9ba33c40cdf8f841e974f68e599f0f97e87138ff
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / arm64 / kernel / perf_event.c
1 /*
2  * PMU support
3  *
4  * Copyright (C) 2012 ARM Limited
5  * Author: Will Deacon <will.deacon@arm.com>
6  *
7  * This code is based heavily on the ARMv7 perf event code.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/perf_event.h>
28 #include <linux/platform_device.h>
29 #include <linux/spinlock.h>
30 #include <linux/uaccess.h>
31
32 #include <asm/cputype.h>
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/pmu.h>
36 #include <asm/stacktrace.h>
37
38 /*
39  * ARMv8 supports a maximum of 32 events.
40  * The cycle counter is included in this total.
41  */
42 #define ARMPMU_MAX_HWEVENTS             32
43
44 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
45 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
46 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
47
48 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
49
50 /* Set at runtime when we know what CPU type we are. */
51 static struct arm_pmu *cpu_pmu;
52
53 int
54 armpmu_get_max_events(void)
55 {
56         int max_events = 0;
57
58         if (cpu_pmu != NULL)
59                 max_events = cpu_pmu->num_events;
60
61         return max_events;
62 }
63 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
64
65 int perf_num_counters(void)
66 {
67         return armpmu_get_max_events();
68 }
69 EXPORT_SYMBOL_GPL(perf_num_counters);
70
71 #define HW_OP_UNSUPPORTED               0xFFFF
72
73 #define C(_x) \
74         PERF_COUNT_HW_CACHE_##_x
75
76 #define CACHE_OP_UNSUPPORTED            0xFFFF
77
78 static int
79 armpmu_map_cache_event(const unsigned (*cache_map)
80                                       [PERF_COUNT_HW_CACHE_MAX]
81                                       [PERF_COUNT_HW_CACHE_OP_MAX]
82                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
83                        u64 config)
84 {
85         unsigned int cache_type, cache_op, cache_result, ret;
86
87         cache_type = (config >>  0) & 0xff;
88         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
89                 return -EINVAL;
90
91         cache_op = (config >>  8) & 0xff;
92         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
93                 return -EINVAL;
94
95         cache_result = (config >> 16) & 0xff;
96         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
97                 return -EINVAL;
98
99         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
100
101         if (ret == CACHE_OP_UNSUPPORTED)
102                 return -ENOENT;
103
104         return ret;
105 }
106
107 static int
108 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
109 {
110         int mapping = (*event_map)[config];
111         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
112 }
113
114 static int
115 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
116 {
117         return (int)(config & raw_event_mask);
118 }
119
120 static int map_cpu_event(struct perf_event *event,
121                          const unsigned (*event_map)[PERF_COUNT_HW_MAX],
122                          const unsigned (*cache_map)
123                                         [PERF_COUNT_HW_CACHE_MAX]
124                                         [PERF_COUNT_HW_CACHE_OP_MAX]
125                                         [PERF_COUNT_HW_CACHE_RESULT_MAX],
126                          u32 raw_event_mask)
127 {
128         u64 config = event->attr.config;
129
130         switch (event->attr.type) {
131         case PERF_TYPE_HARDWARE:
132                 return armpmu_map_event(event_map, config);
133         case PERF_TYPE_HW_CACHE:
134                 return armpmu_map_cache_event(cache_map, config);
135         case PERF_TYPE_RAW:
136                 return armpmu_map_raw_event(raw_event_mask, config);
137         }
138
139         return -ENOENT;
140 }
141
142 int
143 armpmu_event_set_period(struct perf_event *event,
144                         struct hw_perf_event *hwc,
145                         int idx)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         s64 left = local64_read(&hwc->period_left);
149         s64 period = hwc->sample_period;
150         int ret = 0;
151
152         if (unlikely(left <= -period)) {
153                 left = period;
154                 local64_set(&hwc->period_left, left);
155                 hwc->last_period = period;
156                 ret = 1;
157         }
158
159         if (unlikely(left <= 0)) {
160                 left += period;
161                 local64_set(&hwc->period_left, left);
162                 hwc->last_period = period;
163                 ret = 1;
164         }
165
166         if (left > (s64)armpmu->max_period)
167                 left = armpmu->max_period;
168
169         local64_set(&hwc->prev_count, (u64)-left);
170
171         armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
172
173         perf_event_update_userpage(event);
174
175         return ret;
176 }
177
178 u64
179 armpmu_event_update(struct perf_event *event,
180                     struct hw_perf_event *hwc,
181                     int idx)
182 {
183         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
184         u64 delta, prev_raw_count, new_raw_count;
185
186 again:
187         prev_raw_count = local64_read(&hwc->prev_count);
188         new_raw_count = armpmu->read_counter(idx);
189
190         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
191                              new_raw_count) != prev_raw_count)
192                 goto again;
193
194         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
195
196         local64_add(delta, &event->count);
197         local64_sub(delta, &hwc->period_left);
198
199         return new_raw_count;
200 }
201
202 static void
203 armpmu_read(struct perf_event *event)
204 {
205         struct hw_perf_event *hwc = &event->hw;
206
207         /* Don't read disabled counters! */
208         if (hwc->idx < 0)
209                 return;
210
211         armpmu_event_update(event, hwc, hwc->idx);
212 }
213
214 static void
215 armpmu_stop(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct hw_perf_event *hwc = &event->hw;
219
220         /*
221          * ARM pmu always has to update the counter, so ignore
222          * PERF_EF_UPDATE, see comments in armpmu_start().
