Merge tag 'for-5.20/io_uring-zerocopy-send-2022-07-29' of git://git.kernel.dk/linux...
[platform/kernel/linux-starfive.git] / arch / arm64 / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 struct pt_regs_offset {
47         const char *name;
48         int offset;
49 };
50
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54         {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55
56 static const struct pt_regs_offset regoffset_table[] = {
57         GPR_OFFSET_NAME(0),
58         GPR_OFFSET_NAME(1),
59         GPR_OFFSET_NAME(2),
60         GPR_OFFSET_NAME(3),
61         GPR_OFFSET_NAME(4),
62         GPR_OFFSET_NAME(5),
63         GPR_OFFSET_NAME(6),
64         GPR_OFFSET_NAME(7),
65         GPR_OFFSET_NAME(8),
66         GPR_OFFSET_NAME(9),
67         GPR_OFFSET_NAME(10),
68         GPR_OFFSET_NAME(11),
69         GPR_OFFSET_NAME(12),
70         GPR_OFFSET_NAME(13),
71         GPR_OFFSET_NAME(14),
72         GPR_OFFSET_NAME(15),
73         GPR_OFFSET_NAME(16),
74         GPR_OFFSET_NAME(17),
75         GPR_OFFSET_NAME(18),
76         GPR_OFFSET_NAME(19),
77         GPR_OFFSET_NAME(20),
78         GPR_OFFSET_NAME(21),
79         GPR_OFFSET_NAME(22),
80         GPR_OFFSET_NAME(23),
81         GPR_OFFSET_NAME(24),
82         GPR_OFFSET_NAME(25),
83         GPR_OFFSET_NAME(26),
84         GPR_OFFSET_NAME(27),
85         GPR_OFFSET_NAME(28),
86         GPR_OFFSET_NAME(29),
87         GPR_OFFSET_NAME(30),
88         {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89         REG_OFFSET_NAME(sp),
90         REG_OFFSET_NAME(pc),
91         REG_OFFSET_NAME(pstate),
92         REG_OFFSET_END,
93 };
94
95 /**
96  * regs_query_register_offset() - query register offset from its name
97  * @name:       the name of a register
98  *
99  * regs_query_register_offset() returns the offset of a register in struct
100  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101  */
102 int regs_query_register_offset(const char *name)
103 {
104         const struct pt_regs_offset *roff;
105
106         for (roff = regoffset_table; roff->name != NULL; roff++)
107                 if (!strcmp(roff->name, name))
108                         return roff->offset;
109         return -EINVAL;
110 }
111
112 /**
113  * regs_within_kernel_stack() - check the address in the stack
114  * @regs:      pt_regs which contains kernel stack pointer.
115  * @addr:      address which is checked.
116  *
117  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118  * If @addr is within the kernel stack, it returns true. If not, returns false.
119  */
120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122         return ((addr & ~(THREAD_SIZE - 1))  ==
123                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124                 on_irq_stack(addr, sizeof(unsigned long), NULL);
125 }
126
127 /**
128  * regs_get_kernel_stack_nth() - get Nth entry of the stack
129  * @regs:       pt_regs which contains kernel stack pointer.
130  * @n:          stack entry number.
131  *
132  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134  * this returns 0.
135  */
136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139
140         addr += n;
141         if (regs_within_kernel_stack(regs, (unsigned long)addr))
142                 return *addr;
143         else
144                 return 0;
145 }
146
147 /*
148  * TODO: does not yet catch signals sent when the child dies.
149  * in exit.c or in signal.c.
150  */
151
152 /*
153  * Called by kernel/ptrace.c when detaching..
154  */
155 void ptrace_disable(struct task_struct *child)
156 {
157         /*
158          * This would be better off in core code, but PTRACE_DETACH has
159          * grown its fair share of arch-specific worts and changing it
160          * is likely to cause regressions on obscure architectures.
161          */
162         user_disable_single_step(child);
163 }
164
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167  * Handle hitting a HW-breakpoint.
168  */
169 static void ptrace_hbptriggered(struct perf_event *bp,
170                                 struct perf_sample_data *data,
171                                 struct pt_regs *regs)
172 {
173         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174         const char *desc = "Hardware breakpoint trap (ptrace)";
175
176 #ifdef CONFIG_COMPAT
177         if (is_compat_task()) {
178                 int si_errno = 0;
179                 int i;
180
181                 for (i = 0; i < ARM_MAX_BRP; ++i) {
182                         if (current->thread.debug.hbp_break[i] == bp) {
183                                 si_errno = (i << 1) + 1;
184                                 break;
185                         }
186                 }
187
188                 for (i = 0; i < ARM_MAX_WRP; ++i) {
189                         if (current->thread.debug.hbp_watch[i] == bp) {
190                                 si_errno = -((i << 1) + 1);
191                                 break;
192                         }
193                 }
194                 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195                                                   desc);
196                 return;
197         }
198 #endif
199         arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203  * Unregister breakpoints from this task and reset the pointers in
204  * the thread_struct.
205  */
206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208         int i;
209         struct thread_struct *t = &tsk->thread;
210
211         for (i = 0; i < ARM_MAX_BRP; i++) {
212                 if (t->debug.hbp_break[i]) {
213                         unregister_hw_breakpoint(t->debug.hbp_break[i]);
214                         t->debug.hbp_break[i] = NULL;
215                 }
216         }
217
218         for (i = 0; i < ARM_MAX_WRP; i++) {
219                 if (t->debug.hbp_watch[i]) {
220                         unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221                         t->debug.hbp_watch[i] = NULL;
222                 }
223         }
224 }
225
226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228         memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232                                                struct task_struct *tsk,
233                                                unsigned long idx)
234 {
235         struct perf_event *bp = ERR_PTR(-EINVAL);
236
237         switch (note_type) {
238         case NT_ARM_HW_BREAK:
239                 if (idx >= ARM_MAX_BRP)
240                         goto out;
241                 idx = array_index_nospec(idx, ARM_MAX_BRP);
242                 bp = tsk->thread.debug.hbp_break[idx];
243                 break;
244         case NT_ARM_HW_WATCH:
245                 if (idx >= ARM_MAX_WRP)
246                         goto out;
247                 idx = array_index_nospec(idx, ARM_MAX_WRP);
248                 bp = tsk->thread.debug.hbp_watch[idx];
249                 break;
250         }
251
252 out:
253         return bp;
254 }
255
256 static int ptrace_hbp_set_event(unsigned int note_type,
257                                 struct task_struct *tsk,
258                                 unsigned long idx,
259                                 struct perf_event *bp)
260 {
261         int err = -EINVAL;
262
263         switch (note_type) {
264         case NT_ARM_HW_BREAK:
265                 if (idx >= ARM_MAX_BRP)
266                         goto out;
267                 idx = array_index_nospec(idx, ARM_MAX_BRP);
268                 tsk->thread.debug.hbp_break[idx] = bp;
269                 err = 0;
270                 break;
271         case NT_ARM_HW_WATCH:
272                 if (idx >= ARM_MAX_WRP)
273                         goto out;
274                 idx = array_index_nospec(idx, ARM_MAX_WRP);
275                 tsk->thread.debug.hbp_watch[idx] = bp;
276                 err = 0;
277                 break;
278         }
279
280 out:
281         return err;
282 }
283
284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285                                             struct task_struct *tsk,
286                                             unsigned long idx)
287 {
288         struct perf_event *bp;
289         struct perf_event_attr attr;
290         int err, type;
291
292         switch (note_type) {
293         case NT_ARM_HW_BREAK:
294                 type = HW_BREAKPOINT_X;
295                 break;
296         case NT_ARM_HW_WATCH:
297                 type = HW_BREAKPOINT_RW;
298                 break;
299         default:
300                 return ERR_PTR(-EINVAL);
301         }
302
303         ptrace_breakpoint_init(&attr);
304
305         /*
306          * Initialise fields to sane defaults
307          * (i.e. values that will pass validation).
