT     25
305 #define PSTATE_IT_1_0_MASK      (0x3 << PSTATE_IT_1_0_SHIFT)
306 #define PSTATE_IT_7_2_SHIFT     10
307 #define PSTATE_IT_7_2_MASK      (0x3f << PSTATE_IT_7_2_SHIFT)
308
309 static u32 compat_get_it_state(struct pt_regs *regs)
310 {
311         u32 it, pstate = regs->pstate;
312
313         it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
314         it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
315
316         return it;
317 }
318
319 static void compat_set_it_state(struct pt_regs *regs, u32 it)
320 {
321         u32 pstate_it;
322
323         pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
324         pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
325
326         regs->pstate &= ~PSR_AA32_IT_MASK;
327         regs->pstate |= pstate_it;
328 }
329
330 static void advance_itstate(struct pt_regs *regs)
331 {
332         u32 it;
333
334         /* ARM mode */
335         if (!(regs->pstate & PSR_AA32_T_BIT) ||
336             !(regs->pstate & PSR_AA32_IT_MASK))
337                 return;
338
339         it  = compat_get_it_state(regs);
340
341         /*
342          * If this is the last instruction of the block, wipe the IT
343          * state. Otherwise advance it.
344          */
345         if (!(it & 7))
346                 it = 0;
347         else
348                 it = (it & 0xe0) | ((it << 1) & 0x1f);
349
350         compat_set_it_state(regs, it);
351 }
352 #else
353 static void advance_itstate(struct pt_regs *regs)
354 {
355 }
356 #endif
357
358 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
359 {
360         regs->pc += size;
361
362         /*
363          * If we were single stepping, we want to get the step exception after
364          * we return from the trap.
365          */
366         if (user_mode(regs))
367                 user_fastforward_single_step(current);
368
369         if (compat_user_mode(regs))
370                 advance_itstate(regs);
371         else
372                 regs->pstate &= ~PSR_BTYPE_MASK;
373 }
374
375 static LIST_HEAD(undef_hook);
376 static DEFINE_RAW_SPINLOCK(undef_lock);
377
378 void register_undef_hook(struct undef_hook *hook)
379 {
380         unsigned long flags;
381
382         raw_spin_lock_irqsave(&undef_lock, flags);
383         list_add(&hook->node, &undef_hook);
384         raw_spin_unlock_irqrestore(&undef_lock, flags);
385 }
386
387 void unregister_undef_hook(struct undef_hook *hook)
388 {
389         unsigned long flags;
390
391         raw_spin_lock_irqsave(&undef_lock, flags);
392         list_del(&hook->node);
393         raw_spin_unlock_irqrestore(&undef_lock, flags);
394 }
395
396 static int call_undef_hook(struct pt_regs *regs)
397 {
398         struct undef_hook *hook;
399         unsigned long flags;
400         u32 instr;
401         int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
402         unsigned long pc = instruction_pointer(regs);
403
404         if (!user_mode(regs)) {
405                 __le32 instr_le;
406                 if (get_kernel_nofault(instr_le, (__le32 *)pc))
407                         goto exit;
408                 instr = le32_to_cpu(instr_le);
409         } else if (compat_thumb_mode(regs)) {
410                 /* 16-bit Thumb instruction */
411                 __le16 instr_le;
412                 if (get_user(instr_le, (__le16 __user *)pc))
413                         goto exit;
414                 instr = le16_to_cpu(instr_le);
415                 if (aarch32_insn_is_wide(instr)) {
416                         u32 instr2;
417
418                         if (get_user(instr_le, (__le16 __user *)(pc + 2)))
419                                 goto exit;
420                         instr2 = le16_to_cpu(instr_le);
421                         instr = (instr << 16) | instr2;
422                 }
423         } else {
424                 /* 32-bit ARM instruction */
425                 __le32 instr_le;
426                 if (get_user(instr_le, (__le32 __user *)pc))
427                         goto exit;
428                 instr = le32_to_cpu(instr_le);
429         }
430
431         raw_spin_lock_irqsave(&undef_lock, flags);
432         list_for_each_entry(hook, &undef_hook, node)
433                 if ((instr & hook->instr_mask) == hook->instr_val &&
434                         (regs->pstate & hook->pstate_mask) == hook->pstate_val)
435                         fn = hook->fn;
436
437         raw_spin_unlock_irqrestore(&undef_lock, flags);
438 exit:
439         return fn ? fn(regs, instr) : 1;
440 }
441
442 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
443 {
444         const char *desc;
445         struct pt_regs *regs = current_pt_regs();
446
447         if (WARN_ON(!user_mode(regs)))
448                 return;
449
450         switch (signal) {
451         case SIGILL:
452                 desc = "undefined instruction";
453                 break;
454         case SIGSEGV:
455                 desc = "illegal memory access";
456                 break;
457         default:
458                 desc = "unknown or unrecoverable error";
459                 break;
460         }
461
462         /* Force signals we don't understand to SIGKILL */
463         if (WARN_ON(signal != SIGKILL &&
464                     siginfo_layout(signal, code) != SIL_FAULT)) {
465                 signal = SIGKILL;
466         }
467
468         arm64_notify_die(desc, regs, signal, code, address, err);
469 }
470
471 /*
472  * Set up process info to signal segmentation fault - called on access error.