223          */
224         if (!(hwc->state & PERF_HES_STOPPED)) {
225                 armpmu->disable(hwc, hwc->idx);
226                 barrier(); /* why? */
227                 armpmu_event_update(event, hwc, hwc->idx);
228                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
229         }
230 }
231
232 static void
233 armpmu_start(struct perf_event *event, int flags)
234 {
235         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236         struct hw_perf_event *hwc = &event->hw;
237
238         /*
239          * ARM pmu always has to reprogram the period, so ignore
240          * PERF_EF_RELOAD, see the comment below.
241          */
242         if (flags & PERF_EF_RELOAD)
243                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
244
245         hwc->state = 0;
246         /*
247          * Set the period again. Some counters can't be stopped, so when we
248          * were stopped we simply disabled the IRQ source and the counter
249          * may have been left counting. If we don't do this step then we may
250          * get an interrupt too soon or *way* too late if the overflow has
251          * happened since disabling.
252          */
253         armpmu_event_set_period(event, hwc, hwc->idx);
254         armpmu->enable(hwc, hwc->idx);
255 }
256
257 static void
258 armpmu_del(struct perf_event *event, int flags)
259 {
260         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
261         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
262         struct hw_perf_event *hwc = &event->hw;
263         int idx = hwc->idx;
264
265         WARN_ON(idx < 0);
266
267         armpmu_stop(event, PERF_EF_UPDATE);
268         hw_events->events[idx] = NULL;
269         clear_bit(idx, hw_events->used_mask);
270
271         perf_event_update_userpage(event);
272 }
273
274 static int
275 armpmu_add(struct perf_event *event, int flags)
276 {
277         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
278         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
279         struct hw_perf_event *hwc = &event->hw;
280         int idx;
281         int err = 0;
282
283         perf_pmu_disable(event->pmu);
284
285         /* If we don't have a space for the counter then finish early. */
286         idx = armpmu->get_event_idx(hw_events, hwc);
287         if (idx < 0) {
288                 err = idx;
289                 goto out;
290         }
291
292         /*
293          * If there is an event in the counter we are going to use then make
294          * sure it is disabled.
295          */
296         event->hw.idx = idx;
297         armpmu->disable(hwc, idx);
298         hw_events->events[idx] = event;
299
300         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
301         if (flags & PERF_EF_START)
302                 armpmu_start(event, PERF_EF_RELOAD);
303
304         /* Propagate our changes to the userspace mapping. */
305         perf_event_update_userpage(event);
306
307 out:
308         perf_pmu_enable(event->pmu);
309         return err;
310 }
311
312 static int
313 validate_event(struct pmu_hw_events *hw_events,
314                struct perf_event *event)
315 {
316         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
317         struct hw_perf_event fake_event = event->hw;
318         struct pmu *leader_pmu = event->group_leader->pmu;
319
320         if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
321                 return 1;
322
323         return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
324 }
325
326 static int
327 validate_group(struct perf_event *event)
328 {
329         struct perf_event *sibling, *leader = event->group_leader;
330         struct pmu_hw_events fake_pmu;
331         DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
332
333         /*
334          * Initialise the fake PMU. We only need to populate the
335          * used_mask for the purposes of validation.
336          */
337         memset(fake_used_mask, 0, sizeof(fake_used_mask));
338         fake_pmu.used_mask = fake_used_mask;
339
340         if (!validate_event(&fake_pmu, leader))
341                 return -EINVAL;
342
343         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
344                 if (!validate_event(&fake_pmu, sibling))
345                         return -EINVAL;
346         }
347
348         if (!validate_event(&fake_pmu, event))
349                 return -EINVAL;
350
351         return 0;
352 }
353
354 static void
355 armpmu_release_hardware(struct arm_pmu *armpmu)
356 {
357         int i, irq, irqs;
358         struct platform_device *pmu_device = armpmu->plat_device;
359
360         irqs = min(pmu_device->num_resources, num_possible_cpus());
361
362         for (i = 0; i < irqs; ++i) {
363                 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
364                         continue;
365                 irq = platform_get_irq(pmu_device, i);
366                 if (irq >= 0)
367                         free_irq(irq, armpmu);
368         }
369 }
370
371 static int
372 armpmu_reserve_hardware(struct arm_pmu *armpmu)
373 {
374         int i, err, irq, irqs;
375         struct platform_device *pmu_device = armpmu->plat_device;
376
377         if (!pmu_device) {
378                 pr_err("no PMU device registered\n");
379                 return -ENODEV;
380         }
381
382         irqs = min(pmu_device->num_resources, num_possible_cpus());
383         if (irqs < 1) {
384                 pr_err("no irqs for PMUs defined\n");
385                 return -ENODEV;
386         }
387
388         for (i = 0; i < irqs; ++i) {
389                 err = 0;
390                 irq = platform_get_irq(pmu_device, i);
391                 if (irq < 0)
392                         continue;
393
394                 /*
395                  * If we have a single PMU interrupt that we can't shift,
396                  * assume that we're running on a uniprocessor machine and
397                  * continue. Otherwise, continue without this interrupt.