308          */
309         attr.bp_addr    = 0;
310         attr.bp_len     = HW_BREAKPOINT_LEN_4;
311         attr.bp_type    = type;
312         attr.disabled   = 1;
313
314         bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315         if (IS_ERR(bp))
316                 return bp;
317
318         err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319         if (err)
320                 return ERR_PTR(err);
321
322         return bp;
323 }
324
325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326                                      struct arch_hw_breakpoint_ctrl ctrl,
327                                      struct perf_event_attr *attr)
328 {
329         int err, len, type, offset, disabled = !ctrl.enabled;
330
331         attr->disabled = disabled;
332         if (disabled)
333                 return 0;
334
335         err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336         if (err)
337                 return err;
338
339         switch (note_type) {
340         case NT_ARM_HW_BREAK:
341                 if ((type & HW_BREAKPOINT_X) != type)
342                         return -EINVAL;
343                 break;
344         case NT_ARM_HW_WATCH:
345                 if ((type & HW_BREAKPOINT_RW) != type)
346                         return -EINVAL;
347                 break;
348         default:
349                 return -EINVAL;
350         }
351
352         attr->bp_len    = len;
353         attr->bp_type   = type;
354         attr->bp_addr   += offset;
355
356         return 0;
357 }
358
359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361         u8 num;
362         u32 reg = 0;
363
364         switch (note_type) {
365         case NT_ARM_HW_BREAK:
366                 num = hw_breakpoint_slots(TYPE_INST);
367                 break;
368         case NT_ARM_HW_WATCH:
369                 num = hw_breakpoint_slots(TYPE_DATA);
370                 break;
371         default:
372                 return -EINVAL;
373         }
374
375         reg |= debug_monitors_arch();
376         reg <<= 8;
377         reg |= num;
378
379         *info = reg;
380         return 0;
381 }
382
383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384                                struct task_struct *tsk,
385                                unsigned long idx,
386                                u32 *ctrl)
387 {
388         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390         if (IS_ERR(bp))
391                 return PTR_ERR(bp);
392
393         *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394         return 0;
395 }
396
397 static int ptrace_hbp_get_addr(unsigned int note_type,
398                                struct task_struct *tsk,
399                                unsigned long idx,
400                                u64 *addr)
401 {
402         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404         if (IS_ERR(bp))
405                 return PTR_ERR(bp);
406
407         *addr = bp ? counter_arch_bp(bp)->address : 0;
408         return 0;
409 }
410
411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412                                                         struct task_struct *tsk,
413                                                         unsigned long idx)
414 {
415         struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417         if (!bp)
418                 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420         return bp;
421 }
422
423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424                                struct task_struct *tsk,
425                                unsigned long idx,
426                                u32 uctrl)
427 {
428         int err;
429         struct perf_event *bp;
430         struct perf_event_attr attr;
431         struct arch_hw_breakpoint_ctrl ctrl;
432
433         bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434         if (IS_ERR(bp)) {
435                 err = PTR_ERR(bp);
436                 return err;
437         }
438
439         attr = bp->attr;
440         decode_ctrl_reg(uctrl, &ctrl);
441         err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442         if (err)
443                 return err;
444
445         return modify_user_hw_breakpoint(bp, &attr);
446 }
447
448 static int ptrace_hbp_set_addr(unsigned int note_type,
449                                struct task_struct *tsk,
450                                unsigned long idx,
451                                u64 addr)
452 {
453         int err;
454         struct perf_event *bp;
455         struct perf_event_attr attr;
456
457         bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458         if (IS_ERR(bp)) {
459                 err = PTR_ERR(bp);
460                 return err;
461         }
462
463         attr = bp->attr;
464         attr.bp_addr = addr;
465         err = modify_user_hw_breakpoint(bp, &attr);
466         return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ      sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ      sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ       sizeof(u32)
472
473 static int hw_break_get(struct task_struct *target,
474                         const struct user_regset *regset,
475                         struct membuf to)
476 {
477         unsigned int note_type = regset->core_note_type;
478         int ret, idx = 0;
479         u32 info, ctrl;
480         u64 addr;
481
482         /* Resource info */
483         ret = ptrace_hbp_get_resource_info(note_type, &info);
484         if (ret)
485                 return ret;
486
487         membuf_write(&to, &info, sizeof(info));
488         membuf_zero(&to, sizeof(u32));
489         /* (address, ctrl) registers */
490         while (to.left) {
491                 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492                 if (ret)
493                         return ret;
494                 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495                 if (ret)
496                         return ret;
497                 membuf_store(&to, addr);
498                 membuf_store(&to, ctrl);
499                 membuf_zero(&to, sizeof(u32));
500                 idx++;
501         }
502         return 0;
503 }
504
505 static int hw_break_set(struct task_struct *target,
506                         const struct user_regset *regset,
507                         unsigned int pos, unsigned int count,
508                         const void *kbuf, const void __user *ubuf)
509 {
510         unsigned int note_type = regset->core_note_type;
511         int ret, idx = 0, offset, limit;
512         u32 ctrl;
513         u64 addr;
514
515         /* Resource info and pad */
516         offset = offsetof(struct user_hwdebug_state, dbg_regs);
517         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518         if (ret)
519                 return ret;
520
521         /* (address, ctrl) registers */
522         limit = regset->n * regset->size;
523         while (count && offset < limit) {
524                 if (count < PTRACE_HBP_ADDR_SZ)
525                         return -EINVAL;
526                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527                                          offset, offset + PTRACE_HBP_ADDR_SZ);
528                 if (ret)
529                         return ret;
530                 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531                 if (ret)
532                         return ret;
533                 offset += PTRACE_HBP_ADDR_SZ;
534
535                 if (!count)
536                         break;
537                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538                                          offset, offset + PTRACE_HBP_CTRL_SZ);
539                 if (ret)
540                         return ret;
541                 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542                 if (ret)
543                         return ret;
544                 offset += PTRACE_HBP_CTRL_SZ;
545
546                 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547                                                 offset,
548                                                 offset + PTRACE_HBP_PAD_SZ);
549                 if (ret)
550                         return ret;
551                 offset += PTRACE_HBP_PAD_SZ;
552                 idx++;
553         }
554
555         return 0;
556 }
557 #endif  /* CONFIG_HAVE_HW_BREAKPOINT */
558
559 static int gpr_get(struct task_struct *target,
560                    const struct user_regset *regset,
561                    struct membuf to)
562 {
563         struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564         return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566
567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568                    unsigned int pos, unsigned int count,
569                    const void *kbuf, const void __user *ubuf)
570 {
571         int ret;
572         struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573
574         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575         if (ret)
576                 return ret;
577
578         if (!valid_user_regs(&newregs, target))
579                 return -EINVAL;
580
581         task_pt_regs(target)->user_regs = newregs;
582         return 0;
583 }
584
585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587         if (!system_supports_fpsimd())
588                 return -ENODEV;
589         return regset->n;
590 }
591
592 /*
593  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594  */
595 static int __fpr_get(struct task_struct *target,
596                      const struct user_regset *regset,
597                      struct membuf to)
598 {
599         struct user_fpsimd_state *uregs;
600
601         sve_sync_to_fpsimd(target);
602
603         uregs = &target->thread.uw.fpsimd_state;
604
605         return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607
608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609                    struct membuf to)
610 {
611         if (!system_supports_fpsimd())
612                 return -EINVAL;
613
614         if (target == current)
615                 fpsimd_preserve_current_state();
616
617         return __fpr_get(target, regset, to);
618 }
619
620 static int __fpr_set(struct task_struct *target,
621                      const struct user_regset *regset,
622                      unsigned int pos, unsigned int count,
623                      const void *kbuf, const void __user *ubuf,
624                      unsigned int start_pos)
625 {
626         int ret;
627         struct user_fpsimd_state newstate;
628
629         /*
630          * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631          * short copyin can't resurrect stale data.
