Merge tag 'apparmor-pr-2022-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / arch / arm64 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 struct pt_regs_offset {
47         const char *name;
48         int offset;
49 };
50
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54         {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55
56 static const struct pt_regs_offset regoffset_table[] = {
57         GPR_OFFSET_NAME(0),
58         GPR_OFFSET_NAME(1),
59         GPR_OFFSET_NAME(2),
60         GPR_OFFSET_NAME(3),
61         GPR_OFFSET_NAME(4),
62         GPR_OFFSET_NAME(5),
63         GPR_OFFSET_NAME(6),
64         GPR_OFFSET_NAME(7),
65         GPR_OFFSET_NAME(8),
66         GPR_OFFSET_NAME(9),
67         GPR_OFFSET_NAME(10),
68         GPR_OFFSET_NAME(11),
69         GPR_OFFSET_NAME(12),
70         GPR_OFFSET_NAME(13),
71         GPR_OFFSET_NAME(14),
72         GPR_OFFSET_NAME(15),
73         GPR_OFFSET_NAME(16),
74         GPR_OFFSET_NAME(17),
75         GPR_OFFSET_NAME(18),
76         GPR_OFFSET_NAME(19),
77         GPR_OFFSET_NAME(20),
78         GPR_OFFSET_NAME(21),
79         GPR_OFFSET_NAME(22),
80         GPR_OFFSET_NAME(23),
81         GPR_OFFSET_NAME(24),
82         GPR_OFFSET_NAME(25),
83         GPR_OFFSET_NAME(26),
84         GPR_OFFSET_NAME(27),
85         GPR_OFFSET_NAME(28),
86         GPR_OFFSET_NAME(29),
87         GPR_OFFSET_NAME(30),
88         {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89         REG_OFFSET_NAME(sp),
90         REG_OFFSET_NAME(pc),
91         REG_OFFSET_NAME(pstate),
92         REG_OFFSET_END,
93 };
94
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:       the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104         const struct pt_regs_offset *roff;
105
106         for (roff = regoffset_table; roff->name != NULL; roff++)
107                 if (!strcmp(roff->name, name))
108                         return roff->offset;
109         return -EINVAL;
110 }
111
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122         return ((addr & ~(THREAD_SIZE - 1))  ==
123                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124                 on_irq_stack(addr, sizeof(unsigned long));
125 }
126
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:       pt_regs which contains kernel stack pointer.
130  * @n:          stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139
140         addr += n;
141         if (regs_within_kernel_stack(regs, (unsigned long)addr))
142                 return *addr;
143         else
144                 return 0;
145 }
146
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157         /*
158          * This would be better off in core code, but PTRACE_DETACH has
159          * grown its fair share of arch-specific worts and changing it
160          * is likely to cause regressions on obscure architectures.
161          */
162         user_disable_single_step(child);
163 }
164
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170                                 struct perf_sample_data *data,
171                                 struct pt_regs *regs)
172 {
173         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174         const char *desc = "Hardware breakpoint trap (ptrace)";
175
176 #ifdef CONFIG_COMPAT
177         if (is_compat_task()) {
178                 int si_errno = 0;
179                 int i;
180
181                 for (i = 0; i < ARM_MAX_BRP; ++i) {
182                         if (current->thread.debug.hbp_break[i] == bp) {
183                                 si_errno = (i << 1) + 1;
184                                 break;
185                         }
186                 }
187
188                 for (i = 0; i < ARM_MAX_WRP; ++i) {
189                         if (current->thread.debug.hbp_watch[i] == bp) {
190                                 si_errno = -((i << 1) + 1);
191                                 break;
192                         }
193                 }
194                 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195                                                   desc);
196                 return;
197         }
198 #endif
199         arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208         int i;
209         struct thread_struct *t = &tsk->thread;
210
211         for (i = 0; i < ARM_MAX_BRP; i++) {
212                 if (t->debug.hbp_break[i]) {
213                         unregister_hw_breakpoint(t->debug.hbp_break[i]);
214                         t->debug.hbp_break[i] = NULL;
215                 }
216         }
217
218         for (i = 0; i < ARM_MAX_WRP; i++) {
219                 if (t->debug.hbp_watch[i]) {
220                         unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221                         t->debug.hbp_watch[i] = NULL;
222                 }
223         }
224 }
225
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228         memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232                                                struct task_struct *tsk,
233                                                unsigned long idx)
234 {
235         struct perf_event *bp = ERR_PTR(-EINVAL);
236
237         switch (note_type) {
238         case NT_ARM_HW_BREAK:
239                 if (idx >= ARM_MAX_BRP)
240                         goto out;
241                 idx = array_index_nospec(idx, ARM_MAX_BRP);
242                 bp = tsk->thread.debug.hbp_break[idx];
243                 break;
244         case NT_ARM_HW_WATCH:
245                 if (idx >= ARM_MAX_WRP)
246                         goto out;
247                 idx = array_index_nospec(idx, ARM_MAX_WRP);
248                 bp = tsk->thread.debug.hbp_watch[idx];
249                 break;
250         }
251
252 out:
253         return bp;
254 }
255
256 static int ptrace_hbp_set_event(unsigned int note_type,
257                                 struct task_struct *tsk,
258                                 unsigned long idx,
259                                 struct perf_event *bp)
260 {
261         int err = -EINVAL;
262
263         switch (note_type) {
264         case NT_ARM_HW_BREAK:
265                 if (idx >= ARM_MAX_BRP)
266                         goto out;
267                 idx = array_index_nospec(idx, ARM_MAX_BRP);
268                 tsk->thread.debug.hbp_break[idx] = bp;
269                 err = 0;
270                 break;
271         case NT_ARM_HW_WATCH:
272                 if (idx >= ARM_MAX_WRP)
273                         goto out;
274                 idx = array_index_nospec(idx, ARM_MAX_WRP);
275                 tsk->thread.debug.hbp_watch[idx] = bp;
276                 err = 0;
277                 break;
278         }
279
280 out:
281         return err;
282 }
283
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285                                             struct task_struct *tsk,
286                                             unsigned long idx)
287 {
288         struct perf_event *bp;
289         struct perf_event_attr attr;
290         int err, type;
291
292         switch (note_type) {
293         case NT_ARM_HW_BREAK:
294                 type = HW_BREAKPOINT_X;
295                 break;
296         case NT_ARM_HW_WATCH:
297                 type = HW_BREAKPOINT_RW;
298                 break;
299         default:
300                 return ERR_PTR(-EINVAL);
301         }
302
303         ptrace_breakpoint_init(&attr);
304
305         /*
306          * Initialise fields to sane defaults
307          * (i.e. values that will pass validation).