398                  */
399                 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
400                         pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
401                                     irq, i);
402                         continue;
403                 }
404
405                 err = request_irq(irq, armpmu->handle_irq,
406                                   IRQF_NOBALANCING,
407                                   "arm-pmu", armpmu);
408                 if (err) {
409                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
410                                 irq);
411                         armpmu_release_hardware(armpmu);
412                         return err;
413                 }
414
415                 cpumask_set_cpu(i, &armpmu->active_irqs);
416         }
417
418         return 0;
419 }
420
421 static void
422 hw_perf_event_destroy(struct perf_event *event)
423 {
424         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425         atomic_t *active_events  = &armpmu->active_events;
426         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
427
428         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
429                 armpmu_release_hardware(armpmu);
430                 mutex_unlock(pmu_reserve_mutex);
431         }
432 }
433
434 static int
435 event_requires_mode_exclusion(struct perf_event_attr *attr)
436 {
437         return attr->exclude_idle || attr->exclude_user ||
438                attr->exclude_kernel || attr->exclude_hv;
439 }
440
441 static int
442 __hw_perf_event_init(struct perf_event *event)
443 {
444         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445         struct hw_perf_event *hwc = &event->hw;
446         int mapping, err;
447
448         mapping = armpmu->map_event(event);
449
450         if (mapping < 0) {
451                 pr_debug("event %x:%llx not supported\n", event->attr.type,
452                          event->attr.config);
453                 return mapping;
454         }
455
456         /*
457          * We don't assign an index until we actually place the event onto
458          * hardware. Use -1 to signify that we haven't decided where to put it
459          * yet. For SMP systems, each core has it's own PMU so we can't do any
460          * clever allocation or constraints checking at this point.
461          */
462         hwc->idx                = -1;
463         hwc->config_base        = 0;
464         hwc->config             = 0;
465         hwc->event_base         = 0;
466
467         /*
468          * Check whether we need to exclude the counter from certain modes.
469          */
470         if ((!armpmu->set_event_filter ||
471              armpmu->set_event_filter(hwc, &event->attr)) &&
472              event_requires_mode_exclusion(&event->attr)) {
473                 pr_debug("ARM performance counters do not support mode exclusion\n");
474                 return -EPERM;
475         }
476
477         /*
478          * Store the event encoding into the config_base field.
479          */
480         hwc->config_base            |= (unsigned long)mapping;
481
482         if (!hwc->sample_period) {
483                 /*
484                  * For non-sampling runs, limit the sample_period to half
485                  * of the counter width. That way, the new counter value
486                  * is far less likely to overtake the previous one unless
487                  * you have some serious IRQ latency issues.
488                  */
489                 hwc->sample_period  = armpmu->max_period >> 1;
490                 hwc->last_period    = hwc->sample_period;
491                 local64_set(&hwc->period_left, hwc->sample_period);
492         }
493
494         err = 0;
495         if (event->group_leader != event) {
496                 err = validate_group(event);
497                 if (err)
498                         return -EINVAL;
499         }
500
501         return err;
502 }
503
504 static int armpmu_event_init(struct perf_event *event)
505 {
506         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
507         int err = 0;
508         atomic_t *active_events = &armpmu->active_events;
509
510         if (armpmu->map_event(event) == -ENOENT)
511                 return -ENOENT;
512
513         event->destroy = hw_perf_event_destroy;
514
515         if (!atomic_inc_not_zero(active_events)) {
516                 mutex_lock(&armpmu->reserve_mutex);
517                 if (atomic_read(active_events) == 0)
518                         err = armpmu_reserve_hardware(armpmu);
519
520                 if (!err)
521                         atomic_inc(active_events);
522                 mutex_unlock(&armpmu->reserve_mutex);
523         }
524
525         if (err)
526                 return err;
527
528         err = __hw_perf_event_init(event);
529         if (err)
530                 hw_perf_event_destroy(event);
531
532         return err;
533 }
534
535 static void armpmu_enable(struct pmu *pmu)
536 {
537         struct arm_pmu *armpmu = to_arm_pmu(pmu);
538         struct pmu_hw_events *hw_events = armpmu->get_hw_events();
539         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
540
541         if (enabled)
542                 armpmu->start();
543 }
544
545 static void armpmu_disable(struct pmu *pmu)
546 {
547         struct arm_pmu *armpmu = to_arm_pmu(pmu);
548         armpmu->stop();
549 }
550
551 static void __init armpmu_init(struct arm_pmu *armpmu)
552 {
553         atomic_set(&armpmu->active_events, 0);
554         mutex_init(&armpmu->reserve_mutex);
555
556         armpmu->pmu = (struct pmu) {
557                 .pmu_enable     = armpmu_enable,
558                 .pmu_disable    = armpmu_disable,
559                 .event_init     = armpmu_event_init,
560                 .add            = armpmu_add,
561                 .del            = armpmu_del,
562                 .start          = armpmu_start,
563                 .stop           = armpmu_stop,
564                 .read           = armpmu_read,
565         };
566 }
567
568 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
569 {
570         armpmu_init(armpmu);
571         return perf_pmu_register(&armpmu->pmu, name, type);
572 }
573
574 /*
575  * ARMv8 PMUv3 Performance Events handling code.