632          */
633         sve_sync_to_fpsimd(target);
634
635         newstate = target->thread.uw.fpsimd_state;
636
637         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638                                  start_pos, start_pos + sizeof(newstate));
639         if (ret)
640                 return ret;
641
642         target->thread.uw.fpsimd_state = newstate;
643
644         return ret;
645 }
646
647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648                    unsigned int pos, unsigned int count,
649                    const void *kbuf, const void __user *ubuf)
650 {
651         int ret;
652
653         if (!system_supports_fpsimd())
654                 return -EINVAL;
655
656         ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657         if (ret)
658                 return ret;
659
660         sve_sync_from_fpsimd_zeropad(target);
661         fpsimd_flush_task_state(target);
662
663         return ret;
664 }
665
666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667                    struct membuf to)
668 {
669         if (target == current)
670                 tls_preserve_current_state();
671
672         return membuf_store(&to, target->thread.uw.tp_value);
673 }
674
675 static int tls_set(struct task_struct *target, const struct user_regset *regset,
676                    unsigned int pos, unsigned int count,
677                    const void *kbuf, const void __user *ubuf)
678 {
679         int ret;
680         unsigned long tls = target->thread.uw.tp_value;
681
682         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
683         if (ret)
684                 return ret;
685
686         target->thread.uw.tp_value = tls;
687         return ret;
688 }
689
690 static int system_call_get(struct task_struct *target,
691                            const struct user_regset *regset,
692                            struct membuf to)
693 {
694         return membuf_store(&to, task_pt_regs(target)->syscallno);
695 }
696
697 static int system_call_set(struct task_struct *target,
698                            const struct user_regset *regset,
699                            unsigned int pos, unsigned int count,
700                            const void *kbuf, const void __user *ubuf)
701 {
702         int syscallno = task_pt_regs(target)->syscallno;
703         int ret;
704
705         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
706         if (ret)
707                 return ret;
708
709         task_pt_regs(target)->syscallno = syscallno;
710         return ret;
711 }
712
713 #ifdef CONFIG_ARM64_SVE
714
715 static void sve_init_header_from_task(struct user_sve_header *header,
716                                       struct task_struct *target,
717                                       enum vec_type type)
718 {
719         unsigned int vq;
720         bool active;
721         bool fpsimd_only;
722         enum vec_type task_type;
723
724         memset(header, 0, sizeof(*header));
725
726         /* Check if the requested registers are active for the task */
727         if (thread_sm_enabled(&target->thread))
728                 task_type = ARM64_VEC_SME;
729         else
730                 task_type = ARM64_VEC_SVE;
731         active = (task_type == type);
732
733         switch (type) {
734         case ARM64_VEC_SVE:
735                 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
736                         header->flags |= SVE_PT_VL_INHERIT;
737                 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
738                 break;
739         case ARM64_VEC_SME:
740                 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
741                         header->flags |= SVE_PT_VL_INHERIT;
742                 fpsimd_only = false;
743                 break;
744         default:
745                 WARN_ON_ONCE(1);
746                 return;
747         }
748
749         if (active) {
750                 if (fpsimd_only) {
751                         header->flags |= SVE_PT_REGS_FPSIMD;
752                 } else {
753                         header->flags |= SVE_PT_REGS_SVE;
754                 }
755         }
756
757         header->vl = task_get_vl(target, type);
758         vq = sve_vq_from_vl(header->vl);
759
760         header->max_vl = vec_max_vl(type);
761         header->size = SVE_PT_SIZE(vq, header->flags);
762         header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
763                                       SVE_PT_REGS_SVE);
764 }
765
766 static unsigned int sve_size_from_header(struct user_sve_header const *header)
767 {
768         return ALIGN(header->size, SVE_VQ_BYTES);
769 }
770
771 static int sve_get_common(struct task_struct *target,
772                           const struct user_regset *regset,
773                           struct membuf to,
774                           enum vec_type type)
775 {
776         struct user_sve_header header;
777         unsigned int vq;
778         unsigned long start, end;
779
780         /* Header */
781         sve_init_header_from_task(&header, target, type);
782         vq = sve_vq_from_vl(header.vl);
783
784         membuf_write(&to, &header, sizeof(header));
785
786         if (target == current)
787                 fpsimd_preserve_current_state();
788
789         BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
790         BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
791
792         switch ((header.flags & SVE_PT_REGS_MASK)) {
793         case SVE_PT_REGS_FPSIMD:
794                 return __fpr_get(target, regset, to);
795
796         case SVE_PT_REGS_SVE:
797                 start = SVE_PT_SVE_OFFSET;
798                 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
799                 membuf_write(&to, target->thread.sve_state, end - start);
800
801                 start = end;
802                 end = SVE_PT_SVE_FPSR_OFFSET(vq);
803                 membuf_zero(&to, end - start);
804
805                 /*
806                  * Copy fpsr, and fpcr which must follow contiguously in
807                  * struct fpsimd_state:
808                  */
809                 start = end;
810                 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
811                 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
812                              end - start);
813
814                 start = end;
815                 end = sve_size_from_header(&header);
816                 return membuf_zero(&to, end - start);
817
818         default:
819                 return 0;
820         }
821 }
822
823 static int sve_get(struct task_struct *target,
824                    const struct user_regset *regset,
825                    struct membuf to)
826 {
827         if (!system_supports_sve())
828                 return -EINVAL;
829
830         return sve_get_common(target, regset, to, ARM64_VEC_SVE);
831 }
832
833 static int sve_set_common(struct task_struct *target,
834                           const struct user_regset *regset,
835                           unsigned int pos, unsigned int count,
836                           const void *kbuf, const void __user *ubuf,
837                           enum vec_type type)
838 {
839         int ret;
840         struct user_sve_header header;
841         unsigned int vq;
842         unsigned long start, end;
843
844         /* Header */
845         if (count < sizeof(header))
846                 return -EINVAL;
847         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
848                                  0, sizeof(header));
849         if (ret)
850                 goto out;
851
852         /*
853          * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
854          * vec_set_vector_length(), which will also validate them for us:
855          */
856         ret = vec_set_vector_length(target, type, header.vl,
857                 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
858         if (ret)
859                 goto out;
860
861         /* Actual VL set may be less than the user asked for: */
862         vq = sve_vq_from_vl(task_get_vl(target, type));
863
864         /* Enter/exit streaming mode */
865         if (system_supports_sme()) {
866                 u64 old_svcr = target->thread.svcr;
867
868                 switch (type) {
869                 case ARM64_VEC_SVE:
870                         target->thread.svcr &= ~SVCR_SM_MASK;
871                         break;
872                 case ARM64_VEC_SME:
873                         target->thread.svcr |= SVCR_SM_MASK;
874                         break;
875                 default:
876                         WARN_ON_ONCE(1);
877                         return -EINVAL;
878                 }
879
880                 /*
881                  * If we switched then invalidate any existing SVE
882                  * state and ensure there's storage.
883                  */
884                 if (target->thread.svcr != old_svcr)
885                         sve_alloc(target);
886         }
887
888         /* Registers: FPSIMD-only case */
889
890         BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
891         if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
892                 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
893                                 SVE_PT_FPSIMD_OFFSET);
894                 clear_tsk_thread_flag(target, TIF_SVE);
895                 if (type == ARM64_VEC_SME)
896                         fpsimd_force_sync_to_sve(target);
897                 goto out;
898         }
899
900         /*
901          * Otherwise: no registers or full SVE case.  For backwards
902          * compatibility reasons we treat empty flags as SVE registers.
903          */
904
905         /*
906          * If setting a different VL from the requested VL and there is
907          * register data, the data layout will be wrong: don't even
908          * try to set the registers in this case.
909          */
910         if (count && vq != sve_vq_from_vl(header.vl)) {
911                 ret = -EIO;
912                 goto out;
913         }
914
915         sve_alloc(target);
916         if (!target->thread.sve_state) {
917                 ret = -ENOMEM;
918                 clear_tsk_thread_flag(target, TIF_SVE);
919                 goto out;
920         }
921
922         /*
923          * Ensure target->thread.sve_state is up to date with target's
924          * FPSIMD regs, so that a short copyin leaves trailing
925          * registers unmodified.  Always enable SVE even if going into
926          * streaming mode.