308          */
309         attr.bp_addr    = 0;
310         attr.bp_len     = HW_BREAKPOINT_LEN_4;
311         attr.bp_type    = type;
312         attr.disabled   = 1;
313
314         bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315         if (IS_ERR(bp))
316                 return bp;
317
318         err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319         if (err)
320                 return ERR_PTR(err);
321
322         return bp;
323 }
324
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326                                      struct arch_hw_breakpoint_ctrl ctrl,
327                                      struct perf_event_attr *attr)
328 {
329         int err, len, type, offset, disabled = !ctrl.enabled;
330
331         attr->disabled = disabled;
332         if (disabled)
333                 return 0;
334
335         err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336         if (err)
337                 return err;
338
339         switch (note_type) {
340         case NT_ARM_HW_BREAK:
341                 if ((type & HW_BREAKPOINT_X) != type)
342                         return -EINVAL;
343                 break;
344         case NT_ARM_HW_WATCH:
345                 if ((type & HW_BREAKPOINT_RW) != type)
346                         return -EINVAL;
347                 break;
348         default:
349                 return -EINVAL;
350         }
351
352         attr->bp_len    = len;
353         attr->bp_type   = type;
354         attr->bp_addr   += offset;
355
356         return 0;
357 }
358
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361         u8 num;
362         u32 reg = 0;
363
364         switch (note_type) {
365         case NT_ARM_HW_BREAK:
366                 num = hw_breakpoint_slots(TYPE_INST);
367                 break;
368         case NT_ARM_HW_WATCH:
369                 num = hw_breakpoint_slots(TYPE_DATA);
370                 break;
371         default:
372                 return -EINVAL;
373         }
374
375         reg |= debug_monitors_arch();
376         reg <<= 8;
377         reg |= num;
378
379         *info = reg;
380         return 0;
381 }
382
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384                                struct task_struct *tsk,
385                                unsigned long idx,
386                                u32 *ctrl)
387 {
388         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390         if (IS_ERR(bp))
391                 return PTR_ERR(bp);
392
393         *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394         return 0;
395 }
396
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398                                struct task_struct *tsk,
399                                unsigned long idx,
400                                u64 *addr)
401 {
402         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404         if (IS_ERR(bp))
405                 return PTR_ERR(bp);
406
407         *addr = bp ? counter_arch_bp(bp)->address : 0;
408         return 0;
409 }
410
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412                                                         struct task_struct *tsk,
413                                                         unsigned long idx)
414 {
415         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417         if (!bp)
418                 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420         return bp;
421 }
422
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424                                struct task_struct *tsk,
425                                unsigned long idx,
426                                u32 uctrl)
427 {
428         int err;
429         struct perf_event *bp;
430         struct perf_event_attr attr;
431         struct arch_hw_breakpoint_ctrl ctrl;
432
433         bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434         if (IS_ERR(bp)) {
435                 err = PTR_ERR(bp);
436                 return err;
437         }
438
439         attr = bp->attr;
440         decode_ctrl_reg(uctrl, &ctrl);
441         err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442         if (err)
443                 return err;
444
445         return modify_user_hw_breakpoint(bp, &attr);
446 }
447
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449                                struct task_struct *tsk,
450                                unsigned long idx,
451                                u64 addr)
452 {
453         int err;
454         struct perf_event *bp;
455         struct perf_event_attr attr;
456
457         bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458         if (IS_ERR(bp)) {
459                 err = PTR_ERR(bp);
460                 return err;
461         }
462
463         attr = bp->attr;
464         attr.bp_addr = addr;
465         err = modify_user_hw_breakpoint(bp, &attr);
466         return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ      sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ      sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ       sizeof(u32)
472
473 static int hw_break_get(struct task_struct *target,
474                         const struct user_regset *regset,
475                         struct membuf to)
476 {
477         unsigned int note_type = regset->core_note_type;
478         int ret, idx = 0;
479         u32 info, ctrl;
480         u64 addr;
481
482         /* Resource info */
483         ret = ptrace_hbp_get_resource_info(note_type, &info);
484         if (ret)
485                 return ret;
486
487         membuf_write(&to, &info, sizeof(info));
488         membuf_zero(&to, sizeof(u32));
489         /* (address, ctrl) registers */
490         while (to.left) {
491                 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492                 if (ret)
493                         return ret;
494                 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495                 if (ret)
496                         return ret;
497                 membuf_store(&to, addr);
498                 membuf_store(&to, ctrl);
499                 membuf_zero(&to, sizeof(u32));
500                 idx++;
501         }
502         return 0;
503 }
504
505 static int hw_break_set(struct task_struct *target,
506                         const struct user_regset *regset,
507                         unsigned int pos, unsigned int count,
508                         const void *kbuf, const void __user *ubuf)
509 {
510         unsigned int note_type = regset->core_note_type;
511         int ret, idx = 0, offset, limit;
512         u32 ctrl;
513         u64 addr;
514
515         /* Resource info and pad */
516         offset = offsetof(struct user_hwdebug_state, dbg_regs);
517         user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518
519         /* (address, ctrl) registers */
520         limit = regset->n * regset->size;
521         while (count && offset < limit) {
522                 if (count < PTRACE_HBP_ADDR_SZ)
523                         return -EINVAL;
524                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525                                          offset, offset + PTRACE_HBP_ADDR_SZ);
526                 if (ret)
527                         return ret;
528                 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529                 if (ret)
530                         return ret;
531                 offset += PTRACE_HBP_ADDR_SZ;
532
533                 if (!count)
534                         break;
535                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536                                          offset, offset + PTRACE_HBP_CTRL_SZ);
537                 if (ret)
538                         return ret;
539                 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540                 if (ret)
541                         return ret;
542                 offset += PTRACE_HBP_CTRL_SZ;
543
544                 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545                                           offset, offset + PTRACE_HBP_PAD_SZ);
546                 offset += PTRACE_HBP_PAD_SZ;
547                 idx++;
548         }
549
550         return 0;
551 }
552 #endif  /* CONFIG_HAVE_HW_BREAKPOINT */
553
554 static int gpr_get(struct task_struct *target,
555                    const struct user_regset *regset,
556                    struct membuf to)
557 {
558         struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559         return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561
562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563                    unsigned int pos, unsigned int count,
564                    const void *kbuf, const void __user *ubuf)
565 {
566         int ret;
567         struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568
569         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570         if (ret)
571                 return ret;
572
573         if (!valid_user_regs(&newregs, target))
574                 return -EINVAL;
575
576         task_pt_regs(target)->user_regs = newregs;
577         return 0;
578 }
579
580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582         if (!system_supports_fpsimd())
583                 return -ENODEV;
584         return regset->n;
585 }
586
587 /*
588  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589  */
590 static int __fpr_get(struct task_struct *target,
591                      const struct user_regset *regset,
592                      struct membuf to)
593 {
594         struct user_fpsimd_state *uregs;
595
596         sve_sync_to_fpsimd(target);
597
598         uregs = &target->thread.uw.fpsimd_state;
599
600         return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602
603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604                    struct membuf to)
605 {
606         if (!system_supports_fpsimd())
607                 return -EINVAL;
608
609         if (target == current)
610                 fpsimd_preserve_current_state();
611
612         return __fpr_get(target, regset, to);
613 }
614
615 static int __fpr_set(struct task_struct *target,
616                      const struct user_regset *regset,
617                      unsigned int pos, unsigned int count,
618                      const void *kbuf, const void __user *ubuf,
619                      unsigned int start_pos)
620 {
621         int ret;
622         struct user_fpsimd_state newstate;
623
624         /*
625          * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626          * short copyin can't resurrect stale data.