576  * Common event types.
577  */
578 enum armv8_pmuv3_perf_types {
579         /* Required events. */
580         ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR                        = 0x00,
581         ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL                    = 0x03,
582         ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS                    = 0x04,
583         ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED                  = 0x10,
584         ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES                        = 0x11,
585         ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED                      = 0x12,
586
587         /* At least one of the following is required. */
588         ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED                      = 0x08,
589         ARMV8_PMUV3_PERFCTR_OP_SPEC                             = 0x1B,
590
591         /* Common architectural events. */
592         ARMV8_PMUV3_PERFCTR_MEM_READ                            = 0x06,
593         ARMV8_PMUV3_PERFCTR_MEM_WRITE                           = 0x07,
594         ARMV8_PMUV3_PERFCTR_EXC_TAKEN                           = 0x09,
595         ARMV8_PMUV3_PERFCTR_EXC_EXECUTED                        = 0x0A,
596         ARMV8_PMUV3_PERFCTR_CID_WRITE                           = 0x0B,
597         ARMV8_PMUV3_PERFCTR_PC_WRITE                            = 0x0C,
598         ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH                       = 0x0D,
599         ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN                      = 0x0E,
600         ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS                = 0x0F,
601         ARMV8_PMUV3_PERFCTR_TTBR_WRITE                          = 0x1C,
602
603         /* Common microarchitectural events. */
604         ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL                    = 0x01,
605         ARMV8_PMUV3_PERFCTR_ITLB_REFILL                         = 0x02,
606         ARMV8_PMUV3_PERFCTR_DTLB_REFILL                         = 0x05,
607         ARMV8_PMUV3_PERFCTR_MEM_ACCESS                          = 0x13,
608         ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS                    = 0x14,
609         ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB                        = 0x15,
610         ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS                     = 0x16,
611         ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL                     = 0x17,
612         ARMV8_PMUV3_PERFCTR_L2_CACHE_WB                         = 0x18,
613         ARMV8_PMUV3_PERFCTR_BUS_ACCESS                          = 0x19,
614         ARMV8_PMUV3_PERFCTR_MEM_ERROR                           = 0x1A,
615         ARMV8_PMUV3_PERFCTR_BUS_CYCLES                          = 0x1D,
616 };
617
618 /* PMUv3 HW events mapping. */
619 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
620         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
621         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
622         [PERF_COUNT_HW_CACHE_REFERENCES]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
623         [PERF_COUNT_HW_CACHE_MISSES]            = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
624         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = HW_OP_UNSUPPORTED,
625         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
626         [PERF_COUNT_HW_BUS_CYCLES]              = HW_OP_UNSUPPORTED,
627         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
628         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = HW_OP_UNSUPPORTED,
629 };
630
631 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
632                                                 [PERF_COUNT_HW_CACHE_OP_MAX]
633                                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
634         [C(L1D)] = {
635                 [C(OP_READ)] = {
636                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
637                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
638                 },
639                 [C(OP_WRITE)] = {
640                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
641                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
642                 },
643                 [C(OP_PREFETCH)] = {
644                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
645                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
646                 },
647         },
648         [C(L1I)] = {
649                 [C(OP_READ)] = {
650                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
651                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
652                 },
653                 [C(OP_WRITE)] = {
654                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
655                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
656                 },
657                 [C(OP_PREFETCH)] = {
658                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
659                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
660                 },
661         },
662         [C(LL)] = {
663                 [C(OP_READ)] = {
664                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
665                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
666                 },
667                 [C(OP_WRITE)] = {
668                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
669                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
670                 },
671                 [C(OP_PREFETCH)] = {
672                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
673                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
674                 },
675         },
676         [C(DTLB)] = {
677                 [C(OP_READ)] = {
678                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
679                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
680                 },
681                 [C(OP_WRITE)] = {
682                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
683                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
684                 },
685                 [C(OP_PREFETCH)] = {
686                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