927          */
928         fpsimd_sync_to_sve(target);
929         set_tsk_thread_flag(target, TIF_SVE);
930
931         BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
932         start = SVE_PT_SVE_OFFSET;
933         end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
934         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
935                                  target->thread.sve_state,
936                                  start, end);
937         if (ret)
938                 goto out;
939
940         start = end;
941         end = SVE_PT_SVE_FPSR_OFFSET(vq);
942         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
943                                         start, end);
944         if (ret)
945                 goto out;
946
947         /*
948          * Copy fpsr, and fpcr which must follow contiguously in
949          * struct fpsimd_state:
950          */
951         start = end;
952         end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
953         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
954                                  &target->thread.uw.fpsimd_state.fpsr,
955                                  start, end);
956
957 out:
958         fpsimd_flush_task_state(target);
959         return ret;
960 }
961
962 static int sve_set(struct task_struct *target,
963                    const struct user_regset *regset,
964                    unsigned int pos, unsigned int count,
965                    const void *kbuf, const void __user *ubuf)
966 {
967         if (!system_supports_sve())
968                 return -EINVAL;
969
970         return sve_set_common(target, regset, pos, count, kbuf, ubuf,
971                               ARM64_VEC_SVE);
972 }
973
974 #endif /* CONFIG_ARM64_SVE */
975
976 #ifdef CONFIG_ARM64_SME
977
978 static int ssve_get(struct task_struct *target,
979                    const struct user_regset *regset,
980                    struct membuf to)
981 {
982         if (!system_supports_sme())
983                 return -EINVAL;
984
985         return sve_get_common(target, regset, to, ARM64_VEC_SME);
986 }
987
988 static int ssve_set(struct task_struct *target,
989                     const struct user_regset *regset,
990                     unsigned int pos, unsigned int count,
991                     const void *kbuf, const void __user *ubuf)
992 {
993         if (!system_supports_sme())
994                 return -EINVAL;
995
996         return sve_set_common(target, regset, pos, count, kbuf, ubuf,
997                               ARM64_VEC_SME);
998 }
999
1000 static int za_get(struct task_struct *target,
1001                   const struct user_regset *regset,
1002                   struct membuf to)
1003 {
1004         struct user_za_header header;
1005         unsigned int vq;
1006         unsigned long start, end;
1007
1008         if (!system_supports_sme())
1009                 return -EINVAL;
1010
1011         /* Header */
1012         memset(&header, 0, sizeof(header));
1013
1014         if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1015                 header.flags |= ZA_PT_VL_INHERIT;
1016
1017         header.vl = task_get_sme_vl(target);
1018         vq = sve_vq_from_vl(header.vl);
1019         header.max_vl = sme_max_vl();
1020         header.max_size = ZA_PT_SIZE(vq);
1021
1022         /* If ZA is not active there is only the header */
1023         if (thread_za_enabled(&target->thread))
1024                 header.size = ZA_PT_SIZE(vq);
1025         else
1026                 header.size = ZA_PT_ZA_OFFSET;
1027
1028         membuf_write(&to, &header, sizeof(header));
1029
1030         BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1031         end = ZA_PT_ZA_OFFSET;
1032
1033         if (target == current)
1034                 fpsimd_preserve_current_state();
1035
1036         /* Any register data to include? */
1037         if (thread_za_enabled(&target->thread)) {
1038                 start = end;
1039                 end = ZA_PT_SIZE(vq);
1040                 membuf_write(&to, target->thread.za_state, end - start);
1041         }
1042
1043         /* Zero any trailing padding */
1044         start = end;
1045         end = ALIGN(header.size, SVE_VQ_BYTES);
1046         return membuf_zero(&to, end - start);
1047 }
1048
1049 static int za_set(struct task_struct *target,
1050                   const struct user_regset *regset,
1051                   unsigned int pos, unsigned int count,
1052                   const void *kbuf, const void __user *ubuf)
1053 {
1054         int ret;
1055         struct user_za_header header;
1056         unsigned int vq;
1057         unsigned long start, end;
1058
1059         if (!system_supports_sme())
1060                 return -EINVAL;
1061
1062         /* Header */
1063         if (count < sizeof(header))
1064                 return -EINVAL;
1065         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1066                                  0, sizeof(header));
1067         if (ret)
1068                 goto out;
1069
1070         /*
1071          * All current ZA_PT_* flags are consumed by
1072          * vec_set_vector_length(), which will also validate them for
1073          * us:
1074          */
1075         ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1076                 ((unsigned long)header.flags) << 16);
1077         if (ret)
1078                 goto out;
1079
1080         /* Actual VL set may be less than the user asked for: */
1081         vq = sve_vq_from_vl(task_get_sme_vl(target));
1082
1083         /* Ensure there is some SVE storage for streaming mode */
1084         if (!target->thread.sve_state) {
1085                 sve_alloc(target);
1086                 if (!target->thread.sve_state) {
1087                         clear_thread_flag(TIF_SME);
1088                         ret = -ENOMEM;
1089                         goto out;
1090                 }
1091         }
1092
1093         /* Allocate/reinit ZA storage */
1094         sme_alloc(target);
1095         if (!target->thread.za_state) {
1096                 ret = -ENOMEM;
1097                 clear_tsk_thread_flag(target, TIF_SME);
1098                 goto out;
1099         }
1100
1101         /* If there is no data then disable ZA */
1102         if (!count) {
1103                 target->thread.svcr &= ~SVCR_ZA_MASK;
1104                 goto out;
1105         }
1106
1107         /*
1108          * If setting a different VL from the requested VL and there is
1109          * register data, the data layout will be wrong: don't even
1110          * try to set the registers in this case.
1111          */
1112         if (vq != sve_vq_from_vl(header.vl)) {
1113                 ret = -EIO;
1114                 goto out;
1115         }
1116
1117         BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1118         start = ZA_PT_ZA_OFFSET;
1119         end = ZA_PT_SIZE(vq);
1120         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1121                                  target->thread.za_state,
1122                                  start, end);
1123         if (ret)
1124                 goto out;
1125
1126         /* Mark ZA as active and let userspace use it */
1127         set_tsk_thread_flag(target, TIF_SME);
1128         target->thread.svcr |= SVCR_ZA_MASK;
1129
1130 out:
1131         fpsimd_flush_task_state(target);
1132         return ret;
1133 }
1134
1135 #endif /* CONFIG_ARM64_SME */
1136
1137 #ifdef CONFIG_ARM64_PTR_AUTH
1138 static int pac_mask_get(struct task_struct *target,
1139                         const struct user_regset *regset,
1140                         struct membuf to)
1141 {
1142         /*
1143          * The PAC bits can differ across data and instruction pointers
1144          * depending on TCR_EL1.TBID*, which we may make use of in future, so
1145          * we expose separate masks.
