1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2020 ARM Ltd.
6 #include <linux/bitops.h>
8 #include <linux/kernel.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
29 #ifdef CONFIG_KASAN_HW_TAGS
31 * The asynchronous and asymmetric MTE modes have the same behavior for
32 * store operations. This flag is set when either of these modes is enabled.
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 bool check_swap, bool pte_is_tagged)
41 if (check_swap && is_swap_pte(old_pte)) {
42 swp_entry_t entry = pte_to_swp_entry(old_pte);
44 if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
51 mte_clear_page_tags(page_address(page));
54 void mte_sync_tags(pte_t old_pte, pte_t pte)
56 struct page *page = pte_page(pte);
57 long i, nr_pages = compound_nr(page);
58 bool check_swap = nr_pages == 1;
59 bool pte_is_tagged = pte_tagged(pte);
61 /* Early out if there's nothing to do */
62 if (!check_swap && !pte_is_tagged)
65 /* if PG_mte_tagged is set, tags have already been initialised */
66 for (i = 0; i < nr_pages; i++, page++) {
67 if (!test_and_set_bit(PG_mte_tagged, &page->flags))
68 mte_sync_page_tags(page, old_pte, check_swap,
72 /* ensure the tags are visible before the PTE is set */
76 int memcmp_pages(struct page *page1, struct page *page2)
81 addr1 = page_address(page1);
82 addr2 = page_address(page2);
83 ret = memcmp(addr1, addr2, PAGE_SIZE);
85 if (!system_supports_mte() || ret)
89 * If the page content is identical but at least one of the pages is
90 * tagged, return non-zero to avoid KSM merging. If only one of the
91 * pages is tagged, set_pte_at() may zero or change the tags of the
92 * other page via mte_sync_tags().
94 if (test_bit(PG_mte_tagged, &page1->flags) ||
95 test_bit(PG_mte_tagged, &page2->flags))
96 return addr1 != addr2;
101 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
103 /* Enable MTE Sync Mode for EL1. */
104 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
105 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
108 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
111 #ifdef CONFIG_KASAN_HW_TAGS
112 void mte_enable_kernel_sync(void)
115 * Make sure we enter this function when no PE has set
116 * async mode previously.
118 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
119 "MTE async mode enabled system wide!");
121 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
124 void mte_enable_kernel_async(void)
126 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
129 * MTE async mode is set system wide by the first PE that
130 * executes this function.
132 * Note: If in future KASAN acquires a runtime switching
133 * mode in between sync and async, this strategy needs
136 if (!system_uses_mte_async_or_asymm_mode())
137 static_branch_enable(&mte_async_or_asymm_mode);
140 void mte_enable_kernel_asymm(void)
142 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
143 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
146 * MTE asymm mode behaves as async mode for store
147 * operations. The mode is set system wide by the
148 * first PE that executes this function.
150 * Note: If in future KASAN acquires a runtime switching
151 * mode in between sync and async, this strategy needs
154 if (!system_uses_mte_async_or_asymm_mode())
155 static_branch_enable(&mte_async_or_asymm_mode);
158 * If the CPU does not support MTE asymmetric mode the
159 * kernel falls back on synchronous mode which is the
160 * default for kasan=on.
162 mte_enable_kernel_sync();
167 #ifdef CONFIG_KASAN_HW_TAGS
168 void mte_check_tfsr_el1(void)
170 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
172 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
174 * Note: isb() is not required after this direct write
175 * because there is no indirect read subsequent to it
176 * (per ARM DDI 0487F.c table D13-1).
178 write_sysreg_s(0, SYS_TFSR_EL1);
180 kasan_report_async();
186 * This is where we actually resolve the system and process MTE mode
187 * configuration into an actual value in SCTLR_EL1 that affects
190 static void mte_update_sctlr_user(struct task_struct *task)
193 * This must be called with preemption disabled and can only be called
194 * on the current or next task since the CPU must match where the thread
195 * is going to run. The caller is responsible for calling
196 * update_sctlr_el1() later in the same preemption disabled block.