687                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
688                 },
689         },
690         [C(ITLB)] = {
691                 [C(OP_READ)] = {
692                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
693                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
694                 },
695                 [C(OP_WRITE)] = {
696                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
697                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
698                 },
699                 [C(OP_PREFETCH)] = {
700                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
701                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
702                 },
703         },
704         [C(BPU)] = {
705                 [C(OP_READ)] = {
706                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
707                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
708                 },
709                 [C(OP_WRITE)] = {
710                         [C(RESULT_ACCESS)]      = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
711                         [C(RESULT_MISS)]        = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
712                 },
713                 [C(OP_PREFETCH)] = {
714                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
715                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
716                 },
717         },
718         [C(NODE)] = {
719                 [C(OP_READ)] = {
720                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
721                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
722                 },
723                 [C(OP_WRITE)] = {
724                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
725                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
726                 },
727                 [C(OP_PREFETCH)] = {
728                         [C(RESULT_ACCESS)]      = CACHE_OP_UNSUPPORTED,
729                         [C(RESULT_MISS)]        = CACHE_OP_UNSUPPORTED,
730                 },
731         },
732 };
733
734 /*
735  * Perf Events' indices
736  */
737 #define ARMV8_IDX_CYCLE_COUNTER 0
738 #define ARMV8_IDX_COUNTER0      1
739 #define ARMV8_IDX_COUNTER_LAST  (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
740
741 #define ARMV8_MAX_COUNTERS      32
742 #define ARMV8_COUNTER_MASK      (ARMV8_MAX_COUNTERS - 1)
743
744 /*
745  * ARMv8 low level PMU access
746  */
747
748 /*
749  * Perf Event to low level counters mapping
750  */
751 #define ARMV8_IDX_TO_COUNTER(x) \
752         (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
753
754 /*
755  * Per-CPU PMCR: config reg
756  */
757 #define ARMV8_PMCR_E            (1 << 0) /* Enable all counters */
758 #define ARMV8_PMCR_P            (1 << 1) /* Reset all counters */
759 #define ARMV8_PMCR_C            (1 << 2) /* Cycle counter reset */
760 #define ARMV8_PMCR_D            (1 << 3) /* CCNT counts every 64th cpu cycle */
761 #define ARMV8_PMCR_X            (1 << 4) /* Export to ETM */
762 #define ARMV8_PMCR_DP           (1 << 5) /* Disable CCNT if non-invasive debug*/
763 #define ARMV8_PMCR_N_SHIFT      11       /* Number of counters supported */
764 #define ARMV8_PMCR_N_MASK       0x1f
765 #define ARMV8_PMCR_MASK         0x3f     /* Mask for writable bits */
766
767 /*
768  * PMOVSR: counters overflow flag status reg
769  */
770 #define ARMV8_OVSR_MASK         0xffffffff      /* Mask for writable bits */
771 #define ARMV8_OVERFLOWED_MASK   ARMV8_OVSR_MASK
772
773 /*
774  * PMXEVTYPER: Event selection reg
775  */
776 #define ARMV8_EVTYPE_MASK       0xc00000ff      /* Mask for writable bits */
777 #define ARMV8_EVTYPE_EVENT      0xff            /* Mask for EVENT bits */
778
779 /*
780  * Event filters for PMUv3
781  */
782 #define ARMV8_EXCLUDE_EL1       (1 << 31)
783 #define ARMV8_EXCLUDE_EL0       (1 << 30)
784 #define ARMV8_INCLUDE_EL2       (1 << 27)
785
786 static inline u32 armv8pmu_pmcr_read(void)
787 {
788         u32 val;
789         asm volatile("mrs %0, pmcr_el0" : "=r" (val));
790         return val;
791 }
792
793 static inline void armv8pmu_pmcr_write(u32 val)
794 {
795         val &= ARMV8_PMCR_MASK;
796         isb();
797         asm volatile("msr pmcr_el0, %0" :: "r" (val));
798 }
799
800 static inline int armv8pmu_has_overflowed(u32 pmovsr)
801 {
802         return pmovsr & ARMV8_OVERFLOWED_MASK;
803 }
804
805 static inline int armv8pmu_counter_valid(int idx)
806 {
807         return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
808 }
809
810 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
811 {
812         int ret = 0;
813         u32 counter;
814
815         if (!armv8pmu_counter_valid(idx)) {
816                 pr_err("CPU%u checking wrong counter %d overflow status\n",
817                         smp_processor_id(), idx);
818         } else {
819                 counter = ARMV8_IDX_TO_COUNTER(idx);
820                 ret = pmnc & BIT(counter);
821         }
822
823         return ret;
824 }
825
826 static inline int armv8pmu_select_counter(int idx)
827 {
828         u32 counter;
829
830         if (!armv8pmu_counter_valid(idx)) {
831                 pr_err("CPU%u selecting wrong PMNC counter %d\n",
832                         smp_processor_id(), idx);
833                 return -EINVAL;
834         }
835
836         counter = ARMV8_IDX_TO_COUNTER(idx);
837         asm volatile("msr pmselr_el0, %0" :: "r" (counter));
838         isb();
839
840         return idx;
841 }
842
843 static inline u32 armv8pmu_read_counter(int idx)
844 {
845         u32 value = 0;
846
847         if (!armv8pmu_counter_valid(idx))
848                 pr_err("CPU%u reading wrong counter %d\n",
849                         smp_processor_id(), idx);
850         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
851                 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
852         else if (armv8pmu_select_counter(idx) == idx)
853                 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
854
855         return value;
856 }
857
858 static inline void armv8pmu_write_counter(int idx, u32 value)
859 {
860         if (!armv8pmu_counter_valid(idx))
861                 pr_err("CPU%u writing wrong counter %d\n",
862                         smp_processor_id(), idx);