1146          */
1147         unsigned long mask = ptrauth_user_pac_mask();
1148         struct user_pac_mask uregs = {
1149                 .data_mask = mask,
1150                 .insn_mask = mask,
1151         };
1152
1153         if (!system_supports_address_auth())
1154                 return -EINVAL;
1155
1156         return membuf_write(&to, &uregs, sizeof(uregs));
1157 }
1158
1159 static int pac_enabled_keys_get(struct task_struct *target,
1160                                 const struct user_regset *regset,
1161                                 struct membuf to)
1162 {
1163         long enabled_keys = ptrauth_get_enabled_keys(target);
1164
1165         if (IS_ERR_VALUE(enabled_keys))
1166                 return enabled_keys;
1167
1168         return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1169 }
1170
1171 static int pac_enabled_keys_set(struct task_struct *target,
1172                                 const struct user_regset *regset,
1173                                 unsigned int pos, unsigned int count,
1174                                 const void *kbuf, const void __user *ubuf)
1175 {
1176         int ret;
1177         long enabled_keys = ptrauth_get_enabled_keys(target);
1178
1179         if (IS_ERR_VALUE(enabled_keys))
1180                 return enabled_keys;
1181
1182         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1183                                  sizeof(long));
1184         if (ret)
1185                 return ret;
1186
1187         return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1188                                         enabled_keys);
1189 }
1190
1191 #ifdef CONFIG_CHECKPOINT_RESTORE
1192 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1193 {
1194         return (__uint128_t)key->hi << 64 | key->lo;
1195 }
1196
1197 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1198 {
1199         struct ptrauth_key key = {
1200                 .lo = (unsigned long)ukey,
1201                 .hi = (unsigned long)(ukey >> 64),
1202         };
1203
1204         return key;
1205 }
1206
1207 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1208                                      const struct ptrauth_keys_user *keys)
1209 {
1210         ukeys->apiakey = pac_key_to_user(&keys->apia);
1211         ukeys->apibkey = pac_key_to_user(&keys->apib);
1212         ukeys->apdakey = pac_key_to_user(&keys->apda);
1213         ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1214 }
1215
1216 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1217                                        const struct user_pac_address_keys *ukeys)
1218 {
1219         keys->apia = pac_key_from_user(ukeys->apiakey);
1220         keys->apib = pac_key_from_user(ukeys->apibkey);
1221         keys->apda = pac_key_from_user(ukeys->apdakey);
1222         keys->apdb = pac_key_from_user(ukeys->apdbkey);
1223 }
1224
1225 static int pac_address_keys_get(struct task_struct *target,
1226                                 const struct user_regset *regset,
1227                                 struct membuf to)
1228 {
1229         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1230         struct user_pac_address_keys user_keys;
1231
1232         if (!system_supports_address_auth())
1233                 return -EINVAL;
1234
1235         pac_address_keys_to_user(&user_keys, keys);
1236
1237         return membuf_write(&to, &user_keys, sizeof(user_keys));
1238 }
1239
1240 static int pac_address_keys_set(struct task_struct *target,
1241                                 const struct user_regset *regset,
1242                                 unsigned int pos, unsigned int count,
1243                                 const void *kbuf, const void __user *ubuf)
1244 {
1245         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1246         struct user_pac_address_keys user_keys;
1247         int ret;
1248
1249         if (!system_supports_address_auth())
1250                 return -EINVAL;
1251
1252         pac_address_keys_to_user(&user_keys, keys);
1253         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254                                  &user_keys, 0, -1);
1255         if (ret)
1256                 return ret;
1257         pac_address_keys_from_user(keys, &user_keys);
1258
1259         return 0;
1260 }
1261
1262 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1263                                      const struct ptrauth_keys_user *keys)
1264 {
1265         ukeys->apgakey = pac_key_to_user(&keys->apga);
1266 }
1267
1268 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1269                                        const struct user_pac_generic_keys *ukeys)
1270 {
1271         keys->apga = pac_key_from_user(ukeys->apgakey);
1272 }
1273
1274 static int pac_generic_keys_get(struct task_struct *target,
1275                                 const struct user_regset *regset,
1276                                 struct membuf to)
1277 {
1278         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1279         struct user_pac_generic_keys user_keys;
1280
1281         if (!system_supports_generic_auth())
1282                 return -EINVAL;
1283
1284         pac_generic_keys_to_user(&user_keys, keys);
1285
1286         return membuf_write(&to, &user_keys, sizeof(user_keys));
1287 }
1288
1289 static int pac_generic_keys_set(struct task_struct *target,
1290                                 const struct user_regset *regset,
1291                                 unsigned int pos, unsigned int count,
1292                                 const void *kbuf, const void __user *ubuf)
1293 {
1294         struct ptrauth_keys_user *keys = &target->thread.keys_user;
1295         struct user_pac_generic_keys user_keys;
1296         int ret;
1297
1298         if (!system_supports_generic_auth())
1299                 return -EINVAL;
1300
1301         pac_generic_keys_to_user(&user_keys, keys);
1302         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1303                                  &user_keys, 0, -1);
1304         if (ret)
1305                 return ret;
1306         pac_generic_keys_from_user(keys, &user_keys);
1307
1308         return 0;
1309 }
1310 #endif /* CONFIG_CHECKPOINT_RESTORE */
1311 #endif /* CONFIG_ARM64_PTR_AUTH */
1312
1313 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1314 static int tagged_addr_ctrl_get(struct task_struct *target,
1315                                 const struct user_regset *regset,
1316                                 struct membuf to)
1317 {
1318         long ctrl = get_tagged_addr_ctrl(target);
1319
1320         if (IS_ERR_VALUE(ctrl))
1321                 return ctrl;
1322
1323         return membuf_write(&to, &ctrl, sizeof(ctrl));
1324 }
1325
1326 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1327                                 user_regset *regset, unsigned int pos,
1328                                 unsigned int count, const void *kbuf, const
1329                                 void __user *ubuf)
1330 {
1331         int ret;
1332         long ctrl;
1333
1334         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1335         if (ret)
1336                 return ret;
1337
1338         return set_tagged_addr_ctrl(target, ctrl);
1339 }
1340 #endif
1341
1342 enum aarch64_regset {
1343         REGSET_GPR,
1344         REGSET_FPR,
1345         REGSET_TLS,
1346 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1347         REGSET_HW_BREAK,
1348         REGSET_HW_WATCH,
1349 #endif
1350         REGSET_SYSTEM_CALL,
1351 #ifdef CONFIG_ARM64_SVE
1352         REGSET_SVE,
1353 #endif
1354 #ifdef CONFIG_ARM64_SVE
1355         REGSET_SSVE,
1356         REGSET_ZA,
1357 #endif
1358 #ifdef CONFIG_ARM64_PTR_AUTH
1359         REGSET_PAC_MASK,
1360         REGSET_PAC_ENABLED_KEYS,
1361 #ifdef CONFIG_CHECKPOINT_RESTORE
1362         REGSET_PACA_KEYS,
1363         REGSET_PACG_KEYS,
1364 #endif
1365 #endif
1366 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1367         REGSET_TAGGED_ADDR_CTRL,
1368 #endif
1369 };
1370
1371 static const struct user_regset aarch64_regsets[] = {
1372         [REGSET_GPR] = {
1373                 .core_note_type = NT_PRSTATUS,
1374                 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1375                 .size = sizeof(u64),
1376                 .align = sizeof(u64),
1377                 .regset_get = gpr_get,
1378                 .set = gpr_set
1379         },
1380         [REGSET_FPR] = {
1381                 .core_note_type = NT_PRFPREG,
1382                 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1383                 /*
1384                  * We pretend we have 32-bit registers because the fpsr and
1385                  * fpcr are 32-bits wide.
1386                  */
1387                 .size = sizeof(u32),
1388                 .align = sizeof(u32),
1389                 .active = fpr_active,
1390                 .regset_get = fpr_get,
1391                 .set = fpr_set
1392         },
1393         [REGSET_TLS] = {
1394                 .core_note_type = NT_ARM_TLS,
1395                 .n = 1,
1396                 .size = sizeof(void *),
1397                 .align = sizeof(void *),
1398                 .regset_get = tls_get,
1399                 .set = tls_set,
1400         },
1401 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1402         [REGSET_HW_BREAK] = {
1403                 .core_note_type = NT_ARM_HW_BREAK,
1404                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1405                 .size = sizeof(u32),
1406                 .align = sizeof(u32),
1407                 .regset_get = hw_break_get,
1408                 .set = hw_break_set,
1409         },
1410         [REGSET_HW_WATCH] = {
1411                 .core_note_type = NT_ARM_HW_WATCH,
1412                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1413                 .size = sizeof(u32),
1414                 .align = sizeof(u32),
1415                 .regset_get = hw_break_get,
1416                 .set = hw_break_set,
1417         },
1418 #endif
1419         [REGSET_SYSTEM_CALL] = {
1420                 .core_note_type = NT_ARM_SYSTEM_CALL,
1421                 .n = 1,
1422                 .size = sizeof(int),
1423                 .align = sizeof(int),
1424                 .regset_get = system_call_get,
1425                 .set = system_call_set,
1426         },
1427 #ifdef CONFIG_ARM64_SVE
1428         [REGSET_SVE] = { /* Scalable Vector Extension */
1429                 .core_note_type = NT_ARM_SVE,
1430                 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1431                                   SVE_VQ_BYTES),
1432                 .size = SVE_VQ_BYTES,
1433                 .align = SVE_VQ_BYTES,
1434                 .regset_get = sve_get,
1435                 .set = sve_set,
1436         },
1437 #endif
1438 #ifdef CONFIG_ARM64_SME
1439         [REGSET_SSVE] = { /* Streaming mode SVE */
1440                 .core_note_type = NT_ARM_SSVE,
1441                 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1442                                   SVE_VQ_BYTES),
1443                 .size = SVE_VQ_BYTES,
1444                 .align = SVE_VQ_BYTES,
1445                 .regset_get = ssve_get,
1446                 .set = ssve_set,
1447         },
1448         [REGSET_ZA] = { /* SME ZA */
1449                 .core_note_type = NT_ARM_ZA,
1450                 /*
1451                  * ZA is a single register but it's variably sized and
1452                  * the ptrace core requires that the size of any data
1453                  * be an exact multiple of the configured register
1454                  * size so report as though we had SVE_VQ_BYTES
1455                  * registers. These values aren't exposed to
1456                  * userspace.
