1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Low-level CPU initialisation
4 * Based on arch/arm/kernel/head.S
6 * Copyright (C) 1994-2002 Russell King
7 * Copyright (C) 2003-2012 ARM Ltd.
8 * Authors: Catalin Marinas <catalin.marinas@arm.com>
9 * Will Deacon <will.deacon@arm.com>
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/pgtable.h>
16 #include <asm/asm_pointer_auth.h>
17 #include <asm/assembler.h>
20 #include <asm/ptrace.h>
21 #include <asm/asm-offsets.h>
22 #include <asm/cache.h>
23 #include <asm/cputype.h>
24 #include <asm/el2_setup.h>
26 #include <asm/image.h>
27 #include <asm/kernel-pgtable.h>
28 #include <asm/kvm_arm.h>
29 #include <asm/memory.h>
30 #include <asm/pgtable-hwdef.h>
34 #include <asm/sysreg.h>
35 #include <asm/thread_info.h>
38 #include "efi-header.S"
40 #define __PHYS_OFFSET KERNEL_START
42 #if (PAGE_OFFSET & 0x1fffff) != 0
43 #error PAGE_OFFSET must be at least 2MB aligned
47 * Kernel startup entry point.
48 * ---------------------------
50 * The requirements are:
51 * MMU = off, D-cache = off, I-cache = on or off,
52 * x0 = physical address to the FDT blob.
54 * This code is mostly position independent so you call this at
57 * Note that the callee-saved registers are used for storing variables
58 * that are useful before the MMU is enabled. The allocations are described
59 * in the entry routines.
63 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
65 efi_signature_nop // special NOP to identity as PE/COFF executable
66 b primary_entry // branch to kernel start, magic
67 .quad 0 // Image load offset from start of RAM, little-endian
68 le64sym _kernel_size_le // Effective size of kernel image, little-endian
69 le64sym _kernel_flags_le // Informative flags, little-endian
73 .ascii ARM64_IMAGE_MAGIC // Magic number
74 .long .Lpe_header_offset // Offset to the PE header.
81 * The following callee saved general purpose registers are used on the
82 * primary lowlevel boot path:
84 * Register Scope Purpose
85 * x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
86 * x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset
87 * x28 __create_page_tables() callee preserved temp register
88 * x19/x20 __primary_switch() callee preserved temp registers
89 * x24 __primary_switch() .. relocate_kernel() current RELR displacement
91 SYM_CODE_START(primary_entry)
93 bl init_kernel_el // w0=cpu_boot_mode
94 adrp x23, __PHYS_OFFSET
95 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
96 bl set_cpu_boot_mode_flag
97 bl __create_page_tables
99 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
101 * On return, the CPU will be ready for the MMU to be turned on and
102 * the TCR will have been set.
104 bl __cpu_setup // initialise processor
106 SYM_CODE_END(primary_entry)
109 * Preserve the arguments passed by the bootloader in x0 .. x3
111 SYM_CODE_START_LOCAL(preserve_boot_args)
112 mov x21, x0 // x21=FDT
114 adr_l x0, boot_args // record the contents of
115 stp x21, x1, [x0] // x0 .. x3 at kernel entry
116 stp x2, x3, [x0, #16]
118 dmb sy // needed before dc ivac with
121 add x1, x0, #0x20 // 4 x 8 bytes
122 b dcache_inval_poc // tail call
123 SYM_CODE_END(preserve_boot_args)
126 * Macro to create a table entry to the next page.
128 * tbl: page table address
129 * virt: virtual address
130 * shift: #imm page table shift
131 * ptrs: #imm pointers per table page
134 * Corrupts: ptrs, tmp1, tmp2
135 * Returns: tbl -> next level table page address
137 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
138 add \tmp1, \tbl, #PAGE_SIZE
139 phys_to_pte \tmp2, \tmp1
140 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
141 lsr \tmp1, \virt, #\shift
143 and \tmp1, \tmp1, \ptrs // table index
144 str \tmp2, [\tbl, \tmp1, lsl #3]
145 add \tbl, \tbl, #PAGE_SIZE // next level table page
149 * Macro to populate page table entries, these entries can be pointers to the next level
150 * or last level entries pointing to physical memory.