863         else if (idx == ARMV8_IDX_CYCLE_COUNTER)
864                 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
865         else if (armv8pmu_select_counter(idx) == idx)
866                 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
867 }
868
869 static inline void armv8pmu_write_evtype(int idx, u32 val)
870 {
871         if (armv8pmu_select_counter(idx) == idx) {
872                 val &= ARMV8_EVTYPE_MASK;
873                 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
874         }
875 }
876
877 static inline int armv8pmu_enable_counter(int idx)
878 {
879         u32 counter;
880
881         if (!armv8pmu_counter_valid(idx)) {
882                 pr_err("CPU%u enabling wrong PMNC counter %d\n",
883                         smp_processor_id(), idx);
884                 return -EINVAL;
885         }
886
887         counter = ARMV8_IDX_TO_COUNTER(idx);
888         asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
889         return idx;
890 }
891
892 static inline int armv8pmu_disable_counter(int idx)
893 {
894         u32 counter;
895
896         if (!armv8pmu_counter_valid(idx)) {
897                 pr_err("CPU%u disabling wrong PMNC counter %d\n",
898                         smp_processor_id(), idx);
899                 return -EINVAL;
900         }
901
902         counter = ARMV8_IDX_TO_COUNTER(idx);
903         asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
904         return idx;
905 }
906
907 static inline int armv8pmu_enable_intens(int idx)
908 {
909         u32 counter;
910
911         if (!armv8pmu_counter_valid(idx)) {
912                 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
913                         smp_processor_id(), idx);
914                 return -EINVAL;
915         }
916
917         counter = ARMV8_IDX_TO_COUNTER(idx);
918         asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
919         return idx;
920 }
921
922 static inline int armv8pmu_disable_intens(int idx)
923 {
924         u32 counter;
925
926         if (!armv8pmu_counter_valid(idx)) {
927                 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
928                         smp_processor_id(), idx);
929                 return -EINVAL;
930         }
931
932         counter = ARMV8_IDX_TO_COUNTER(idx);
933         asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
934         isb();
935         /* Clear the overflow flag in case an interrupt is pending. */
936         asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
937         isb();
938         return idx;
939 }
940
941 static inline u32 armv8pmu_getreset_flags(void)
942 {
943         u32 value;
944
945         /* Read */
946         asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
947
948         /* Write to clear flags */
949         value &= ARMV8_OVSR_MASK;
950         asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
951
952         return value;
953 }
954
955 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
956 {
957         unsigned long flags;
958         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
959
960         /*
961          * Enable counter and interrupt, and set the counter to count
962          * the event that we're interested in.
963          */
964         raw_spin_lock_irqsave(&events->pmu_lock, flags);
965
966         /*
967          * Disable counter
968          */
969         armv8pmu_disable_counter(idx);
970
971         /*
972          * Set event (if destined for PMNx counters).
973          */
974         armv8pmu_write_evtype(idx, hwc->config_base);
975
976         /*
977          * Enable interrupt for this counter
978          */
979         armv8pmu_enable_intens(idx);
980
981         /*
982          * Enable counter
983          */
984         armv8pmu_enable_counter(idx);
985
986         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
987 }
988
989 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
990 {
991         unsigned long flags;
992         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
993
994         /*
995          * Disable counter and interrupt
996          */
997         raw_spin_lock_irqsave(&events->pmu_lock, flags);
998
999         /*
1000          * Disable counter
1001          */
1002         armv8pmu_disable_counter(idx);
1003
1004         /*
1005          * Disable interrupt for this counter
1006          */
1007         armv8pmu_disable_intens(idx);
1008
1009         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1010 }
1011
1012 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1013 {
1014         u32 pmovsr;
1015         struct perf_sample_data data;
1016         struct pmu_hw_events *cpuc;
1017         struct pt_regs *regs;
1018         int idx;
1019
1020         /*
1021          * Get and reset the IRQ flags
1022          */
1023         pmovsr = armv8pmu_getreset_flags();
1024
1025         /*
1026          * Did an overflow occur?
1027          */
1028         if (!armv8pmu_has_overflowed(pmovsr))
1029                 return IRQ_NONE;
1030
1031         /*
1032          * Handle the counter(s) overflow(s)
1033          */
1034         regs = get_irq_regs();
1035
1036         cpuc = &__get_cpu_var(cpu_hw_events);
1037         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1038                 struct perf_event *event = cpuc->events[idx];
1039                 struct hw_perf_event *hwc;
1040
1041                 /* Ignore if we don't have an event. */
1042                 if (!event)
1043                         continue;
1044
1045                 /*
1046                  * We have a single interrupt for all counters. Check that
1047                  * each counter has overflowed before we process it.
1048                  */
1049                 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1050                         continue;
1051
1052                 hwc = &event->hw;
1053                 armpmu_event_update(event, hwc, idx);
1054                 perf_sample_data_init(&data, 0, hwc->last_period);
1055                 if (!armpmu_event_set_period(event, hwc, idx))
1056                         continue;
1057
1058                 if (perf_event_overflow(event, &data, regs))
1059                         cpu_pmu->disable(hwc, idx);
1060         }
1061
1062         /*
1063          * Handle the pending perf events.