473  */
474 void arm64_notify_segfault(unsigned long addr)
475 {
476         int code;
477
478         mmap_read_lock(current->mm);
479         if (find_vma(current->mm, untagged_addr(addr)) == NULL)
480                 code = SEGV_MAPERR;
481         else
482                 code = SEGV_ACCERR;
483         mmap_read_unlock(current->mm);
484
485         force_signal_inject(SIGSEGV, code, addr, 0);
486 }
487
488 void do_undefinstr(struct pt_regs *regs)
489 {
490         /* check for AArch32 breakpoint instructions */
491         if (!aarch32_break_handler(regs))
492                 return;
493
494         if (call_undef_hook(regs) == 0)
495                 return;
496
497         BUG_ON(!user_mode(regs));
498         force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
499 }
500 NOKPROBE_SYMBOL(do_undefinstr);
501
502 void do_bti(struct pt_regs *regs)
503 {
504         BUG_ON(!user_mode(regs));
505         force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
506 }
507 NOKPROBE_SYMBOL(do_bti);
508
509 void do_ptrauth_fault(struct pt_regs *regs, unsigned long esr)
510 {
511         /*
512          * Unexpected FPAC exception or pointer authentication failure in
513          * the kernel: kill the task before it does any more harm.
514          */
515         BUG_ON(!user_mode(regs));
516         force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
517 }
518 NOKPROBE_SYMBOL(do_ptrauth_fault);
519
520 #define __user_cache_maint(insn, address, res)                  \
521         if (address >= TASK_SIZE_MAX) {                         \
522                 res = -EFAULT;                                  \
523         } else {                                                \
524                 uaccess_ttbr0_enable();                         \
525                 asm volatile (                                  \
526                         "1:     " insn ", %1\n"                 \
527                         "       mov     %w0, #0\n"              \
528                         "2:\n"                                  \
529                         _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)   \
530                         : "=r" (res)                            \
531                         : "r" (address));                       \
532                 uaccess_ttbr0_disable();                        \
533         }
534
535 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
536 {
537         unsigned long tagged_address, address;
538         int rt = ESR_ELx_SYS64_ISS_RT(esr);
539         int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
540         int ret = 0;
541
542         tagged_address = pt_regs_read_reg(regs, rt);
543         address = untagged_addr(tagged_address);
544
545         switch (crm) {
546         case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:     /* DC CVAU, gets promoted */
547                 __user_cache_maint("dc civac", address, ret);
548                 break;
549         case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:     /* DC CVAC, gets promoted */
550                 __user_cache_maint("dc civac", address, ret);
551                 break;
552         case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:    /* DC CVADP */
553                 __user_cache_maint("sys 3, c7, c13, 1", address, ret);
554                 break;
555         case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:     /* DC CVAP */
556                 __user_cache_maint("sys 3, c7, c12, 1", address, ret);
557                 break;
558         case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:    /* DC CIVAC */
559                 __user_cache_maint("dc civac", address, ret);
560                 break;
561         case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:     /* IC IVAU */
562                 __user_cache_maint("ic ivau", address, ret);
563                 break;
564         default:
565                 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
566                 return;
567         }
568
569         if (ret)
570                 arm64_notify_segfault(tagged_address);
571         else
572                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
573 }
574
575 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
576 {
577         int rt = ESR_ELx_SYS64_ISS_RT(esr);
578         unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
579
580         if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
581                 /* Hide DIC so that we can trap the unnecessary maintenance...*/
582                 val &= ~BIT(CTR_DIC_SHIFT);
583
584                 /* ... and fake IminLine to reduce the number of traps. */
585                 val &= ~CTR_IMINLINE_MASK;
586                 val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
587         }
588
589         pt_regs_write_reg(regs, rt, val);
590
591         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
592 }
593
594 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
595 {
596         int rt = ESR_ELx_SYS64_ISS_RT(esr);
597
598         pt_regs_write_reg(regs, rt, arch_timer_read_counter());
599         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
600 }
601
602 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
603 {