1457                  */
1458                 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1459                 .size = SVE_VQ_BYTES,
1460                 .align = SVE_VQ_BYTES,
1461                 .regset_get = za_get,
1462                 .set = za_set,
1463         },
1464 #endif
1465 #ifdef CONFIG_ARM64_PTR_AUTH
1466         [REGSET_PAC_MASK] = {
1467                 .core_note_type = NT_ARM_PAC_MASK,
1468                 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1469                 .size = sizeof(u64),
1470                 .align = sizeof(u64),
1471                 .regset_get = pac_mask_get,
1472                 /* this cannot be set dynamically */
1473         },
1474         [REGSET_PAC_ENABLED_KEYS] = {
1475                 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1476                 .n = 1,
1477                 .size = sizeof(long),
1478                 .align = sizeof(long),
1479                 .regset_get = pac_enabled_keys_get,
1480                 .set = pac_enabled_keys_set,
1481         },
1482 #ifdef CONFIG_CHECKPOINT_RESTORE
1483         [REGSET_PACA_KEYS] = {
1484                 .core_note_type = NT_ARM_PACA_KEYS,
1485                 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1486                 .size = sizeof(__uint128_t),
1487                 .align = sizeof(__uint128_t),
1488                 .regset_get = pac_address_keys_get,
1489                 .set = pac_address_keys_set,
1490         },
1491         [REGSET_PACG_KEYS] = {
1492                 .core_note_type = NT_ARM_PACG_KEYS,
1493                 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1494                 .size = sizeof(__uint128_t),
1495                 .align = sizeof(__uint128_t),
1496                 .regset_get = pac_generic_keys_get,
1497                 .set = pac_generic_keys_set,
1498         },
1499 #endif
1500 #endif
1501 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1502         [REGSET_TAGGED_ADDR_CTRL] = {
1503                 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1504                 .n = 1,
1505                 .size = sizeof(long),
1506                 .align = sizeof(long),
1507                 .regset_get = tagged_addr_ctrl_get,
1508                 .set = tagged_addr_ctrl_set,
1509         },
1510 #endif
1511 };
1512
1513 static const struct user_regset_view user_aarch64_view = {
1514         .name = "aarch64", .e_machine = EM_AARCH64,
1515         .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1516 };
1517
1518 #ifdef CONFIG_COMPAT
1519 enum compat_regset {
1520         REGSET_COMPAT_GPR,
1521         REGSET_COMPAT_VFP,
1522 };
1523
1524 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1525 {
1526         struct pt_regs *regs = task_pt_regs(task);
1527
1528         switch (idx) {
1529         case 15:
1530                 return regs->pc;
1531         case 16:
1532                 return pstate_to_compat_psr(regs->pstate);
1533         case 17:
1534                 return regs->orig_x0;
1535         default:
1536                 return regs->regs[idx];
1537         }
1538 }
1539
1540 static int compat_gpr_get(struct task_struct *target,
1541                           const struct user_regset *regset,
1542                           struct membuf to)
1543 {
1544         int i = 0;
1545
1546         while (to.left)
1547                 membuf_store(&to, compat_get_user_reg(target, i++));
1548         return 0;
1549 }
1550
1551 static int compat_gpr_set(struct task_struct *target,
1552                           const struct user_regset *regset,
1553                           unsigned int pos, unsigned int count,
1554                           const void *kbuf, const void __user *ubuf)
1555 {
1556         struct pt_regs newregs;
1557         int ret = 0;
1558         unsigned int i, start, num_regs;
1559
1560         /* Calculate the number of AArch32 registers contained in count */
1561         num_regs = count / regset->size;
1562
1563         /* Convert pos into an register number */
1564         start = pos / regset->size;
1565
1566         if (start + num_regs > regset->n)
1567                 return -EIO;
1568
1569         newregs = *task_pt_regs(target);
1570
1571         for (i = 0; i < num_regs; ++i) {
1572                 unsigned int idx = start + i;
1573                 compat_ulong_t reg;
1574
1575                 if (kbuf) {
1576                         memcpy(&reg, kbuf, sizeof(reg));
1577                         kbuf += sizeof(reg);
1578                 } else {
1579                         ret = copy_from_user(&reg, ubuf, sizeof(reg));
1580                         if (ret) {
1581                                 ret = -EFAULT;
1582                                 break;
1583                         }
1584
1585                         ubuf += sizeof(reg);
1586                 }
1587
1588                 switch (idx) {
1589                 case 15:
1590                         newregs.pc = reg;
1591                         break;
1592                 case 16:
1593                         reg = compat_psr_to_pstate(reg);
1594                         newregs.pstate = reg;
1595                         break;
1596                 case 17:
1597                         newregs.orig_x0 = reg;
1598                         break;
1599                 default:
1600                         newregs.regs[idx] = reg;
1601                 }
1602
1603         }
1604
1605         if (valid_user_regs(&newregs.user_regs, target))
1606                 *task_pt_regs(target) = newregs;
1607         else
1608                 ret = -EINVAL;
1609
1610         return ret;
1611 }
1612
1613 static int compat_vfp_get(struct task_struct *target,
1614                           const struct user_regset *regset,
1615                           struct membuf to)
1616 {
1617         struct user_fpsimd_state *uregs;
1618         compat_ulong_t fpscr;
1619
1620         if (!system_supports_fpsimd())
1621                 return -EINVAL;
1622
1623         uregs = &target->thread.uw.fpsimd_state;
1624
1625         if (target == current)
1626                 fpsimd_preserve_current_state();
1627
1628         /*
1629          * The VFP registers are packed into the fpsimd_state, so they all sit
1630          * nicely together for us. We just need to create the fpscr separately.