627          */
628         sve_sync_to_fpsimd(target);
629
630         newstate = target->thread.uw.fpsimd_state;
631
632         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633                                  start_pos, start_pos + sizeof(newstate));
634         if (ret)
635                 return ret;
636
637         target->thread.uw.fpsimd_state = newstate;
638
639         return ret;
640 }
641
642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643                    unsigned int pos, unsigned int count,
644                    const void *kbuf, const void __user *ubuf)
645 {
646         int ret;
647
648         if (!system_supports_fpsimd())
649                 return -EINVAL;
650
651         ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652         if (ret)
653                 return ret;
654
655         sve_sync_from_fpsimd_zeropad(target);
656         fpsimd_flush_task_state(target);
657
658         return ret;
659 }
660
661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662                    struct membuf to)
663 {
664         int ret;
665
666         if (target == current)
667                 tls_preserve_current_state();
668
669         ret = membuf_store(&to, target->thread.uw.tp_value);
670         if (system_supports_tpidr2())
671                 ret = membuf_store(&to, target->thread.tpidr2_el0);
672         else
673                 ret = membuf_zero(&to, sizeof(u64));
674
675         return ret;
676 }
677
678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679                    unsigned int pos, unsigned int count,
680                    const void *kbuf, const void __user *ubuf)
681 {
682         int ret;
683         unsigned long tls[2];
684
685         tls[0] = target->thread.uw.tp_value;
686         if (system_supports_sme())
687                 tls[1] = target->thread.tpidr2_el0;
688
689         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690         if (ret)
691                 return ret;
692
693         target->thread.uw.tp_value = tls[0];
694         if (system_supports_sme())
695                 target->thread.tpidr2_el0 = tls[1];
696
697         return ret;
698 }
699
700 static int system_call_get(struct task_struct *target,
701                            const struct user_regset *regset,
702                            struct membuf to)
703 {
704         return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706
707 static int system_call_set(struct task_struct *target,
708                            const struct user_regset *regset,
709                            unsigned int pos, unsigned int count,
710                            const void *kbuf, const void __user *ubuf)
711 {
712         int syscallno = task_pt_regs(target)->syscallno;
713         int ret;
714
715         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716         if (ret)
717                 return ret;
718
719         task_pt_regs(target)->syscallno = syscallno;
720         return ret;
721 }
722
723 #ifdef CONFIG_ARM64_SVE
724
725 static void sve_init_header_from_task(struct user_sve_header *header,
726                                       struct task_struct *target,
727                                       enum vec_type type)
728 {
729         unsigned int vq;
730         bool active;
731         bool fpsimd_only;
732         enum vec_type task_type;
733
734         memset(header, 0, sizeof(*header));
735
736         /* Check if the requested registers are active for the task */
737         if (thread_sm_enabled(&target->thread))
738                 task_type = ARM64_VEC_SME;
739         else
740                 task_type = ARM64_VEC_SVE;
741         active = (task_type == type);
742
743         switch (type) {
744         case ARM64_VEC_SVE:
745                 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
746                         header->flags |= SVE_PT_VL_INHERIT;
747                 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
748                 break;
749         case ARM64_VEC_SME:
750                 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
751                         header->flags |= SVE_PT_VL_INHERIT;
752                 fpsimd_only = false;
753                 break;
754         default:
755                 WARN_ON_ONCE(1);
756                 return;
757         }
758
759         if (active) {
760                 if (fpsimd_only) {
761                         header->flags |= SVE_PT_REGS_FPSIMD;
762                 } else {
763                         header->flags |= SVE_PT_REGS_SVE;
764                 }
765         }
766
767         header->vl = task_get_vl(target, type);
768         vq = sve_vq_from_vl(header->vl);
769
770         header->max_vl = vec_max_vl(type);
771         header->size = SVE_PT_SIZE(vq, header->flags);
772         header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773                                       SVE_PT_REGS_SVE);
774 }
775
776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778         return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780
781 static int sve_get_common(struct task_struct *target,
782                           const struct user_regset *regset,
783                           struct membuf to,
784                           enum vec_type type)
785 {
786         struct user_sve_header header;
787         unsigned int vq;
788         unsigned long start, end;
789
790         /* Header */
791         sve_init_header_from_task(&header, target, type);
792         vq = sve_vq_from_vl(header.vl);
793
794         membuf_write(&to, &header, sizeof(header));
795
796         if (target == current)
797                 fpsimd_preserve_current_state();
798
799         BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
800         BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
801
802         switch ((header.flags & SVE_PT_REGS_MASK)) {
803         case SVE_PT_REGS_FPSIMD:
804                 return __fpr_get(target, regset, to);
805
806         case SVE_PT_REGS_SVE:
807                 start = SVE_PT_SVE_OFFSET;
808                 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
809                 membuf_write(&to, target->thread.sve_state, end - start);
810
811                 start = end;
812                 end = SVE_PT_SVE_FPSR_OFFSET(vq);
813                 membuf_zero(&to, end - start);
814
815                 /*
816                  * Copy fpsr, and fpcr which must follow contiguously in
817                  * struct fpsimd_state:
818                  */
819                 start = end;
820                 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
821                 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
822                              end - start);
823
824                 start = end;
825                 end = sve_size_from_header(&header);
826                 return membuf_zero(&to, end - start);
827
828         default:
829                 return 0;
830         }
831 }
832
833 static int sve_get(struct task_struct *target,
834                    const struct user_regset *regset,
835                    struct membuf to)
836 {
837         if (!system_supports_sve())
838                 return -EINVAL;
839
840         return sve_get_common(target, regset, to, ARM64_VEC_SVE);
841 }
842
843 static int sve_set_common(struct task_struct *target,
844                           const struct user_regset *regset,
845                           unsigned int pos, unsigned int count,
846                           const void *kbuf, const void __user *ubuf,
847                           enum vec_type type)
848 {
849         int ret;
850         struct user_sve_header header;
851         unsigned int vq;
852         unsigned long start, end;
853
854         /* Header */
855         if (count < sizeof(header))
856                 return -EINVAL;
857         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
858                                  0, sizeof(header));
859         if (ret)
860                 goto out;
861
862         /*
863          * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
864          * vec_set_vector_length(), which will also validate them for us:
865          */
866         ret = vec_set_vector_length(target, type, header.vl,
867                 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
868         if (ret)
869                 goto out;
870
871         /* Actual VL set may be less than the user asked for: */
872         vq = sve_vq_from_vl(task_get_vl(target, type));
873
874         /* Enter/exit streaming mode */
875         if (system_supports_sme()) {
876                 u64 old_svcr = target->thread.svcr;
877
878                 switch (type) {
879                 case ARM64_VEC_SVE:
880                         target->thread.svcr &= ~SVCR_SM_MASK;
881                         break;
882                 case ARM64_VEC_SME:
883                         target->thread.svcr |= SVCR_SM_MASK;
884                         break;
885                 default:
886                         WARN_ON_ONCE(1);
887                         return -EINVAL;
888                 }
889
890                 /*
891                  * If we switched then invalidate any existing SVE
892                  * state and ensure there's storage.
893                  */
894                 if (target->thread.svcr != old_svcr)
895                         sve_alloc(target, true);
896         }
897
898         /* Registers: FPSIMD-only case */
899
900         BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
901         if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
902                 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
903                                 SVE_PT_FPSIMD_OFFSET);
904                 clear_tsk_thread_flag(target, TIF_SVE);
905                 target->thread.fp_type = FP_STATE_FPSIMD;
906                 goto out;
907         }
908
909         /*
910          * Otherwise: no registers or full SVE case.  For backwards
911          * compatibility reasons we treat empty flags as SVE registers.
912          */
913
914         /*
915          * If setting a different VL from the requested VL and there is
916          * register data, the data layout will be wrong: don't even
917          * try to set the registers in this case.
918          */
919         if (count && vq != sve_vq_from_vl(header.vl)) {
920                 ret = -EIO;
921                 goto out;
922         }
923
924         sve_alloc(target, true);
925         if (!target->thread.sve_state) {
926                 ret = -ENOMEM;
927                 clear_tsk_thread_flag(target, TIF_SVE);
928                 target->thread.fp_type = FP_STATE_FPSIMD;
929                 goto out;
930         }
931
932         /*
933          * Ensure target->thread.sve_state is up to date with target's
934          * FPSIMD regs, so that a short copyin leaves trailing
935          * registers unmodified.  Always enable SVE even if going into
936          * streaming mode.