604         int rt = ESR_ELx_SYS64_ISS_RT(esr);
605
606         pt_regs_write_reg(regs, rt, arch_timer_get_rate());
607         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
608 }
609
610 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
611 {
612         u32 sysreg, rt;
613
614         rt = ESR_ELx_SYS64_ISS_RT(esr);
615         sysreg = esr_sys64_to_sysreg(esr);
616
617         if (do_emulate_mrs(regs, sysreg, rt) != 0)
618                 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
619 }
620
621 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
622 {
623         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
624 }
625
626 struct sys64_hook {
627         unsigned long esr_mask;
628         unsigned long esr_val;
629         void (*handler)(unsigned long esr, struct pt_regs *regs);
630 };
631
632 static const struct sys64_hook sys64_hooks[] = {
633         {
634                 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
635                 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
636                 .handler = user_cache_maint_handler,
637         },
638         {
639                 /* Trap read access to CTR_EL0 */
640                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
641                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
642                 .handler = ctr_read_handler,
643         },
644         {
645                 /* Trap read access to CNTVCT_EL0 */
646                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
647                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
648                 .handler = cntvct_read_handler,
649         },
650         {
651                 /* Trap read access to CNTVCTSS_EL0 */
652                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
653                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
654                 .handler = cntvct_read_handler,
655         },
656         {
657                 /* Trap read access to CNTFRQ_EL0 */
658                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
659                 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
660                 .handler = cntfrq_read_handler,
661         },
662         {
663                 /* Trap read access to CPUID registers */
664                 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
665                 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
666                 .handler = mrs_handler,
667         },
668         {
669                 /* Trap WFI instructions executed in userspace */
670                 .esr_mask = ESR_ELx_WFx_MASK,
671                 .esr_val = ESR_ELx_WFx_WFI_VAL,
672                 .handler = wfi_handler,
673         },
674         {},
675 };
676
677 #ifdef CONFIG_COMPAT
678 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
679 {
680         int cond;
681
682         /* Only a T32 instruction can trap without CV being set */
683         if (!(esr & ESR_ELx_CV)) {
684                 u32 it;
685
686                 it = compat_get_it_state(regs);
687                 if (!it)
688                         return true;
689
690                 cond = it >> 4;
691         } else {
692                 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
693         }
694
695         return aarch32_opcode_cond_checks[cond](regs->pstate);
696 }
697
698 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
699 {
700         int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
701
702         pt_regs_write_reg(regs, reg, arch_timer_get_rate());
703         arm64_skip_faulting_instruction(regs, 4);
704 }
705
706 static const struct sys64_hook cp15_32_hooks[] = {
707         {
708                 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
709                 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
710                 .handler = compat_cntfrq_read_handler,
711         },
712         {},
713 };
714
715 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
716 {
717         int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
718         int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
719         u64 val = arch_timer_read_counter();
720
721         pt_regs_write_reg(regs, rt, lower_32_bits(val));
722         pt_regs_write_reg(regs, rt2, upper_32_bits(val));
723         arm64_skip_faulting_instruction(regs, 4);
724 }
725
726 static const struct sys64_hook cp15_64_hooks[] = {
727         {
728                 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
729                 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
730                 .handler = compat_cntvct_read_handler,
731         },
732         {
733                 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
734                 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
735                 .handler = compat_cntvct_read_handler,
736         },
737         {},
738 };
739
740 void do_cp15instr(unsigned long esr, struct pt_regs *regs)
741 {
742         const struct sys64_hook *hook, *hook_base;
743
744         if (!cp15_cond_valid(esr, regs)) {
745                 /*
746                  * There is no T16 variant of a CP access, so we
747                  * always advance PC by 4 bytes.