1631          */
1632         membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1633         fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1634                 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1635         return membuf_store(&to, fpscr);
1636 }
1637
1638 static int compat_vfp_set(struct task_struct *target,
1639                           const struct user_regset *regset,
1640                           unsigned int pos, unsigned int count,
1641                           const void *kbuf, const void __user *ubuf)
1642 {
1643         struct user_fpsimd_state *uregs;
1644         compat_ulong_t fpscr;
1645         int ret, vregs_end_pos;
1646
1647         if (!system_supports_fpsimd())
1648                 return -EINVAL;
1649
1650         uregs = &target->thread.uw.fpsimd_state;
1651
1652         vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1653         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1654                                  vregs_end_pos);
1655
1656         if (count && !ret) {
1657                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1658                                          vregs_end_pos, VFP_STATE_SIZE);
1659                 if (!ret) {
1660                         uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1661                         uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1662                 }
1663         }
1664
1665         fpsimd_flush_task_state(target);
1666         return ret;
1667 }
1668
1669 static int compat_tls_get(struct task_struct *target,
1670                           const struct user_regset *regset,
1671                           struct membuf to)
1672 {
1673         return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1674 }
1675
1676 static int compat_tls_set(struct task_struct *target,
1677                           const struct user_regset *regset, unsigned int pos,
1678                           unsigned int count, const void *kbuf,
1679                           const void __user *ubuf)
1680 {
1681         int ret;
1682         compat_ulong_t tls = target->thread.uw.tp_value;
1683
1684         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1685         if (ret)
1686                 return ret;
1687
1688         target->thread.uw.tp_value = tls;
1689         return ret;
1690 }
1691
1692 static const struct user_regset aarch32_regsets[] = {
1693         [REGSET_COMPAT_GPR] = {
1694                 .core_note_type = NT_PRSTATUS,
1695                 .n = COMPAT_ELF_NGREG,
1696                 .size = sizeof(compat_elf_greg_t),
1697                 .align = sizeof(compat_elf_greg_t),
1698                 .regset_get = compat_gpr_get,
1699                 .set = compat_gpr_set
1700         },
1701         [REGSET_COMPAT_VFP] = {
1702                 .core_note_type = NT_ARM_VFP,
1703                 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1704                 .size = sizeof(compat_ulong_t),
1705                 .align = sizeof(compat_ulong_t),
1706                 .active = fpr_active,
1707                 .regset_get = compat_vfp_get,
1708                 .set = compat_vfp_set
1709         },
1710 };
1711
1712 static const struct user_regset_view user_aarch32_view = {
1713         .name = "aarch32", .e_machine = EM_ARM,
1714         .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1715 };
1716
1717 static const struct user_regset aarch32_ptrace_regsets[] = {
1718         [REGSET_GPR] = {
1719                 .core_note_type = NT_PRSTATUS,
1720                 .n = COMPAT_ELF_NGREG,
1721                 .size = sizeof(compat_elf_greg_t),
1722                 .align = sizeof(compat_elf_greg_t),
1723                 .regset_get = compat_gpr_get,
1724                 .set = compat_gpr_set
1725         },
1726         [REGSET_FPR] = {
1727                 .core_note_type = NT_ARM_VFP,
1728                 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1729                 .size = sizeof(compat_ulong_t),
1730                 .align = sizeof(compat_ulong_t),
1731                 .regset_get = compat_vfp_get,
1732                 .set = compat_vfp_set
1733         },
1734         [REGSET_TLS] = {
1735                 .core_note_type = NT_ARM_TLS,
1736                 .n = 1,
1737                 .size = sizeof(compat_ulong_t),
1738                 .align = sizeof(compat_ulong_t),
1739                 .regset_get = compat_tls_get,
1740                 .set = compat_tls_set,
1741         },
1742 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1743         [REGSET_HW_BREAK] = {
1744                 .core_note_type = NT_ARM_HW_BREAK,
1745                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1746                 .size = sizeof(u32),
1747                 .align = sizeof(u32),
1748                 .regset_get = hw_break_get,
1749                 .set = hw_break_set,
1750         },
1751         [REGSET_HW_WATCH] = {
1752                 .core_note_type = NT_ARM_HW_WATCH,
1753                 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1754                 .size = sizeof(u32),
1755                 .align = sizeof(u32),
1756                 .regset_get = hw_break_get,
1757                 .set = hw_break_set,
1758         },
1759 #endif
1760         [REGSET_SYSTEM_CALL] = {
1761                 .core_note_type = NT_ARM_SYSTEM_CALL,
1762                 .n = 1,
1763                 .size = sizeof(int),
1764                 .align = sizeof(int),
1765                 .regset_get = system_call_get,
1766                 .set = system_call_set,
1767         },
1768 };
1769
1770 static const struct user_regset_view user_aarch32_ptrace_view = {
1771         .name = "aarch32", .e_machine = EM_ARM,
1772         .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1773 };
1774
1775 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1776                                    compat_ulong_t __user *ret)
1777 {
1778         compat_ulong_t tmp;
1779
1780         if (off & 3)
1781                 return -EIO;
1782
1783         if (off == COMPAT_PT_TEXT_ADDR)
1784                 tmp = tsk->mm->start_code;
1785         else if (off == COMPAT_PT_DATA_ADDR)
1786                 tmp = tsk->mm->start_data;
1787         else if (off == COMPAT_PT_TEXT_END_ADDR)
1788                 tmp = tsk->mm->end_code;
1789         else if (off < sizeof(compat_elf_gregset_t))
1790                 tmp = compat_get_user_reg(tsk, off >> 2);
1791         else if (off >= COMPAT_USER_SZ)
1792                 return -EIO;
1793         else
1794                 tmp = 0;
1795
1796         return put_user(tmp, ret);
1797 }
1798
1799 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1800                                     compat_ulong_t val)
1801 {
1802         struct pt_regs newregs = *task_pt_regs(tsk);
1803         unsigned int idx = off / 4;
1804
1805         if (off & 3 || off >= COMPAT_USER_SZ)
1806                 return -EIO;
1807
1808         if (off >= sizeof(compat_elf_gregset_t))
1809                 return 0;
1810
1811         switch (idx) {
1812         case 15:
1813                 newregs.pc = val;
1814                 break;
1815         case 16:
1816                 newregs.pstate = compat_psr_to_pstate(val);
1817                 break;
1818         case 17:
1819                 newregs.orig_x0 = val;
1820                 break;
1821         default:
1822                 newregs.regs[idx] = val;
1823         }
1824
1825         if (!valid_user_regs(&newregs.user_regs, tsk))
1826                 return -EINVAL;
1827
1828         *task_pt_regs(tsk) = newregs;
1829         return 0;
1830 }
1831
1832 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1833
1834 /*
1835  * Convert a virtual register number into an index for a thread_info
1836  * breakpoint array. Breakpoints are identified using positive numbers
1837  * whilst watchpoints are negative. The registers are laid out as pairs
1838  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1839  * Register 0 is reserved for describing resource information.
1840  */
1841 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1842 {
1843         return (abs(num) - 1) >> 1;
1844 }
1845
1846 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1847 {
1848         u8 num_brps, num_wrps, debug_arch, wp_len;
1849         u32 reg = 0;
1850
1851         num_brps        = hw_breakpoint_slots(TYPE_INST);
1852         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
1853
1854         debug_arch      = debug_monitors_arch();
1855         wp_len          = 8;
1856         reg             |= debug_arch;
1857         reg             <<= 8;
1858         reg             |= wp_len;
1859         reg             <<= 8;
1860         reg             |= num_wrps;
1861         reg             <<= 8;
1862         reg             |= num_brps;
1863
1864         *kdata = reg;
1865         return 0;
1866 }
1867
1868 static int compat_ptrace_hbp_get(unsigned int note_type,
1869                                  struct task_struct *tsk,
1870                                  compat_long_t num,
1871                                  u32 *kdata)
1872 {
1873         u64 addr = 0;
1874         u32 ctrl = 0;
1875
1876         int err, idx = compat_ptrace_hbp_num_to_idx(num);
1877
1878         if (num & 1) {
1879                 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1880                 *kdata = (u32)addr;
1881         } else {
1882                 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1883                 *kdata = ctrl;
1884         }
1885
1886         return err;
1887 }
1888
1889 static int compat_ptrace_hbp_set(unsigned int note_type,
1890                                  struct task_struct *tsk,
1891                                  compat_long_t num,
1892                                  u32 *kdata)
1893 {
1894         u64 addr;
1895         u32 ctrl;
1896
1897         int err, idx = compat_ptrace_hbp_num_to_idx(num);
1898
1899         if (num & 1) {
1900                 addr = *kdata;
1901                 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1902         } else {
1903                 ctrl = *kdata;
1904                 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1905         }
1906
1907         return err;
1908 }
1909
1910 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1911                                     compat_ulong_t __user *data)
1912 {
1913         int ret;
1914         u32 kdata;
1915
1916         /* Watchpoint */
1917         if (num < 0) {
1918                 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1919         /* Resource info */
1920         } else if (num == 0) {
1921                 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1922         /* Breakpoint */
1923         } else {
1924                 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1925         }
1926
1927         if (!ret)
1928                 ret = put_user(kdata, data);
1929
1930         return ret;
1931 }
1932
1933 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1934                                     compat_ulong_t __user *data)
1935 {
1936         int ret;
1937         u32 kdata = 0;
1938
1939         if (num == 0)
1940                 return 0;
1941
1942         ret = get_user(kdata, data);
1943         if (ret)
1944                 return ret;
1945
1946         if (num < 0)
1947                 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1948         else