1064          *
1065          * Note: this call *must* be run with interrupts disabled. For
1066          * platforms that can have the PMU interrupts raised as an NMI, this
1067          * will not work.
1068          */
1069         irq_work_run();
1070
1071         return IRQ_HANDLED;
1072 }
1073
1074 static void armv8pmu_start(void)
1075 {
1076         unsigned long flags;
1077         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1078
1079         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1080         /* Enable all counters */
1081         armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1082         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1083 }
1084
1085 static void armv8pmu_stop(void)
1086 {
1087         unsigned long flags;
1088         struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1089
1090         raw_spin_lock_irqsave(&events->pmu_lock, flags);
1091         /* Disable all counters */
1092         armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1093         raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1094 }
1095
1096 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1097                                   struct hw_perf_event *event)
1098 {
1099         int idx;
1100         unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1101
1102         /* Always place a cycle counter into the cycle counter. */
1103         if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1104                 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1105                         return -EAGAIN;
1106
1107                 return ARMV8_IDX_CYCLE_COUNTER;
1108         }
1109
1110         /*
1111          * For anything other than a cycle counter, try and use
1112          * the events counters
1113          */
1114         for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1115                 if (!test_and_set_bit(idx, cpuc->used_mask))
1116                         return idx;
1117         }
1118
1119         /* The counters are all in use. */
1120         return -EAGAIN;
1121 }
1122
1123 /*
1124  * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1125  */
1126 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1127                                      struct perf_event_attr *attr)
1128 {
1129         unsigned long config_base = 0;
1130
1131         if (attr->exclude_idle)
1132                 return -EPERM;
1133         if (attr->exclude_user)
1134                 config_base |= ARMV8_EXCLUDE_EL0;
1135         if (attr->exclude_kernel)
1136                 config_base |= ARMV8_EXCLUDE_EL1;
1137         if (!attr->exclude_hv)
1138                 config_base |= ARMV8_INCLUDE_EL2;
1139
1140         /*
1141          * Install the filter into config_base as this is used to
1142          * construct the event type.
1143          */
1144         event->config_base = config_base;
1145
1146         return 0;
1147 }
1148
1149 static void armv8pmu_reset(void *info)
1150 {
1151         u32 idx, nb_cnt = cpu_pmu->num_events;
1152
1153         /* The counter and interrupt enable registers are unknown at reset. */
1154         for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1155                 armv8pmu_disable_event(NULL, idx);
1156
1157         /* Initialize & Reset PMNC: C and P bits. */
1158         armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1159
1160         /* Disable access from userspace. */
1161         asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1162 }
1163
1164 static int armv8_pmuv3_map_event(struct perf_event *event)
1165 {
1166         return map_cpu_event(event, &armv8_pmuv3_perf_map,
1167                                 &armv8_pmuv3_perf_cache_map, 0xFF);
1168 }
1169
1170 static struct arm_pmu armv8pmu = {
1171         .handle_irq             = armv8pmu_handle_irq,
1172         .enable                 = armv8pmu_enable_event,
1173         .disable                = armv8pmu_disable_event,
1174         .read_counter           = armv8pmu_read_counter,
1175         .write_counter          = armv8pmu_write_counter,
1176         .get_event_idx          = armv8pmu_get_event_idx,
1177         .start                  = armv8pmu_start,
1178         .stop                   = armv8pmu_stop,
1179         .reset                  = armv8pmu_reset,
1180         .max_period             = (1LLU << 32) - 1,
1181 };
1182
1183 static u32 __init armv8pmu_read_num_pmnc_events(void)
1184 {
1185         u32 nb_cnt;
1186
1187         /* Read the nb of CNTx counters supported from PMNC */
1188         nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1189
1190         /* Add the CPU cycles counter and return */
1191         return nb_cnt + 1;
1192 }
1193
1194 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1195 {
1196         armv8pmu.name                   = "arm/armv8-pmuv3";
1197         armv8pmu.map_event              = armv8_pmuv3_map_event;
1198         armv8pmu.num_events             = armv8pmu_read_num_pmnc_events();
1199         armv8pmu.set_event_filter       = armv8pmu_set_event_filter;
1200         return &armv8pmu;
1201 }
1202
1203 /*
1204  * Ensure the PMU has sane values out of reset.
1205  * This requires SMP to be available, so exists as a separate initcall.
1206  */
1207 static int __init
1208 cpu_pmu_reset(void)
1209 {
1210         if (cpu_pmu && cpu_pmu->reset)
1211                 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1212         return 0;
1213 }
1214 arch_initcall(cpu_pmu_reset);
1215
1216 /*
1217  * PMU platform driver and devicetree bindings.