937          */
938         fpsimd_sync_to_sve(target);
939         set_tsk_thread_flag(target, TIF_SVE);
940         target->thread.fp_type = FP_STATE_SVE;
941
942         BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
943         start = SVE_PT_SVE_OFFSET;
944         end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
945         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
946                                  target->thread.sve_state,
947                                  start, end);
948         if (ret)
949                 goto out;
950
951         start = end;
952         end = SVE_PT_SVE_FPSR_OFFSET(vq);
953         user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
954
955         /*
956          * Copy fpsr, and fpcr which must follow contiguously in
957          * struct fpsimd_state:
958          */
959         start = end;
960         end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
961         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
962                                  &target->thread.uw.fpsimd_state.fpsr,
963                                  start, end);
964
965 out:
966         fpsimd_flush_task_state(target);
967         return ret;
968 }
969
970 static int sve_set(struct task_struct *target,
971                    const struct user_regset *regset,
972                    unsigned int pos, unsigned int count,
973                    const void *kbuf, const void __user *ubuf)
974 {
975         if (!system_supports_sve())
976                 return -EINVAL;
977
978         return sve_set_common(target, regset, pos, count, kbuf, ubuf,
979                               ARM64_VEC_SVE);
980 }
981
982 #endif /* CONFIG_ARM64_SVE */
983
984 #ifdef CONFIG_ARM64_SME
985
986 static int ssve_get(struct task_struct *target,
987                    const struct user_regset *regset,
988                    struct membuf to)
989 {
990         if (!system_supports_sme())
991                 return -EINVAL;
992
993         return sve_get_common(target, regset, to, ARM64_VEC_SME);
994 }
995
996 static int ssve_set(struct task_struct *target,
997                     const struct user_regset *regset,
998                     unsigned int pos, unsigned int count,
999                     const void *kbuf, const void __user *ubuf)
1000 {
1001         if (!system_supports_sme())
1002                 return -EINVAL;
1003
1004         return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1005                               ARM64_VEC_SME);
1006 }
1007
1008 static int za_get(struct task_struct *target,
1009                   const struct user_regset *regset,
1010                   struct membuf to)
1011 {
1012         struct user_za_header header;
1013         unsigned int vq;
1014         unsigned long start, end;
1015
1016         if (!system_supports_sme())
1017                 return -EINVAL;
1018
1019         /* Header */
1020         memset(&header, 0, sizeof(header));
1021
1022         if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1023                 header.flags |= ZA_PT_VL_INHERIT;
1024
1025         header.vl = task_get_sme_vl(target);
1026         vq = sve_vq_from_vl(header.vl);
1027         header.max_vl = sme_max_vl();
1028         header.max_size = ZA_PT_SIZE(vq);
1029
1030         /* If ZA is not active there is only the header */
1031         if (thread_za_enabled(&target->thread))
1032                 header.size = ZA_PT_SIZE(vq);
1033         else
1034                 header.size = ZA_PT_ZA_OFFSET;
1035
1036         membuf_write(&to, &header, sizeof(header));
1037
1038         BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1039         end = ZA_PT_ZA_OFFSET;
1040
1041         if (target == current)
1042                 fpsimd_preserve_current_state();
1043
1044         /* Any register data to include? */
1045         if (thread_za_enabled(&target->thread)) {
1046                 start = end;
1047                 end = ZA_PT_SIZE(vq);
1048                 membuf_write(&to, target->thread.za_state, end - start);
1049         }
1050
1051         /* Zero any trailing padding */
1052         start = end;
1053         end = ALIGN(header.size, SVE_VQ_BYTES);
1054         return membuf_zero(&to, end - start);
1055 }
1056
1057 static int za_set(struct task_struct *target,
1058                   const struct user_regset *regset,
1059                   unsigned int pos, unsigned int count,
1060                   const void *kbuf, const void __user *ubuf)
1061 {
1062         int ret;
1063         struct user_za_header header;
1064         unsigned int vq;
1065         unsigned long start, end;
1066
1067         if (!system_supports_sme())
1068                 return -EINVAL;
1069
1070         /* Header */
1071         if (count < sizeof(header))
1072                 return -EINVAL;
1073         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1074                                  0, sizeof(header));
1075         if (ret)
1076                 goto out;
1077
1078         /*
1079          * All current ZA_PT_* flags are consumed by
1080          * vec_set_vector_length(), which will also validate them for
1081          * us:
1082          */
1083         ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1084                 ((unsigned long)header.flags) << 16);
1085         if (ret)
1086                 goto out;
1087
1088         /* Actual VL set may be less than the user asked for: */
1089         vq = sve_vq_from_vl(task_get_sme_vl(target));
1090
1091         /* Ensure there is some SVE storage for streaming mode */
1092         if (!target->thread.sve_state) {
1093                 sve_alloc(target, false);
1094                 if (!target->thread.sve_state) {
1095                         ret = -ENOMEM;
1096                         goto out;
1097                 }
1098         }
1099
1100         /* Allocate/reinit ZA storage */
1101         sme_alloc(target);
1102         if (!target->thread.za_state) {
1103                 ret = -ENOMEM;
1104                 goto out;
1105         }
1106
1107         /* If there is no data then disable ZA */
1108         if (!count) {
1109                 target->thread.svcr &= ~SVCR_ZA_MASK;
1110                 goto out;
1111         }
1112
1113         /*
1114          * If setting a different VL from the requested VL and there is
1115          * register data, the data layout will be wrong: don't even
1116          * try to set the registers in this case.
1117          */
1118         if (vq != sve_vq_from_vl(header.vl)) {
1119                 ret = -EIO;
1120                 goto out;
1121         }
1122
1123         BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1124         start = ZA_PT_ZA_OFFSET;
1125         end = ZA_PT_SIZE(vq);
1126         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1127                                  target->thread.za_state,
1128                                  start, end);
1129         if (ret)
1130                 goto out;
1131
1132         /* Mark ZA as active and let userspace use it */
1133         set_tsk_thread_flag(target, TIF_SME);
1134         target->thread.svcr |= SVCR_ZA_MASK;
1135
1136 out:
1137         fpsimd_flush_task_state(target);
1138         return ret;
1139 }
1140
1141 #endif /* CONFIG_ARM64_SME */
1142
1143 #ifdef CONFIG_ARM64_PTR_AUTH
1144 static int pac_mask_get(struct task_struct *target,
1145                         const struct user_regset *regset,
1146                         struct membuf to)
1147 {
1148         /*
1149          * The PAC bits can differ across data and instruction pointers
1150          * depending on TCR_EL1.TBID*, which we may make use of in future, so
1151          * we expose separate masks.
1152          */
1153         unsigned long mask = ptrauth_user_pac_mask();
1154         struct user_pac_mask uregs = {
1155                 .data_mask = mask,
1156                 .insn_mask = mask,
1157         };
1158
1159         if (!system_supports_address_auth())
1160                 return -EINVAL;
1161
1162         return membuf_write(&to, &uregs, sizeof(uregs));
1163 }
1164
1165 static int pac_enabled_keys_get(struct task_struct *target,
1166                                 const struct user_regset *regset,
1167                                 struct membuf to)
1168 {
1169         long enabled_keys = ptrauth_get_enabled_keys(target);
1170
1171         if (IS_ERR_VALUE(enabled_keys))
1172                 return enabled_keys;
1173
1174         return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1175 }
1176
1177 static int pac_enabled_keys_set(struct task_struct *target,
1178                                 const struct user_regset *regset,
1179                                 unsigned int pos, unsigned int count,
1180                                 const void *kbuf, const void __user *ubuf)
1181 {
1182         int ret;
1183         long enabled_keys = ptrauth_get_enabled_keys(target);
1184
1185         if (IS_ERR_VALUE(enabled_keys))
1186                 return enabled_keys;
1187
1188         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1189                                  sizeof(long));
1190         if (ret)
1191                 return ret;
1192
1193         return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1194                                         enabled_keys);
1195 }
1196
1197 #ifdef CONFIG_CHECKPOINT_RESTORE
1198 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1199 {
1200         return (__uint128_t)key->hi << 64 | key->lo;
1201 }
1202
1203 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1204 {
1205         struct ptrauth_key key = {
1206                 .lo = (unsigned long)ukey,
1207                 .hi = (unsigned long)(ukey >> 64),
1208         };
1209