198 unsigned long sctlr = task->thread.sctlr_user;
199 unsigned long mte_ctrl = task->thread.mte_ctrl;
200 unsigned long pref, resolved_mte_tcf;
202 pref = __this_cpu_read(mte_tcf_preferred);
204 * If there is no overlap between the system preferred and
205 * program requested values go with what was requested.
207 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
208 sctlr &= ~SCTLR_EL1_TCF0_MASK;
210 * Pick an actual setting. The order in which we check for
211 * set bits and map into register values determines our
214 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
215 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
216 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
217 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
218 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
219 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
220 task->thread.sctlr_user = sctlr;
223 static void mte_update_gcr_excl(struct task_struct *task)
226 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
227 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
229 if (kasan_hw_tags_enabled())
233 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
234 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
238 #ifdef CONFIG_KASAN_HW_TAGS
239 /* Only called from assembly, silence sparse */
240 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
241 __le32 *updptr, int nr_inst);
243 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
244 __le32 *updptr, int nr_inst)
246 BUG_ON(nr_inst != 1); /* Branch -> NOP */
248 if (kasan_hw_tags_enabled())
249 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
253 void mte_thread_init_user(void)
255 if (!system_supports_mte())
258 /* clear any pending asynchronous tag fault */
260 write_sysreg_s(0, SYS_TFSRE0_EL1);
261 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
262 /* disable tag checking and reset tag generation mask */
263 set_mte_ctrl(current, 0);
266 void mte_thread_switch(struct task_struct *next)
268 if (!system_supports_mte())
271 mte_update_sctlr_user(next);
272 mte_update_gcr_excl(next);
274 /* TCO may not have been disabled on exception entry for the current task. */
275 mte_disable_tco_entry(next);
278 * Check if an async tag exception occurred at EL1.
280 * Note: On the context switch path we rely on the dsb() present
281 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
282 * are synchronized before this point.
285 mte_check_tfsr_el1();
288 void mte_suspend_enter(void)
290 if (!system_supports_mte())
294 * The barriers are required to guarantee that the indirect writes
295 * to TFSR_EL1 are synchronized before we report the state.
300 /* Report SYS_TFSR_EL1 before suspend entry */
301 mte_check_tfsr_el1();
304 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
306 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
307 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
309 if (!system_supports_mte())
312 if (arg & PR_MTE_TCF_ASYNC)
313 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
314 if (arg & PR_MTE_TCF_SYNC)
315 mte_ctrl |= MTE_CTRL_TCF_SYNC;
318 * If the system supports it and both sync and async modes are
319 * specified then implicitly enable asymmetric mode.
320 * Userspace could see a mix of both sync and async anyway due
321 * to differing or changing defaults on CPUs.
323 if (cpus_have_cap(ARM64_MTE_ASYMM) &&
324 (arg & PR_MTE_TCF_ASYNC) &&
325 (arg & PR_MTE_TCF_SYNC))
326 mte_ctrl |= MTE_CTRL_TCF_ASYMM;
328 task->thread.mte_ctrl = mte_ctrl;
329 if (task == current) {
331 mte_update_sctlr_user(task);
332 mte_update_gcr_excl(task);
333 update_sctlr_el1(task->thread.sctlr_user);
340 long get_mte_ctrl(struct task_struct *task)
343 u64 mte_ctrl = task->thread.mte_ctrl;
344 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
345 SYS_GCR_EL1_EXCL_MASK;
347 if (!system_supports_mte())
350 ret = incl << PR_MTE_TAG_SHIFT;
351 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
352 ret |= PR_MTE_TCF_ASYNC;
353 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
354 ret |= PR_MTE_TCF_SYNC;
360 * Access MTE tags in another process' address space as given in mm. Update
361 * the number of tags copied. Return 0 if any tags copied, error otherwise.
362 * Inspired by __access_remote_vm().