1949                 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1950
1951         return ret;
1952 }
1953 #endif  /* CONFIG_HAVE_HW_BREAKPOINT */
1954
1955 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1956                         compat_ulong_t caddr, compat_ulong_t cdata)
1957 {
1958         unsigned long addr = caddr;
1959         unsigned long data = cdata;
1960         void __user *datap = compat_ptr(data);
1961         int ret;
1962
1963         switch (request) {
1964                 case PTRACE_PEEKUSR:
1965                         ret = compat_ptrace_read_user(child, addr, datap);
1966                         break;
1967
1968                 case PTRACE_POKEUSR:
1969                         ret = compat_ptrace_write_user(child, addr, data);
1970                         break;
1971
1972                 case COMPAT_PTRACE_GETREGS:
1973                         ret = copy_regset_to_user(child,
1974                                                   &user_aarch32_view,
1975                                                   REGSET_COMPAT_GPR,
1976                                                   0, sizeof(compat_elf_gregset_t),
1977                                                   datap);
1978                         break;
1979
1980                 case COMPAT_PTRACE_SETREGS:
1981                         ret = copy_regset_from_user(child,
1982                                                     &user_aarch32_view,
1983                                                     REGSET_COMPAT_GPR,
1984                                                     0, sizeof(compat_elf_gregset_t),
1985                                                     datap);
1986                         break;
1987
1988                 case COMPAT_PTRACE_GET_THREAD_AREA:
1989                         ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1990                                        (compat_ulong_t __user *)datap);
1991                         break;
1992
1993                 case COMPAT_PTRACE_SET_SYSCALL:
1994                         task_pt_regs(child)->syscallno = data;
1995                         ret = 0;
1996                         break;
1997
1998                 case COMPAT_PTRACE_GETVFPREGS:
1999                         ret = copy_regset_to_user(child,
2000                                                   &user_aarch32_view,
2001                                                   REGSET_COMPAT_VFP,
2002                                                   0, VFP_STATE_SIZE,
2003                                                   datap);
2004                         break;
2005
2006                 case COMPAT_PTRACE_SETVFPREGS:
2007                         ret = copy_regset_from_user(child,
2008                                                     &user_aarch32_view,
2009                                                     REGSET_COMPAT_VFP,
2010                                                     0, VFP_STATE_SIZE,
2011                                                     datap);
2012                         break;
2013
2014 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2015                 case COMPAT_PTRACE_GETHBPREGS:
2016                         ret = compat_ptrace_gethbpregs(child, addr, datap);
2017                         break;
2018
2019                 case COMPAT_PTRACE_SETHBPREGS:
2020                         ret = compat_ptrace_sethbpregs(child, addr, datap);
2021                         break;
2022 #endif
2023
2024                 default:
2025                         ret = compat_ptrace_request(child, request, addr,
2026                                                     data);
2027                         break;
2028         }
2029
2030         return ret;
2031 }
2032 #endif /* CONFIG_COMPAT */
2033
2034 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2035 {
2036 #ifdef CONFIG_COMPAT
2037         /*
2038          * Core dumping of 32-bit tasks or compat ptrace requests must use the
2039          * user_aarch32_view compatible with arm32. Native ptrace requests on
2040          * 32-bit children use an extended user_aarch32_ptrace_view to allow
2041          * access to the TLS register.
2042          */
2043         if (is_compat_task())
2044                 return &user_aarch32_view;
2045         else if (is_compat_thread(task_thread_info(task)))
2046                 return &user_aarch32_ptrace_view;
2047 #endif
2048         return &user_aarch64_view;
2049 }
2050
2051 long arch_ptrace(struct task_struct *child, long request,
2052                  unsigned long addr, unsigned long data)
2053 {
2054         switch (request) {
2055         case PTRACE_PEEKMTETAGS:
2056         case PTRACE_POKEMTETAGS:
2057                 return mte_ptrace_copy_tags(child, request, addr, data);
2058         }
2059
2060         return ptrace_request(child, request, addr, data);
2061 }
2062
2063 enum ptrace_syscall_dir {
2064         PTRACE_SYSCALL_ENTER = 0,
2065         PTRACE_SYSCALL_EXIT,
2066 };
2067
2068 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2069 {
2070         int regno;
2071         unsigned long saved_reg;
2072
2073         /*
2074          * We have some ABI weirdness here in the way that we handle syscall
2075          * exit stops because we indicate whether or not the stop has been
2076          * signalled from syscall entry or syscall exit by clobbering a general
2077          * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2078          * and restoring its old value after the stop. This means that:
2079          *
2080          * - Any writes by the tracer to this register during the stop are
2081          *   ignored/discarded.
2082          *
2083          * - The actual value of the register is not available during the stop,
2084          *   so the tracer cannot save it and restore it later.
2085          *
2086          * - Syscall stops behave differently to seccomp and pseudo-step traps
2087          *   (the latter do not nobble any registers).
2088          */
2089         regno = (is_compat_task() ? 12 : 7);
2090         saved_reg = regs->regs[regno];
2091         regs->regs[regno] = dir;
2092
2093         if (dir == PTRACE_SYSCALL_ENTER) {
2094                 if (ptrace_report_syscall_entry(regs))
2095                         forget_syscall(regs);
2096                 regs->regs[regno] = saved_reg;
2097         } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2098                 ptrace_report_syscall_exit(regs, 0);
2099                 regs->regs[regno] = saved_reg;
2100         } else {
2101                 regs->regs[regno] = saved_reg;
2102
2103                 /*
2104                  * Signal a pseudo-step exception since we are stepping but
2105                  * tracer modifications to the registers may have rewound the
2106                  * state machine.
2107                  */
2108                 ptrace_report_syscall_exit(regs, 1);
2109         }
2110 }
2111
2112 int syscall_trace_enter(struct pt_regs *regs)
2113 {
2114         unsigned long flags = read_thread_flags();
2115
2116         if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2117                 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2118                 if (flags & _TIF_SYSCALL_EMU)
2119                         return NO_SYSCALL;
2120         }
2121
2122         /* Do the secure computing after ptrace; failures should be fast. */
2123         if (secure_computing() == -1)
2124                 return NO_SYSCALL;
2125
2126         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2127                 trace_sys_enter(regs, regs->syscallno);
2128
2129         audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2130                             regs->regs[2], regs->regs[3]);
2131
2132         return regs->syscallno;
2133 }
2134
2135 void syscall_trace_exit(struct pt_regs *regs)
2136 {
2137         unsigned long flags = read_thread_flags();
2138
2139         audit_syscall_exit(regs);
2140
2141         if (flags & _TIF_SYSCALL_TRACEPOINT)
2142                 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2143
2144         if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2145                 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2146
2147         rseq_syscall(regs);
2148 }
2149
2150 /*
2151  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2152  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2153  * not described in ARM DDI 0487D.a.
2154  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2155  * be allocated an EL0 meaning in future.
2156  * Userspace cannot use these until they have an architectural meaning.
2157  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2158  * We also reserve IL for the kernel; SS is handled dynamically.
2159  */
2160 #define SPSR_EL1_AARCH64_RES0_BITS \
2161         (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2162          GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2163 #define SPSR_EL1_AARCH32_RES0_BITS \
2164         (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2165
2166 static int valid_compat_regs(struct user_pt_regs *regs)
2167 {
2168         regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2169
2170         if (!system_supports_mixed_endian_el0()) {
2171                 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2172                         regs->pstate |= PSR_AA32_E_BIT;
2173                 else
2174                         regs->pstate &= ~PSR_AA32_E_BIT;
2175         }
2176
2177         if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2178             (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2179             (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2180             (regs->pstate & PSR_AA32_F_BIT) == 0) {
2181                 return 1;
2182         }
2183
2184         /*
2185          * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2186          * arch/arm.
2187          */
2188         regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2189                         PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2190                         PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2191                         PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2192                         PSR_AA32_T_BIT;
2193         regs->pstate |= PSR_MODE32_BIT;
2194
2195         return 0;
2196 }
2197
2198 static int valid_native_regs(struct user_pt_regs *regs)
2199 {
2200         regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2201
2202         if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2203             (regs->pstate & PSR_D_BIT) == 0 &&
2204             (regs->pstate & PSR_A_BIT) == 0 &&
2205             (regs->pstate & PSR_I_BIT) == 0 &&
2206             (regs->pstate & PSR_F_BIT) == 0) {
2207                 return 1;
2208         }
2209
2210         /* Force PSR to a valid 64-bit EL0t */
2211         regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2212
2213         return 0;
2214 }
2215
2216 /*
2217  * Are the current registers suitable for user mode? (used to maintain
2218  * security in signal handlers)
2219  */
2220 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2221 {
2222         /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2223         user_regs_reset_single_step(regs, task);
2224
2225         if (is_compat_thread(task_thread_info(task)))
2226                 return valid_compat_regs(regs);
2227         else
2228                 return valid_native_regs(regs);
2229 }