152 * tbl: page table address
153 * rtbl: pointer to page table or physical memory
154 * index: start index to write
155 * eindex: end index to write - [index, eindex] written to
156 * flags: flags for pagetable entry to or in
157 * inc: increment to rtbl between each entry
158 * tmp1: temporary variable
160 * Preserves: tbl, eindex, flags, inc
161 * Corrupts: index, tmp1
164 .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
165 .Lpe\@: phys_to_pte \tmp1, \rtbl
166 orr \tmp1, \tmp1, \flags // tmp1 = table entry
167 str \tmp1, [\tbl, \index, lsl #3]
168 add \rtbl, \rtbl, \inc // rtbl = pa next level
169 add \index, \index, #1
175 * Compute indices of table entries from virtual address range. If multiple entries
176 * were needed in the previous page table level then the next page table level is assumed
177 * to be composed of multiple pages. (This effectively scales the end index).
179 * vstart: virtual address of start of range
180 * vend: virtual address of end of range - we map [vstart, vend]
181 * shift: shift used to transform virtual address into index
182 * ptrs: number of entries in page table
183 * istart: index in table corresponding to vstart
184 * iend: index in table corresponding to vend
185 * count: On entry: how many extra entries were required in previous level, scales
187 * On exit: returns how many extra entries required for next page table level
189 * Preserves: vstart, vend, shift, ptrs
190 * Returns: istart, iend, count
192 .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
193 lsr \iend, \vend, \shift
195 sub \istart, \istart, #1
196 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
198 mul \istart, \istart, \count
199 add \iend, \iend, \istart // iend += count * ptrs
200 // our entries span multiple tables
202 lsr \istart, \vstart, \shift
204 sub \count, \count, #1
205 and \istart, \istart, \count
207 sub \count, \iend, \istart
211 * Map memory for specified virtual address range. Each level of page table needed supports
212 * multiple entries. If a level requires n entries the next page table level is assumed to be
213 * formed from n pages.
215 * tbl: location of page table
216 * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
217 * vstart: virtual address of start of range
218 * vend: virtual address of end of range - we map [vstart, vend - 1]
219 * flags: flags to use to map last level entries
220 * phys: physical address corresponding to vstart - physical memory is contiguous
221 * pgds: the number of pgd entries
223 * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
224 * Preserves: vstart, flags
225 * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv
227 .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
229 add \rtbl, \tbl, #PAGE_SIZE
232 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
233 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
237 #if SWAPPER_PGTABLE_LEVELS > 3
238 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
239 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
244 #if SWAPPER_PGTABLE_LEVELS > 2
245 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
246 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
250 compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
251 bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
252 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
256 * Setup the initial page tables. We only setup the barest amount which is
257 * required to get the kernel running. The following sections are required:
258 * - identity mapping to enable the MMU (low address, TTBR0)
259 * - first few MB of the kernel linear mapping to jump to once the MMU has
262 SYM_FUNC_START_LOCAL(__create_page_tables)
266 * Invalidate the init page tables to avoid potential dirty cache lines
267 * being evicted. Other page tables are allocated in rodata as part of
268 * the kernel image, and thus are clean to the PoC per the boot
276 * Clear the init page tables.
281 1: stp xzr, xzr, [x0], #16
282 stp xzr, xzr, [x0], #16
283 stp xzr, xzr, [x0], #16
284 stp xzr, xzr, [x0], #16
288 mov x7, SWAPPER_MM_MMUFLAGS
291 * Create the identity mapping.
293 adrp x0, idmap_pg_dir
294 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
296 #ifdef CONFIG_ARM64_VA_BITS_52
297 mrs_s x6, SYS_ID_AA64MMFR2_EL1
298 and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
304 adr_l x6, vabits_actual
307 dc ivac, x6 // Invalidate potentially stale cache line
310 * VA_BITS may be too small to allow for an ID mapping to be created
311 * that covers system RAM if that is located sufficiently high in the
312 * physical address space. So for the ID map, use an extended virtual
313 * range in that case, and configure an additional translation level
316 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
317 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
318 * this number conveniently equals the number of leading zeroes in
319 * the physical address of __idmap_text_end.
321 adrp x5, __idmap_text_end
323 cmp x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough?
324 b.ge 1f // .. then skip VA range extension
329 dc ivac, x6 // