Merge tag 'for-6.1-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[platform/kernel/linux-rpi.git] / arch / arm64 / kernel / module-plts.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5
6 #include <linux/elf.h>
7 #include <linux/ftrace.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/sort.h>
11
12 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
13                                             enum aarch64_insn_register reg)
14 {
15         u32 adrp, add;
16
17         adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
18         add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
19                                            AARCH64_INSN_VARIANT_64BIT,
20                                            AARCH64_INSN_ADSB_ADD);
21
22         return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
23 }
24
25 struct plt_entry get_plt_entry(u64 dst, void *pc)
26 {
27         struct plt_entry plt;
28         static u32 br;
29
30         if (!br)
31                 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
32                                                  AARCH64_INSN_BRANCH_NOLINK);
33
34         plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
35         plt.br = cpu_to_le32(br);
36
37         return plt;
38 }
39
40 static bool plt_entries_equal(const struct plt_entry *a,
41                               const struct plt_entry *b)
42 {
43         u64 p, q;
44
45         /*
46          * Check whether both entries refer to the same target:
47          * do the cheapest checks first.
48          * If the 'add' or 'br' opcodes are different, then the target
49          * cannot be the same.
50          */
51         if (a->add != b->add || a->br != b->br)
52                 return false;
53
54         p = ALIGN_DOWN((u64)a, SZ_4K);
55         q = ALIGN_DOWN((u64)b, SZ_4K);
56
57         /*
58          * If the 'adrp' opcodes are the same then we just need to check
59          * that they refer to the same 4k region.
60          */
61         if (a->adrp == b->adrp && p == q)
62                 return true;
63
64         return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
65                (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
66 }
67
68 static bool in_init(const struct module *mod, void *loc)
69 {
70         return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
71 }
72
73 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
74                           void *loc, const Elf64_Rela *rela,
75                           Elf64_Sym *sym)
76 {
77         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
78                                                           &mod->arch.init;
79         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
80         int i = pltsec->plt_num_entries;
81         int j = i - 1;
82         u64 val = sym->st_value + rela->r_addend;
83
84         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
85                 i++;
86
87         plt[i] = get_plt_entry(val, &plt[i]);
88
89         /*
90          * Check if the entry we just created is a duplicate. Given that the
91          * relocations are sorted, this will be the last entry we allocated.
92          * (if one exists).
93          */
94         if (j >= 0 && plt_entries_equal(plt + i, plt + j))
95                 return (u64)&plt[j];
96
97         pltsec->plt_num_entries += i - j;
98         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
99                 return 0;
100
101         return (u64)&plt[i];
102 }
103
104 #ifdef CONFIG_ARM64_ERRATUM_843419
105 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
106                                 void *loc, u64 val)
107 {
108         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
109                                                           &mod->arch.init;
110         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
111         int i = pltsec->plt_num_entries++;
112         u32 br;
113         int rd;
114
115         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
116                 return 0;
117
118         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
119                 i = pltsec->plt_num_entries++;
120
121         /* get the destination register of the ADRP instruction */
122         rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
123                                           le32_to_cpup((__le32 *)loc));
124
125         br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
126                                          AARCH64_INSN_BRANCH_NOLINK);
127
128         plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
129         plt[i].br = cpu_to_le32(br);
130
131         return (u64)&plt[i];
132 }
133 #endif
134
135 #define cmp_3way(a, b)  ((a) < (b) ? -1 : (a) > (b))
136
137 static int cmp_rela(const void *a, const void *b)
138 {
139         const Elf64_Rela *x = a, *y = b;
140         int i;
141
142         /* sort by type, symbol index and addend */
143         i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
144         if (i == 0)
145                 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
146         if (i == 0)
147                 i = cmp_3way(x->r_addend, y->r_addend);
148         return i;
149 }
150
151 static bool duplicate_rel(const Elf64_Rela *rela, int num)
152 {
153         /*
154          * Entries are sorted by type, symbol index and addend. That means
155          * that, if a duplicate entry exists, it must be in the preceding
156          * slot.
157          */
158         return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
159 }
160
161 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
162                                Elf64_Word dstidx, Elf_Shdr *dstsec)
163 {
164         unsigned int ret = 0;
165         Elf64_Sym *s;
166         int i;
167
168         for (i = 0; i < num; i++) {
169                 u64 min_align;
170
171                 switch (ELF64_R_TYPE(rela[i].r_info)) {
172                 case R_AARCH64_JUMP26:
173                 case R_AARCH64_CALL26:
174                         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
175                                 break;
176
177                         /*
178                          * We only have to consider branch targets that resolve
179                          * to symbols that are defined in a different section.
180                          * This is not simply a heuristic, it is a fundamental
181                          * limitation, since there is no guaranteed way to emit
182                          * PLT entries sufficiently close to the branch if the
183                          * section size exceeds the range of a branch
184                          * instruction. So ignore relocations against defined
185                          * symbols if they live in the same section as the
186                          * relocation target.
187                          */
188                         s = syms + ELF64_R_SYM(rela[i].r_info);
189                         if (s->st_shndx == dstidx)
190                                 break;
191
192                         /*
193                          * Jump relocations with non-zero addends against
194                          * undefined symbols are supported by the ELF spec, but
195                          * do not occur in practice (e.g., 'jump n bytes past
196                          * the entry point of undefined function symbol f').
197                          * So we need to support them, but there is no need to
198                          * take them into consideration when trying to optimize
199                          * this code. So let's only check for duplicates when
200                          * the addend is zero: this allows us to record the PLT
201                          * entry address in the symbol table itself, rather than
202                          * having to search the list for duplicates each time we
203                          * emit one.
204                          */
205                         if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
206                                 ret++;
207                         break;
208                 case R_AARCH64_ADR_PREL_PG_HI21_NC:
209                 case R_AARCH64_ADR_PREL_PG_HI21:
210                         if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
211                             !cpus_have_const_cap(ARM64_WORKAROUND_843419))
212                                 break;
213
214                         /*
215                          * Determine the minimal safe alignment for this ADRP
216                          * instruction: the section alignment at which it is
217                          * guaranteed not to appear at a vulnerable offset.
218                          *
219                          * This comes down to finding the least significant zero
220                          * bit in bits [11:3] of the section offset, and
221                          * increasing the section's alignment so that the
222                          * resulting address of this instruction is guaranteed
223                          * to equal the offset in that particular bit (as well
224                          * as all less significant bits). This ensures that the
225                          * address modulo 4 KB != 0xfff8 or 0xfffc (which would
226                          * have all ones in bits [11:3])
227                          */
228                         min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
229
230                         /*
231                          * Allocate veneer space for each ADRP that may appear
232                          * at a vulnerable offset nonetheless. At relocation
233                          * time, some of these will remain unused since some
234                          * ADRP instructions can be patched to ADR instructions
235                          * instead.
236                          */
237                         if (min_align > SZ_4K)
238                                 ret++;
239                         else
240                                 dstsec->sh_addralign = max(dstsec->sh_addralign,
241                                                            min_align);
242                         break;
243                 }
244         }
245
246         if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
247             cpus_have_const_cap(ARM64_WORKAROUND_843419))
248                 /*
249                  * Add some slack so we can skip PLT slots that may trigger
250                  * the erratum due to the placement of the ADRP instruction.
251                  */
252                 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
253
254         return ret;
255 }
256
257 static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
258                                   Elf64_Word dstidx)
259 {
260
261         Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
262
263         if (s->st_shndx == dstidx)
264                 return false;
265
266         return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
267                ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
268 }
269
270 /* Group branch PLT relas at the front end of the array. */
271 static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
272                                       int numrels, Elf64_Word dstidx)
273 {
274         int i = 0, j = numrels - 1;
275
276         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
277                 return 0;
278
279         while (i < j) {
280                 if (branch_rela_needs_plt(syms, &rela[i], dstidx))
281                         i++;
282                 else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
283                         swap(rela[i], rela[j]);
284                 else
285                         j--;
286         }
287
288         return i;
289 }
290
291 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
292                               char *secstrings, struct module *mod)
293 {
294         unsigned long core_plts = 0;
295         unsigned long init_plts = 0;
296         Elf64_Sym *syms = NULL;
297         Elf_Shdr *pltsec, *tramp = NULL;
298         int i;
299
300         /*
301          * Find the empty .plt section so we can expand it to store the PLT
302          * entries. Record the symtab address as well.
303          */
304         for (i = 0; i < ehdr->e_shnum; i++) {
305                 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
306                         mod->arch.core.plt_shndx = i;
307                 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
308                         mod->arch.init.plt_shndx = i;
309                 else if (!strcmp(secstrings + sechdrs[i].sh_name,
310                                  ".text.ftrace_trampoline"))
311                         tramp = sechdrs + i;
312                 else if (sechdrs[i].sh_type == SHT_SYMTAB)
313                         syms = (Elf64_Sym *)sechdrs[i].sh_addr;
314         }
315
316         if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
317                 pr_err("%s: module PLT section(s) missing\n", mod->name);
318                 return -ENOEXEC;
319         }
320         if (!syms) {
321                 pr_err("%s: module symtab section missing\n", mod->name);
322                 return -ENOEXEC;
323         }
324
325         for (i = 0; i < ehdr->e_shnum; i++) {
326                 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
327                 int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
328                 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
329
330                 if (sechdrs[i].sh_type != SHT_RELA)
331                         continue;
332
333                 /* ignore relocations that operate on non-exec sections */
334                 if (!(dstsec->sh_flags & SHF_EXECINSTR))
335                         continue;
336
337                 /*
338                  * sort branch relocations requiring a PLT by type, symbol index
339                  * and addend
340                  */
341                 nents = partition_branch_plt_relas(syms, rels, numrels,
342                                                    sechdrs[i].sh_info);
343                 if (nents)
344                         sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
345
346                 if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
347                         core_plts += count_plts(syms, rels, numrels,
348                                                 sechdrs[i].sh_info, dstsec);
349                 else
350                         init_plts += count_plts(syms, rels, numrels,
351                                                 sechdrs[i].sh_info, dstsec);
352         }
353
354         pltsec = sechdrs + mod->arch.core.plt_shndx;
355         pltsec->sh_type = SHT_NOBITS;
356         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
357         pltsec->sh_addralign = L1_CACHE_BYTES;
358         pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
359         mod->arch.core.plt_num_entries = 0;
360         mod->arch.core.plt_max_entries = core_plts;
361
362         pltsec = sechdrs + mod->arch.init.plt_shndx;
363         pltsec->sh_type = SHT_NOBITS;
364         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
365         pltsec->sh_addralign = L1_CACHE_BYTES;
366         pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
367         mod->arch.init.plt_num_entries = 0;
368         mod->arch.init.plt_max_entries = init_plts;
369
370         if (tramp) {
371                 tramp->sh_type = SHT_NOBITS;
372                 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
373                 tramp->sh_addralign = __alignof__(struct plt_entry);
374                 tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
375         }
376
377         return 0;
378 }