748                  */
749                 arm64_skip_faulting_instruction(regs, 4);
750                 return;
751         }
752
753         switch (ESR_ELx_EC(esr)) {
754         case ESR_ELx_EC_CP15_32:
755                 hook_base = cp15_32_hooks;
756                 break;
757         case ESR_ELx_EC_CP15_64:
758                 hook_base = cp15_64_hooks;
759                 break;
760         default:
761                 do_undefinstr(regs);
762                 return;
763         }
764
765         for (hook = hook_base; hook->handler; hook++)
766                 if ((hook->esr_mask & esr) == hook->esr_val) {
767                         hook->handler(esr, regs);
768                         return;
769                 }
770
771         /*
772          * New cp15 instructions may previously have been undefined at
773          * EL0. Fall back to our usual undefined instruction handler
774          * so that we handle these consistently.
775          */
776         do_undefinstr(regs);
777 }
778 NOKPROBE_SYMBOL(do_cp15instr);
779 #endif
780
781 void do_sysinstr(unsigned long esr, struct pt_regs *regs)
782 {
783         const struct sys64_hook *hook;
784
785         for (hook = sys64_hooks; hook->handler; hook++)
786                 if ((hook->esr_mask & esr) == hook->esr_val) {
787                         hook->handler(esr, regs);
788                         return;
789                 }
790
791         /*
792          * New SYS instructions may previously have been undefined at EL0. Fall
793          * back to our usual undefined instruction handler so that we handle
794          * these consistently.
795          */
796         do_undefinstr(regs);
797 }
798 NOKPROBE_SYMBOL(do_sysinstr);
799
800 static const char *esr_class_str[] = {
801         [0 ... ESR_ELx_EC_MAX]          = "UNRECOGNIZED EC",
802         [ESR_ELx_EC_UNKNOWN]            = "Unknown/Uncategorized",
803         [ESR_ELx_EC_WFx]                = "WFI/WFE",
804         [ESR_ELx_EC_CP15_32]            = "CP15 MCR/MRC",
805         [ESR_ELx_EC_CP15_64]            = "CP15 MCRR/MRRC",
806         [ESR_ELx_EC_CP14_MR]            = "CP14 MCR/MRC",
807         [ESR_ELx_EC_CP14_LS]            = "CP14 LDC/STC",
808         [ESR_ELx_EC_FP_ASIMD]           = "ASIMD",
809         [ESR_ELx_EC_CP10_ID]            = "CP10 MRC/VMRS",
810         [ESR_ELx_EC_PAC]                = "PAC",
811         [ESR_ELx_EC_CP14_64]            = "CP14 MCRR/MRRC",
812         [ESR_ELx_EC_BTI]                = "BTI",
813         [ESR_ELx_EC_ILL]                = "PSTATE.IL",
814         [ESR_ELx_EC_SVC32]              = "SVC (AArch32)",
815         [ESR_ELx_EC_HVC32]              = "HVC (AArch32)",
816         [ESR_ELx_EC_SMC32]              = "SMC (AArch32)",
817         [ESR_ELx_EC_SVC64]              = "SVC (AArch64)",
818         [ESR_ELx_EC_HVC64]              = "HVC (AArch64)",
819         [ESR_ELx_EC_SMC64]              = "SMC (AArch64)",
820         [ESR_ELx_EC_SYS64]              = "MSR/MRS (AArch64)",
821         [ESR_ELx_EC_SVE]                = "SVE",
822         [ESR_ELx_EC_ERET]               = "ERET/ERETAA/ERETAB",
823         [ESR_ELx_EC_FPAC]               = "FPAC",
824         [ESR_ELx_EC_SME]                = "SME",
825         [ESR_ELx_EC_IMP_DEF]            = "EL3 IMP DEF",
826         [ESR_ELx_EC_IABT_LOW]           = "IABT (lower EL)",
827         [ESR_ELx_EC_IABT_CUR]           = "IABT (current EL)",
828         [ESR_ELx_EC_PC_ALIGN]           = "PC Alignment",
829         [ESR_ELx_EC_DABT_LOW]           = "DABT (lower EL)",
830         [ESR_ELx_EC_DABT_CUR]           = "DABT (current EL)",
831         [ESR_ELx_EC_SP_ALIGN]           = "SP Alignment",
832         [ESR_ELx_EC_FP_EXC32]           = "FP (AArch32)",
833         [ESR_ELx_EC_FP_EXC64]           = "FP (AArch64)",
834         [ESR_ELx_EC_SERROR]             = "SError",
835         [ESR_ELx_EC_BREAKPT_LOW]        = "Breakpoint (lower EL)",
836         [ESR_ELx_EC_BREAKPT_CUR]        = "Breakpoint (current EL)",
837         [ESR_ELx_EC_SOFTSTP_LOW]        = "Software Step (lower EL)",
838         [ESR_ELx_EC_SOFTSTP_CUR]        = "Software Step (current EL)",
839         [ESR_ELx_EC_WATCHPT_LOW]        = "Watchpoint (lower EL)",
840         [ESR_ELx_EC_WATCHPT_CUR]        = "Watchpoint (current EL)",