364 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
365 struct iovec *kiov, unsigned int gup_flags)
367 struct vm_area_struct *vma;
368 void __user *buf = kiov->iov_base;
369 size_t len = kiov->iov_len;
371 int write = gup_flags & FOLL_WRITE;
373 if (!access_ok(buf, len))
376 if (mmap_read_lock_killable(mm))
380 unsigned long tags, offset;
382 struct page *page = NULL;
384 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
390 * Only copy tags if the page has been mapped as PROT_MTE
391 * (PG_mte_tagged set). Otherwise the tags are not valid and
392 * not accessible to user. Moreover, an mprotect(PROT_MTE)
393 * would cause the existing tags to be cleared if the page
394 * was never mapped with PROT_MTE.
396 if (!(vma->vm_flags & VM_MTE)) {
401 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
403 /* limit access to the end of the page */
404 offset = offset_in_page(addr);
405 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
407 maddr = page_address(page);
409 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
410 set_page_dirty_lock(page);
412 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
416 /* error accessing the tracer's buffer */
422 addr += tags * MTE_GRANULE_SIZE;
424 mmap_read_unlock(mm);
426 /* return an error if no tags copied */
427 kiov->iov_len = buf - kiov->iov_base;
428 if (!kiov->iov_len) {
429 /* check for error accessing the tracee's address space */
440 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
441 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
443 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
444 struct iovec *kiov, unsigned int gup_flags)
446 struct mm_struct *mm;
449 mm = get_task_mm(tsk);
453 if (!tsk->ptrace || (current != tsk->parent) ||
454 ((get_dumpable(mm) != SUID_DUMP_USER) &&
455 !ptracer_capable(tsk, mm->user_ns))) {
460 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
466 int mte_ptrace_copy_tags(struct task_struct *child, long request,
467 unsigned long addr, unsigned long data)
471 struct iovec __user *uiov = (void __user *)data;
472 unsigned int gup_flags = FOLL_FORCE;
474 if (!system_supports_mte())
477 if (get_user(kiov.iov_base, &uiov->iov_base) ||
478 get_user(kiov.iov_len, &uiov->iov_len))
481 if (request == PTRACE_POKEMTETAGS)
482 gup_flags |= FOLL_WRITE;
484 /* align addr to the MTE tag granule */
485 addr &= MTE_GRANULE_MASK;
487 ret = access_remote_tags(child, addr, &kiov, gup_flags);
489 ret = put_user(kiov.iov_len, &uiov->iov_len);
494 static ssize_t mte_tcf_preferred_show(struct device *dev,
495 struct device_attribute *attr, char *buf)
497 switch (per_cpu(mte_tcf_preferred, dev->id)) {
498 case MTE_CTRL_TCF_ASYNC:
499 return sysfs_emit(buf, "async\n");
500 case MTE_CTRL_TCF_SYNC:
501 return sysfs_emit(buf, "sync\n");
502 case MTE_CTRL_TCF_ASYMM:
503 return sysfs_emit(buf, "asymm\n");
505 return sysfs_emit(buf, "???\n");
509 static ssize_t mte_tcf_preferred_store(struct device *dev,
510 struct device_attribute *attr,
511 const char *buf, size_t count)
515 if (sysfs_streq(buf, "async"))
516 tcf = MTE_CTRL_TCF_ASYNC;
517 else if (sysfs_streq(buf, "sync"))
518 tcf = MTE_CTRL_TCF_SYNC;
519 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
520 tcf = MTE_CTRL_TCF_ASYMM;
525 per_cpu(mte_tcf_preferred, dev->id) = tcf;
530 static DEVICE_ATTR_RW(mte_tcf_preferred);
532 static int register_mte_tcf_preferred_sysctl(void)
536 if (!system_supports_mte())
539 for_each_possible_cpu(cpu) {
540 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
541 device_create_file(get_cpu_device(cpu),
542 &dev_attr_mte_tcf_preferred);
547 subsys_initcall(register_mte_tcf_preferred_sysctl);
550 * Return 0 on success, the number of bytes not probed otherwise.
552 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
554 const char __user *end = uaddr + size;
558 __raw_get_user(val, uaddr, err);
562 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
563 while (uaddr < end) {
565 * A read is sufficient for mte, the caller should have probed
566 * for the pte write permission if required.
568 __raw_get_user(val, uaddr, err);
571 uaddr += MTE_GRANULE_SIZE;