1210         return key;
1211 }
1212
1213 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1214                                      const struct ptrauth_keys_user *keys)
1215 {
1216         ukeys->apiakey = pac_key_to_user(&keys->apia);
1217         ukeys->apibkey = pac_key_to_user(&keys->apib);
1218         ukeys->apdakey = pac_key_to_user(&keys->apda);
1219         ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1220 }
1221
1222 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1223                                        const struct user_pac_address_keys *ukeys)
1224 {
1225         keys->apia = pac_key_from_user(ukeys->apiakey);
1226         keys->apib = pac_key_from_user(ukeys->apibkey);
1227         keys->apda = pac_key_from_user(ukeys->apdakey);
1228         keys->apdb = pac_key_from_user(ukeys->apdbkey);
1229 }
1230
1231 static int pac_address_keys_get(struct task_struct *target,
1232                                 const struct user_regset *regset,
1233                                 struct membuf to)
1234 {
1235         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1236         struct user_pac_address_keys user_keys;
1237
1238         if (!system_supports_address_auth())
1239                 return -EINVAL;
1240
1241         pac_address_keys_to_user(&user_keys, keys);
1242
1243         return membuf_write(&to, &user_keys, sizeof(user_keys));
1244 }
1245
1246 static int pac_address_keys_set(struct task_struct *target,
1247                                 const struct user_regset *regset,
1248                                 unsigned int pos, unsigned int count,
1249                                 const void *kbuf, const void __user *ubuf)
1250 {
1251         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1252         struct user_pac_address_keys user_keys;
1253         int ret;
1254
1255         if (!system_supports_address_auth())
1256                 return -EINVAL;
1257
1258         pac_address_keys_to_user(&user_keys, keys);
1259         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1260                                  &user_keys, 0, -1);
1261         if (ret)
1262                 return ret;
1263         pac_address_keys_from_user(keys, &user_keys);
1264
1265         return 0;
1266 }
1267
1268 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1269                                      const struct ptrauth_keys_user *keys)
1270 {
1271         ukeys->apgakey = pac_key_to_user(&keys->apga);
1272 }
1273
1274 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1275                                        const struct user_pac_generic_keys *ukeys)
1276 {
1277         keys->apga = pac_key_from_user(ukeys->apgakey);
1278 }
1279
1280 static int pac_generic_keys_get(struct task_struct *target,
1281                                 const struct user_regset *regset,
1282                                 struct membuf to)
1283 {
1284         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1285         struct user_pac_generic_keys user_keys;
1286
1287         if (!system_supports_generic_auth())
1288                 return -EINVAL;
1289
1290         pac_generic_keys_to_user(&user_keys, keys);
1291
1292         return membuf_write(&to, &user_keys, sizeof(user_keys));
1293 }
1294
1295 static int pac_generic_keys_set(struct task_struct *target,
1296                                 const struct user_regset *regset,
1297                                 unsigned int pos, unsigned int count,
1298                                 const void *kbuf, const void __user *ubuf)
1299 {
1300         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1301         struct user_pac_generic_keys user_keys;
1302         int ret;
1303
1304         if (!system_supports_generic_auth())
1305                 return -EINVAL;
1306
1307         pac_generic_keys_to_user(&user_keys, keys);
1308         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1309                                  &user_keys, 0, -1);
1310         if (ret)
1311                 return ret;
1312         pac_generic_keys_from_user(keys, &user_keys);
1313
1314         return 0;
1315 }
1316 #endif /* CONFIG_CHECKPOINT_RESTORE */
1317 #endif /* CONFIG_ARM64_PTR_AUTH */
1318
1319 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1320 static int tagged_addr_ctrl_get(struct task_struct *target,
1321                                 const struct user_regset *regset,
1322                                 struct membuf to)
1323 {
1324         long ctrl = get_tagged_addr_ctrl(target);
1325
1326         if (IS_ERR_VALUE(ctrl))
1327                 return ctrl;
1328
1329         return membuf_write(&to, &ctrl, sizeof(ctrl));
1330 }
1331
1332 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1333                                 user_regset *regset, unsigned int pos,
1334                                 unsigned int count, const void *kbuf, const
1335                                 void __user *ubuf)
1336 {
1337         int ret;
1338         long ctrl;
1339
1340         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1341         if (ret)
1342                 return ret;
1343
1344         return set_tagged_addr_ctrl(target, ctrl);
1345 }
1346 #endif
1347
1348 enum aarch64_regset {
1349         REGSET_GPR,
1350         REGSET_FPR,
1351         REGSET_TLS,
1352 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1353         REGSET_HW_BREAK,
1354         REGSET_HW_WATCH,
1355 #endif
1356         REGSET_SYSTEM_CALL,
1357 #ifdef CONFIG_ARM64_SVE
1358         REGSET_SVE,
1359 #endif
1360 #ifdef CONFIG_ARM64_SVE
1361         REGSET_SSVE,
1362         REGSET_ZA,
1363 #endif
1364 #ifdef CONFIG_ARM64_PTR_AUTH
1365         REGSET_PAC_MASK,
1366         REGSET_PAC_ENABLED_KEYS,
1367 #ifdef CONFIG_CHECKPOINT_RESTORE
1368         REGSET_PACA_KEYS,
1369         REGSET_PACG_KEYS,
1370 #endif
1371 #endif
1372 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1373         REGSET_TAGGED_ADDR_CTRL,
1374 #endif
1375 };
1376
1377 static const struct user_regset aarch64_regsets[] = {
1378         [REGSET_GPR] = {
1379                 .core_note_type = NT_PRSTATUS,
1380                 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1381                 .size = sizeof(u64),
1382                 .align = sizeof(u64),
1383                 .regset_get = gpr_get,
1384                 .set = gpr_set
1385         },
1386         [REGSET_FPR] = {
1387                 .core_note_type = NT_PRFPREG,
1388                 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1389                 /*
1390                  * We pretend we have 32-bit registers because the fpsr and
1391                  * fpcr are 32-bits wide.
1392                  */
1393                 .size = sizeof(u32),
1394                 .align = sizeof(u32),
1395                 .active = fpr_active,
1396                 .regset_get = fpr_get,
1397                 .set = fpr_set
1398         },
1399         [REGSET_TLS] = {
1400                 .core_note_type = NT_ARM_TLS,
1401                 .n = 2,
1402                 .size = sizeof(void *),
1403                 .align = sizeof(void *),
1404                 .regset_get = tls_get,
1405                 .set = tls_set,
1406         },
1407 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1408         [REGSET_HW_BREAK] = {
1409                 .core_note_type = NT_ARM_HW_BREAK,
1410                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1411                 .size = sizeof(u32),
1412                 .align = sizeof(u32),
1413                 .regset_get = hw_break_get,
1414                 .set = hw_break_set,
1415         },
1416         [REGSET_HW_WATCH] = {
1417                 .core_note_type = NT_ARM_HW_WATCH,
1418                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1419                 .size = sizeof(u32),
1420                 .align = sizeof(u32),
1421                 .regset_get = hw_break_get,
1422                 .set = hw_break_set,
1423         },
1424 #endif
1425         [REGSET_SYSTEM_CALL] = {
1426                 .core_note_type = NT_ARM_SYSTEM_CALL,
1427                 .n = 1,
1428                 .size = sizeof(int),
1429                 .align = sizeof(int),
1430                 .regset_get = system_call_get,
1431                 .set = system_call_set,
1432         },
1433 #ifdef CONFIG_ARM64_SVE
1434         [REGSET_SVE] = { /* Scalable Vector Extension */
1435                 .core_note_type = NT_ARM_SVE,
1436                 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1437                                   SVE_VQ_BYTES),
1438                 .size = SVE_VQ_BYTES,
1439                 .align = SVE_VQ_BYTES,
1440                 .regset_get = sve_get,
1441                 .set = sve_set,
1442         },
1443 #endif
1444 #ifdef CONFIG_ARM64_SME
1445         [REGSET_SSVE] = { /* Streaming mode SVE */
1446                 .core_note_type = NT_ARM_SSVE,
1447                 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1448                                   SVE_VQ_BYTES),
1449                 .size = SVE_VQ_BYTES,
1450                 .align = SVE_VQ_BYTES,
1451                 .regset_get = ssve_get,
1452                 .set = ssve_set,
1453         },
1454         [REGSET_ZA] = { /* SME ZA */
1455                 .core_note_type = NT_ARM_ZA,
1456                 /*
1457                  * ZA is a single register but it's variably sized and
1458                  * the ptrace core requires that the size of any data
1459                  * be an exact multiple of the configured register
1460                  * size so report as though we had SVE_VQ_BYTES
1461                  * registers. These values aren't exposed to
1462                  * userspace.