1218  */
1219 static struct of_device_id armpmu_of_device_ids[] = {
1220         {.compatible = "arm,armv8-pmuv3"},
1221         {},
1222 };
1223
1224 static int armpmu_device_probe(struct platform_device *pdev)
1225 {
1226         if (!cpu_pmu)
1227                 return -ENODEV;
1228
1229         cpu_pmu->plat_device = pdev;
1230         return 0;
1231 }
1232
1233 static struct platform_driver armpmu_driver = {
1234         .driver         = {
1235                 .name   = "arm-pmu",
1236                 .of_match_table = armpmu_of_device_ids,
1237         },
1238         .probe          = armpmu_device_probe,
1239 };
1240
1241 static int __init register_pmu_driver(void)
1242 {
1243         return platform_driver_register(&armpmu_driver);
1244 }
1245 device_initcall(register_pmu_driver);
1246
1247 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1248 {
1249         return &__get_cpu_var(cpu_hw_events);
1250 }
1251
1252 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1253 {
1254         int cpu;
1255         for_each_possible_cpu(cpu) {
1256                 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1257                 events->events = per_cpu(hw_events, cpu);
1258                 events->used_mask = per_cpu(used_mask, cpu);
1259                 raw_spin_lock_init(&events->pmu_lock);
1260         }
1261         armpmu->get_hw_events = armpmu_get_cpu_events;
1262 }
1263
1264 static int __init init_hw_perf_events(void)
1265 {
1266         u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1267
1268         switch ((dfr >> 8) & 0xf) {
1269         case 0x1:       /* PMUv3 */
1270                 cpu_pmu = armv8_pmuv3_pmu_init();
1271                 break;
1272         }
1273
1274         if (cpu_pmu) {
1275                 pr_info("enabled with %s PMU driver, %d counters available\n",
1276                         cpu_pmu->name, cpu_pmu->num_events);
1277                 cpu_pmu_init(cpu_pmu);
1278                 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1279         } else {
1280                 pr_info("no hardware support available\n");
1281         }
1282
1283         return 0;
1284 }
1285 early_initcall(init_hw_perf_events);
1286
1287 /*
1288  * Callchain handling code.
1289  */
1290 struct frame_tail {
1291         struct frame_tail   __user *fp;
1292         unsigned long       lr;
1293 } __attribute__((packed));
1294
1295 /*
1296  * Get the return address for a single stackframe and return a pointer to the
1297  * next frame tail.
1298  */
1299 static struct frame_tail __user *
1300 user_backtrace(struct frame_tail __user *tail,
1301                struct perf_callchain_entry *entry)
1302 {
1303         struct frame_tail buftail;
1304         unsigned long err;
1305
1306         /* Also check accessibility of one struct frame_tail beyond */
1307         if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1308                 return NULL;
1309
1310         pagefault_disable();
1311         err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1312         pagefault_enable();
1313
1314         if (err)
1315                 return NULL;
1316
1317         perf_callchain_store(entry, buftail.lr);
1318
1319         /*
1320          * Frame pointers should strictly progress back up the stack
1321          * (towards higher addresses).
1322          */
1323         if (tail >= buftail.fp)
1324                 return NULL;
1325
1326         return buftail.fp;
1327 }
1328
1329 void perf_callchain_user(struct perf_callchain_entry *entry,
1330                          struct pt_regs *regs)
1331 {
1332         struct frame_tail __user *tail;
1333
1334         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1335                 /* We don't support guest os callchain now */
1336                 return;
1337         }
1338
1339         perf_callchain_store(entry, regs->pc);
1340         tail = (struct frame_tail __user *)regs->regs[29];
1341
1342         while (entry->nr < PERF_MAX_STACK_DEPTH &&
1343                tail && !((unsigned long)tail & 0xf))
1344                 tail = user_backtrace(tail, entry);
1345 }
1346
1347 /*
1348  * Gets called by walk_stackframe() for every stackframe. This will be called
1349  * whist unwinding the stackframe and is like a subroutine return so we use
1350  * the PC.
1351  */
1352 static int callchain_trace(struct stackframe *frame, void *data)
1353 {
1354         struct perf_callchain_entry *entry = data;
1355         perf_callchain_store(entry, frame->pc);
1356         return 0;
1357 }
1358
1359 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1360                            struct pt_regs *regs)
1361 {
1362         struct stackframe frame;
1363
1364         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1365                 /* We don't support guest os callchain now */
1366                 return;
1367         }
1368
1369         frame.fp = regs->regs[29];
1370         frame.sp = regs->sp;
1371         frame.pc = regs->pc;
1372         walk_stackframe(&frame, callchain_trace, entry);
1373 }
1374
1375 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1376 {
1377         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1378                 return perf_guest_cbs->get_guest_ip();
1379
1380         return instruction_pointer(regs);
1381 }
1382
1383 unsigned long perf_misc_flags(struct pt_regs *regs)
1384 {
1385         int misc = 0;
1386
1387         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1388                 if (perf_guest_cbs->is_user_mode())
1389                         misc |= PERF_RECORD_MISC_GUEST_USER;
1390                 else
1391                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1392         } else {
1393                 if (user_mode(regs))
1394                         misc |= PERF_RECORD_MISC_USER;
1395                 else
1396                         misc |= PERF_RECORD_MISC_KERNEL;
1397         }
1398
1399         return misc;
1400 }