841         [ESR_ELx_EC_BKPT32]             = "BKPT (AArch32)",
842         [ESR_ELx_EC_VECTOR32]           = "Vector catch (AArch32)",
843         [ESR_ELx_EC_BRK64]              = "BRK (AArch64)",
844 };
845
846 const char *esr_get_class_string(unsigned long esr)
847 {
848         return esr_class_str[ESR_ELx_EC(esr)];
849 }
850
851 /*
852  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
853  * exceptions taken from EL0.
854  */
855 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
856 {
857         unsigned long pc = instruction_pointer(regs);
858
859         current->thread.fault_address = 0;
860         current->thread.fault_code = esr;
861
862         arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
863                               "Bad EL0 synchronous exception");
864 }
865
866 #ifdef CONFIG_VMAP_STACK
867
868 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
869         __aligned(16);
870
871 void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
872 {
873         unsigned long tsk_stk = (unsigned long)current->stack;
874         unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
875         unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
876
877         console_verbose();
878         pr_emerg("Insufficient stack space to handle exception!");
879
880         pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
881         pr_emerg("FAR: 0x%016lx\n", far);
882
883         pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
884                  tsk_stk, tsk_stk + THREAD_SIZE);
885         pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
886                  irq_stk, irq_stk + IRQ_STACK_SIZE);
887         pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
888                  ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
889
890         __show_regs(regs);
891
892         /*
893          * We use nmi_panic to limit the potential for recusive overflows, and
894          * to get a better stack trace.
895          */
896         nmi_panic(NULL, "kernel stack overflow");
897         cpu_park_loop();
898 }
899 #endif
900
901 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
902 {
903         console_verbose();
904
905         pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
906                 smp_processor_id(), esr, esr_get_class_string(esr));
907         if (regs)
908                 __show_regs(regs);
909
910         nmi_panic(regs, "Asynchronous SError Interrupt");
911
912         cpu_park_loop();
913         unreachable();
914 }
915
916 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
917 {
918         unsigned long aet = arm64_ras_serror_get_severity(esr);
919
920         switch (aet) {
921         case ESR_ELx_AET_CE:    /* corrected error */
922         case ESR_ELx_AET_UEO:   /* restartable, not yet consumed */
923                 /*
924                  * The CPU can make progress. We may take UEO again as
925                  * a more severe error.
926                  */
927                 return false;
928
929         case ESR_ELx_AET_UEU:   /* Uncorrected Unrecoverable */
930         case ESR_ELx_AET_UER:   /* Uncorrected Recoverable */
931                 /*
932                  * The CPU can't make progress. The exception may have
933                  * been imprecise.
934                  *
935                  * Neoverse-N1 #1349291 means a non-KVM SError reported as
936                  * Unrecoverable should be treated as Uncontainable. We
937                  * call arm64_serror_panic() in both cases.
938                  */
939                 return true;
940
941         case ESR_ELx_AET_UC:    /* Uncontainable or Uncategorized error */
942         default:
943                 /* Error has been silently propagated */
944                 arm64_serror_panic(regs, esr);
945         }
946 }
947
948 void do_serror(struct pt_regs *regs, unsigned long esr)
949 {
950         /* non-RAS errors are not containable */
951         if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
952                 arm64_serror_panic(regs, esr);
953 }
954
955 /* GENERIC_BUG traps */
956
957 int is_valid_bugaddr(unsigned long addr)
958 {
959         /*
960          * bug_handler() only called for BRK #BUG_BRK_IMM.