1463                  */
1464                 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1465                 .size = SVE_VQ_BYTES,
1466                 .align = SVE_VQ_BYTES,
1467                 .regset_get = za_get,
1468                 .set = za_set,
1469         },
1470 #endif
1471 #ifdef CONFIG_ARM64_PTR_AUTH
1472         [REGSET_PAC_MASK] = {
1473                 .core_note_type = NT_ARM_PAC_MASK,
1474                 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1475                 .size = sizeof(u64),
1476                 .align = sizeof(u64),
1477                 .regset_get = pac_mask_get,
1478                 /* this cannot be set dynamically */
1479         },
1480         [REGSET_PAC_ENABLED_KEYS] = {
1481                 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1482                 .n = 1,
1483                 .size = sizeof(long),
1484                 .align = sizeof(long),
1485                 .regset_get = pac_enabled_keys_get,
1486                 .set = pac_enabled_keys_set,
1487         },
1488 #ifdef CONFIG_CHECKPOINT_RESTORE
1489         [REGSET_PACA_KEYS] = {
1490                 .core_note_type = NT_ARM_PACA_KEYS,
1491                 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1492                 .size = sizeof(__uint128_t),
1493                 .align = sizeof(__uint128_t),
1494                 .regset_get = pac_address_keys_get,
1495                 .set = pac_address_keys_set,
1496         },
1497         [REGSET_PACG_KEYS] = {
1498                 .core_note_type = NT_ARM_PACG_KEYS,
1499                 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1500                 .size = sizeof(__uint128_t),
1501                 .align = sizeof(__uint128_t),
1502                 .regset_get = pac_generic_keys_get,
1503                 .set = pac_generic_keys_set,
1504         },
1505 #endif
1506 #endif
1507 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1508         [REGSET_TAGGED_ADDR_CTRL] = {
1509                 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1510                 .n = 1,
1511                 .size = sizeof(long),
1512                 .align = sizeof(long),
1513                 .regset_get = tagged_addr_ctrl_get,
1514                 .set = tagged_addr_ctrl_set,
1515         },
1516 #endif
1517 };
1518
1519 static const struct user_regset_view user_aarch64_view = {
1520         .name = "aarch64", .e_machine = EM_AARCH64,
1521         .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1522 };
1523
1524 #ifdef CONFIG_COMPAT
1525 enum compat_regset {
1526         REGSET_COMPAT_GPR,
1527         REGSET_COMPAT_VFP,
1528 };
1529
1530 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1531 {
1532         struct pt_regs *regs = task_pt_regs(task);
1533
1534         switch (idx) {
1535         case 15:
1536                 return regs->pc;
1537         case 16:
1538                 return pstate_to_compat_psr(regs->pstate);
1539         case 17:
1540                 return regs->orig_x0;
1541         default:
1542                 return regs->regs[idx];
1543         }
1544 }
1545
1546 static int compat_gpr_get(struct task_struct *target,
1547                           const struct user_regset *regset,
1548                           struct membuf to)
1549 {
1550         int i = 0;
1551
1552         while (to.left)
1553                 membuf_store(&to, compat_get_user_reg(target, i++));
1554         return 0;
1555 }
1556
1557 static int compat_gpr_set(struct task_struct *target,
1558                           const struct user_regset *regset,
1559                           unsigned int pos, unsigned int count,
1560                           const void *kbuf, const void __user *ubuf)
1561 {
1562         struct pt_regs newregs;
1563         int ret = 0;
1564         unsigned int i, start, num_regs;
1565
1566         /* Calculate the number of AArch32 registers contained in count */
1567         num_regs = count / regset->size;
1568
1569         /* Convert pos into an register number */
1570         start = pos / regset->size;
1571
1572         if (start + num_regs > regset->n)
1573                 return -EIO;
1574
1575         newregs = *task_pt_regs(target);
1576
1577         for (i = 0; i < num_regs; ++i) {
1578                 unsigned int idx = start + i;
1579                 compat_ulong_t reg;
1580
1581                 if (kbuf) {
1582                         memcpy(&reg, kbuf, sizeof(reg));
1583                         kbuf += sizeof(reg);
1584                 } else {
1585                         ret = copy_from_user(&reg, ubuf, sizeof(reg));
1586                         if (ret) {
1587                                 ret = -EFAULT;
1588                                 break;
1589                         }
1590
1591                         ubuf += sizeof(reg);
1592                 }
1593
1594                 switch (idx) {
1595                 case 15:
1596                         newregs.pc = reg;
1597                         break;
1598                 case 16:
1599                         reg = compat_psr_to_pstate(reg);
1600                         newregs.pstate = reg;
1601                         break;
1602                 case 17:
1603                         newregs.orig_x0 = reg;
1604                         break;
1605                 default:
1606                         newregs.regs[idx] = reg;
1607                 }
1608
1609         }
1610
1611         if (valid_user_regs(&newregs.user_regs, target))
1612                 *task_pt_regs(target) = newregs;
1613         else
1614                 ret = -EINVAL;
1615
1616         return ret;
1617 }
1618
1619 static int compat_vfp_get(struct task_struct *target,
1620                           const struct user_regset *regset,
1621                           struct membuf to)
1622 {
1623         struct user_fpsimd_state *uregs;
1624         compat_ulong_t fpscr;
1625
1626         if (!system_supports_fpsimd())
1627                 return -EINVAL;
1628
1629         uregs = &target->thread.uw.fpsimd_state;
1630
1631         if (target == current)
1632                 fpsimd_preserve_current_state();
1633
1634         /*
1635          * The VFP registers are packed into the fpsimd_state, so they all sit
1636          * nicely together for us. We just need to create the fpscr separately.
1637          */
1638         membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1639         fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1640                 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1641         return membuf_store(&to, fpscr);
1642 }
1643
1644 static int compat_vfp_set(struct task_struct *target,
1645                           const struct user_regset *regset,
1646                           unsigned int pos, unsigned int count,
1647                           const void *kbuf, const void __user *ubuf)
1648 {
1649         struct user_fpsimd_state *uregs;
1650         compat_ulong_t fpscr;
1651         int ret, vregs_end_pos;
1652
1653         if (!system_supports_fpsimd())
1654                 return -EINVAL;
1655
1656         uregs = &target->thread.uw.fpsimd_state;
1657
1658         vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1659         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1660                                  vregs_end_pos);
1661
1662         if (count && !ret) {
1663                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1664                                          vregs_end_pos, VFP_STATE_SIZE);
1665                 if (!ret) {
1666                         uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1667                         uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1668                 }
1669         }
1670
1671         fpsimd_flush_task_state(target);
1672         return ret;
1673 }
1674
1675 static int compat_tls_get(struct task_struct *target,
1676                           const struct user_regset *regset,
1677                           struct membuf to)
1678 {
1679         return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1680 }
1681
1682 static int compat_tls_set(struct task_struct *target,
1683                           const struct user_regset *regset, unsigned int pos,
1684                           unsigned int count, const void *kbuf,
1685                           const void __user *ubuf)
1686 {
1687         int ret;
1688         compat_ulong_t tls = target->thread.uw.tp_value;
1689
1690         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1691         if (ret)
1692                 return ret;
1693
1694         target->thread.uw.tp_value = tls;
1695         return ret;
1696 }
1697
1698 static const struct user_regset aarch32_regsets[] = {
1699         [REGSET_COMPAT_GPR] = {
1700                 .core_note_type = NT_PRSTATUS,
1701                 .n = COMPAT_ELF_NGREG,
1702                 .size = sizeof(compat_elf_greg_t),
1703                 .align = sizeof(compat_elf_greg_t),
1704                 .regset_get = compat_gpr_get,
1705                 .set = compat_gpr_set
1706         },
1707         [REGSET_COMPAT_VFP] = {
1708                 .core_note_type = NT_ARM_VFP,
1709                 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1710                 .size = sizeof(compat_ulong_t),
1711                 .align = sizeof(compat_ulong_t),
1712                 .active = fpr_active,
1713                 .regset_get = compat_vfp_get,
1714                 .set = compat_vfp_set
1715         },
1716 };
1717
1718 static const struct user_regset_view user_aarch32_view = {
1719         .name = "aarch32", .e_machine = EM_ARM,
1720         .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1721 };
1722
1723 static const struct user_regset aarch32_ptrace_regsets[] = {
1724         [REGSET_GPR] = {
1725                 .core_note_type = NT_PRSTATUS,
1726                 .n = COMPAT_ELF_NGREG,
1727                 .size = sizeof(compat_elf_greg_t),
1728                 .align = sizeof(compat_elf_greg_t),
1729                 .regset_get = compat_gpr_get,
1730                 .set = compat_gpr_set
1731         },
1732         [REGSET_FPR] = {
1733                 .core_note_type = NT_ARM_VFP,
1734                 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1735                 .size = sizeof(compat_ulong_t),
1736                 .align = sizeof(compat_ulong_t),
1737                 .regset_get = compat_vfp_get,
1738                 .set = compat_vfp_set
1739         },
1740         [REGSET_TLS] = {
1741                 .core_note_type = NT_ARM_TLS,
1742                 .n = 1,
1743                 .size = sizeof(compat_ulong_t),
1744                 .align = sizeof(compat_ulong_t),
1745                 .regset_get = compat_tls_get,
1746                 .set = compat_tls_set,
1747         },
1748 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1749         [REGSET_HW_BREAK] = {
1750                 .core_note_type = NT_ARM_HW_BREAK,
1751                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1752                 .size = sizeof(u32),
1753                 .align = sizeof(u32),
1754                 .regset_get = hw_break_get,
1755                 .set = hw_break_set,
1756         },
1757         [REGSET_HW_WATCH] = {
1758                 .core_note_type = NT_ARM_HW_WATCH,
1759                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1760                 .size = sizeof(u32),
1761                 .align = sizeof(u32),
1762                 .regset_get = hw_break_get,
1763                 .set = hw_break_set,
1764         },
1765 #endif
1766         [REGSET_SYSTEM_CALL] = {
1767                 .core_note_type = NT_ARM_SYSTEM_CALL,
1768                 .n = 1,
1769                 .size = sizeof(int),
1770                 .align = sizeof(int),
1771                 .regset_get = system_call_get,
1772                 .set = system_call_set,
1773         },
1774 };
1775
1776 static const struct user_regset_view user_aarch32_ptrace_view = {
1777         .name = "aarch32", .e_machine = EM_ARM,
1778         .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1779 };
1780
1781 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1782                                    compat_ulong_t __user *ret)
1783 {
1784         compat_ulong_t tmp;
1785
1786         if (off & 3)
1787                 return -EIO;
1788
1789         if (off == COMPAT_PT_TEXT_ADDR)
1790                 tmp = tsk->mm->start_code;
1791         else if (off == COMPAT_PT_DATA_ADDR)
1792                 tmp = tsk->mm->start_data;
1793         else if (off == COMPAT_PT_TEXT_END_ADDR)
1794                 tmp = tsk->mm->end_code;
1795         else if (off < sizeof(compat_elf_gregset_t))
1796                 tmp = compat_get_user_reg(tsk, off >> 2);
1797         else if (off >= COMPAT_USER_SZ)
1798                 return -EIO;
1799         else
1800                 tmp = 0;
1801
1802         return put_user(tmp, ret);
1803 }
1804
1805 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1806                                     compat_ulong_t val)
1807 {
1808         struct pt_regs newregs = *task_pt_regs(tsk);
1809         unsigned int idx = off / 4;
1810
1811         if (off & 3 || off >= COMPAT_USER_SZ)
1812                 return -EIO;
1813
1814         if (off >= sizeof(compat_elf_gregset_t))
1815                 return 0;
1816
1817         switch (idx) {
1818         case 15:
1819                 newregs.pc = val;
1820                 break;
1821         case 16:
1822                 newregs.pstate = compat_psr_to_pstate(val);
1823                 break;
1824         case 17:
1825                 newregs.orig_x0 = val;
1826                 break;
1827         default:
1828                 newregs.regs[idx] = val;
1829         }
1830
1831         if (!valid_user_regs(&newregs.user_regs, tsk))
1832                 return -EINVAL;
1833
1834         *task_pt_regs(tsk) = newregs;
1835         return 0;
1836 }
1837
1838 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1839
1840 /*
1841  * Convert a virtual register number into an index for a thread_info
1842  * breakpoint array. Breakpoints are identified using positive numbers
1843  * whilst watchpoints are negative. The registers are laid out as pairs
1844  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1845  * Register 0 is reserved for describing resource information.
1846  */
1847 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1848 {
1849         return (abs(num) - 1) >> 1;
1850 }
1851
1852 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1853 {
1854         u8 num_brps, num_wrps, debug_arch, wp_len;
1855         u32 reg = 0;
1856
1857         num_brps        = hw_breakpoint_slots(TYPE_INST);
1858         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
1859
1860         debug_arch      = debug_monitors_arch();
1861         wp_len          = 8;
1862         reg             |= debug_arch;
1863         reg             <<= 8;
1864         reg             |= wp_len;
1865         reg             <<= 8;
1866         reg             |= num_wrps;
1867         reg             <<= 8;
1868         reg             |= num_brps;
1869
1870         *kdata = reg;
1871         return 0;
1872 }
1873
1874 static int compat_ptrace_hbp_get(unsigned int note_type,
1875                                  struct task_struct *tsk,
1876                                  compat_long_t num,
1877                                  u32 *kdata)
1878 {
1879         u64 addr = 0;
1880         u32 ctrl = 0;
1881
1882         int err, idx = compat_ptrace_hbp_num_to_idx(num);
1883
1884         if (num & 1) {
1885                 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1886                 *kdata = (u32)addr;
1887         } else {
1888                 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1889                 *kdata = ctrl;
1890         }
1891
1892         return err;
1893 }
1894
1895 static int compat_ptrace_hbp_set(unsigned int note_type,
1896                                  struct task_struct *tsk,
1897                                  compat_long_t num,
1898                                  u32 *kdata)
1899 {
1900         u64 addr;
1901         u32 ctrl;
1902
1903         int err, idx = compat_ptrace_hbp_num_to_idx(num);
1904
1905         if (num & 1) {
1906                 addr = *kdata;
1907                 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1908         } else {
1909                 ctrl = *kdata;
1910                 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1911         }
1912
1913         return err;
1914 }
1915
1916 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1917                                     compat_ulong_t __user *data)
1918 {
1919         int ret;
1920         u32 kdata;
1921
1922         /* Watchpoint */
1923         if (num < 0) {
1924                 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1925         /* Resource info */
1926         } else if (num == 0) {
1927                 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1928         /* Breakpoint */
1929         } else {
1930                 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1931         }
1932
1933         if (!ret)
1934                 ret = put_user(kdata, data);
1935
1936         return ret;
1937 }
1938
1939 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1940                                     compat_ulong_t __user *data)
1941 {
1942         int ret;
1943         u32 kdata = 0;
1944
1945         if (num == 0)
1946                 return 0;
1947
1948         ret = get_user(kdata, data);
1949         if (ret)
1950                 return ret;
1951
1952         if (num < 0)
1953                 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1954         else
1955                 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1956
1957         return ret;
1958 }
1959 #endif  /* CONFIG_HAVE_HW_BREAKPOINT */
1960
1961 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1962                         compat_ulong_t caddr, compat_ulong_t cdata)
1963 {
1964         unsigned long addr = caddr;
1965         unsigned long data = cdata;
1966         void __user *datap = compat_ptr(data);
1967         int ret;
1968
1969         switch (request) {
1970                 case PTRACE_PEEKUSR:
1971                         ret = compat_ptrace_read_user(child, addr, datap);
1972                         break;
1973
1974                 case PTRACE_POKEUSR:
1975                         ret = compat_ptrace_write_user(child, addr, data);
1976                         break;
1977
1978                 case COMPAT_PTRACE_GETREGS:
1979                         ret = copy_regset_to_user(child,
1980                                                   &user_aarch32_view,
1981                                                   REGSET_COMPAT_GPR,
1982                                                   0, sizeof(compat_elf_gregset_t),
1983                                                   datap);
1984                         break;
1985
1986                 case COMPAT_PTRACE_SETREGS:
1987                         ret = copy_regset_from_user(child,
1988                                                     &user_aarch32_view,
1989                                                     REGSET_COMPAT_GPR,
1990                                                     0, sizeof(compat_elf_gregset_t),
1991                                                     datap);
1992                         break;
1993
1994                 case COMPAT_PTRACE_GET_THREAD_AREA:
1995                         ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1996                                        (compat_ulong_t __user *)datap);
1997                         break;
1998
1999                 case COMPAT_PTRACE_SET_SYSCALL:
2000                         task_pt_regs(child)->syscallno = data;
2001                         ret = 0;
2002                         break;
2003
2004                 case COMPAT_PTRACE_GETVFPREGS:
2005                         ret = copy_regset_to_user(child,
2006                                                   &user_aarch32_view,
2007                                                   REGSET_COMPAT_VFP,
2008                                                   0, VFP_STATE_SIZE,
2009                                                   datap);
2010                         break;
2011
2012                 case COMPAT_PTRACE_SETVFPREGS:
2013                         ret = copy_regset_from_user(child,
2014                                                     &user_aarch32_view,
2015                                                     REGSET_COMPAT_VFP,
2016                                                     0, VFP_STATE_SIZE,
2017                                                     datap);
2018                         break;
2019
2020 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2021                 case COMPAT_PTRACE_GETHBPREGS:
2022                         ret = compat_ptrace_gethbpregs(child, addr, datap);
2023                         break;
2024
2025                 case COMPAT_PTRACE_SETHBPREGS:
2026                         ret = compat_ptrace_sethbpregs(child, addr, datap);
2027                         break;
2028 #endif
2029
2030                 default:
2031                         ret = compat_ptrace_request(child, request, addr,
2032                                                     data);
2033                         break;
2034         }
2035
2036         return ret;
2037 }
2038 #endif /* CONFIG_COMPAT */
2039
2040 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2041 {
2042 #ifdef CONFIG_COMPAT
2043         /*
2044          * Core dumping of 32-bit tasks or compat ptrace requests must use the
2045          * user_aarch32_view compatible with arm32. Native ptrace requests on
2046          * 32-bit children use an extended user_aarch32_ptrace_view to allow
2047          * access to the TLS register.