961          * So the answer is trivial -- any spurious instances with no
962          * bug table entry will be rejected by report_bug() and passed
963          * back to the debug-monitors code and handled as a fatal
964          * unexpected debug exception.
965          */
966         return 1;
967 }
968
969 static int bug_handler(struct pt_regs *regs, unsigned long esr)
970 {
971         switch (report_bug(regs->pc, regs)) {
972         case BUG_TRAP_TYPE_BUG:
973                 die("Oops - BUG", regs, 0);
974                 break;
975
976         case BUG_TRAP_TYPE_WARN:
977                 break;
978
979         default:
980                 /* unknown/unrecognised bug trap type */
981                 return DBG_HOOK_ERROR;
982         }
983
984         /* If thread survives, skip over the BUG instruction and continue: */
985         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
986         return DBG_HOOK_HANDLED;
987 }
988
989 static struct break_hook bug_break_hook = {
990         .fn = bug_handler,
991         .imm = BUG_BRK_IMM,
992 };
993
994 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
995 {
996         pr_err("%s generated an invalid instruction at %pS!\n",
997                 "Kernel text patching",
998                 (void *)instruction_pointer(regs));
999
1000         /* We cannot handle this */
1001         return DBG_HOOK_ERROR;
1002 }
1003
1004 static struct break_hook fault_break_hook = {
1005         .fn = reserved_fault_handler,
1006         .imm = FAULT_BRK_IMM,
1007 };
1008
1009 #ifdef CONFIG_KASAN_SW_TAGS
1010
1011 #define KASAN_ESR_RECOVER       0x20
1012 #define KASAN_ESR_WRITE 0x10
1013 #define KASAN_ESR_SIZE_MASK     0x0f
1014 #define KASAN_ESR_SIZE(esr)     (1 << ((esr) & KASAN_ESR_SIZE_MASK))
1015
1016 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1017 {
1018         bool recover = esr & KASAN_ESR_RECOVER;
1019         bool write = esr & KASAN_ESR_WRITE;
1020         size_t size = KASAN_ESR_SIZE(esr);
1021         u64 addr = regs->regs[0];
1022         u64 pc = regs->pc;
1023
1024         kasan_report(addr, size, write, pc);
1025
1026         /*
1027          * The instrumentation allows to control whether we can proceed after
1028          * a crash was detected. This is done by passing the -recover flag to
1029          * the compiler. Disabling recovery allows to generate more compact
1030          * code.
1031          *
1032          * Unfortunately disabling recovery doesn't work for the kernel right
1033          * now. KASAN reporting is disabled in some contexts (for example when
1034          * the allocator accesses slab object metadata; this is controlled by
1035          * current->kasan_depth). All these accesses are detected by the tool,
1036          * even though the reports for them are not printed.
1037          *
1038          * This is something that might be fixed at some point in the future.
1039          */
1040         if (!recover)
1041                 die("Oops - KASAN", regs, 0);
1042
1043         /* If thread survives, skip over the brk instruction and continue: */
1044         arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1045         return DBG_HOOK_HANDLED;
1046 }
1047
1048 static struct break_hook kasan_break_hook = {
1049         .fn     = kasan_handler,
1050         .imm    = KASAN_BRK_IMM,
1051         .mask   = KASAN_BRK_MASK,
1052 };
1053 #endif
1054
1055 /*
1056  * Initial handler for AArch64 BRK exceptions
1057  * This handler only used until debug_traps_init().
1058  */
1059 int __init early_brk64(unsigned long addr, unsigned long esr,
1060                 struct pt_regs *regs)
1061 {
1062 #ifdef CONFIG_KASAN_SW_TAGS
1063         unsigned long comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1064
1065         if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1066                 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1067 #endif
1068         return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1069 }
1070
1071 void __init trap_init(void)
1072 {
1073         register_kernel_break_hook(&bug_break_hook);
1074         register_kernel_break_hook(&fault_break_hook);
1075 #ifdef CONFIG_KASAN_SW_TAGS
1076         register_kernel_break_hook(&kasan_break_hook);
1077 #endif
1078         debug_traps_init();
1079 }