2048          */
2049         if (is_compat_task())
2050                 return &user_aarch32_view;
2051         else if (is_compat_thread(task_thread_info(task)))
2052                 return &user_aarch32_ptrace_view;
2053 #endif
2054         return &user_aarch64_view;
2055 }
2056
2057 long arch_ptrace(struct task_struct *child, long request,
2058                  unsigned long addr, unsigned long data)
2059 {
2060         switch (request) {
2061         case PTRACE_PEEKMTETAGS:
2062         case PTRACE_POKEMTETAGS:
2063                 return mte_ptrace_copy_tags(child, request, addr, data);
2064         }
2065
2066         return ptrace_request(child, request, addr, data);
2067 }
2068
2069 enum ptrace_syscall_dir {
2070         PTRACE_SYSCALL_ENTER = 0,
2071         PTRACE_SYSCALL_EXIT,
2072 };
2073
2074 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2075 {
2076         int regno;
2077         unsigned long saved_reg;
2078
2079         /*
2080          * We have some ABI weirdness here in the way that we handle syscall
2081          * exit stops because we indicate whether or not the stop has been
2082          * signalled from syscall entry or syscall exit by clobbering a general
2083          * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2084          * and restoring its old value after the stop. This means that:
2085          *
2086          * - Any writes by the tracer to this register during the stop are
2087          *   ignored/discarded.
2088          *
2089          * - The actual value of the register is not available during the stop,
2090          *   so the tracer cannot save it and restore it later.
2091          *
2092          * - Syscall stops behave differently to seccomp and pseudo-step traps
2093          *   (the latter do not nobble any registers).
2094          */
2095         regno = (is_compat_task() ? 12 : 7);
2096         saved_reg = regs->regs[regno];
2097         regs->regs[regno] = dir;
2098
2099         if (dir == PTRACE_SYSCALL_ENTER) {
2100                 if (ptrace_report_syscall_entry(regs))
2101                         forget_syscall(regs);
2102                 regs->regs[regno] = saved_reg;
2103         } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2104                 ptrace_report_syscall_exit(regs, 0);
2105                 regs->regs[regno] = saved_reg;
2106         } else {
2107                 regs->regs[regno] = saved_reg;
2108
2109                 /*
2110                  * Signal a pseudo-step exception since we are stepping but
2111                  * tracer modifications to the registers may have rewound the
2112                  * state machine.
2113                  */
2114                 ptrace_report_syscall_exit(regs, 1);
2115         }
2116 }
2117
2118 int syscall_trace_enter(struct pt_regs *regs)
2119 {
2120         unsigned long flags = read_thread_flags();
2121
2122         if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2123                 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2124                 if (flags & _TIF_SYSCALL_EMU)
2125                         return NO_SYSCALL;
2126         }
2127
2128         /* Do the secure computing after ptrace; failures should be fast. */
2129         if (secure_computing() == -1)
2130                 return NO_SYSCALL;
2131
2132         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2133                 trace_sys_enter(regs, regs->syscallno);
2134
2135         audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2136                             regs->regs[2], regs->regs[3]);
2137
2138         return regs->syscallno;
2139 }
2140
2141 void syscall_trace_exit(struct pt_regs *regs)
2142 {
2143         unsigned long flags = read_thread_flags();
2144
2145         audit_syscall_exit(regs);
2146
2147         if (flags & _TIF_SYSCALL_TRACEPOINT)
2148                 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2149
2150         if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2151                 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2152
2153         rseq_syscall(regs);
2154 }
2155
2156 /*
2157  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2158  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2159  * not described in ARM DDI 0487D.a.
2160  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2161  * be allocated an EL0 meaning in future.
2162  * Userspace cannot use these until they have an architectural meaning.
2163  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2164  * We also reserve IL for the kernel; SS is handled dynamically.
2165  */
2166 #define SPSR_EL1_AARCH64_RES0_BITS \
2167         (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2168          GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2169 #define SPSR_EL1_AARCH32_RES0_BITS \
2170         (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2171
2172 static int valid_compat_regs(struct user_pt_regs *regs)
2173 {
2174         regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2175
2176         if (!system_supports_mixed_endian_el0()) {
2177                 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2178                         regs->pstate |= PSR_AA32_E_BIT;
2179                 else
2180                         regs->pstate &= ~PSR_AA32_E_BIT;
2181         }
2182
2183         if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2184             (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2185             (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2186             (regs->pstate & PSR_AA32_F_BIT) == 0) {
2187                 return 1;
2188         }
2189
2190         /*
2191          * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2192          * arch/arm.
2193          */
2194         regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2195                         PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2196                         PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2197                         PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2198                         PSR_AA32_T_BIT;
2199         regs->pstate |= PSR_MODE32_BIT;
2200
2201         return 0;
2202 }
2203
2204 static int valid_native_regs(struct user_pt_regs *regs)
2205 {
2206         regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2207
2208         if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2209             (regs->pstate & PSR_D_BIT) == 0 &&
2210             (regs->pstate & PSR_A_BIT) == 0 &&
2211             (regs->pstate & PSR_I_BIT) == 0 &&
2212             (regs->pstate & PSR_F_BIT) == 0) {
2213                 return 1;
2214         }
2215
2216         /* Force PSR to a valid 64-bit EL0t */
2217         regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2218
2219         return 0;
2220 }
2221
2222 /*
2223  * Are the current registers suitable for user mode? (used to maintain
2224  * security in signal handlers)
2225  */
2226 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2227 {
2228         /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2229         user_regs_reset_single_step(regs, task);
2230
2231         if (is_compat_thread(task_thread_info(task)))
2232                 return valid_compat_regs(regs);
2233         else
2234                 return valid_native_regs(regs);
2235 }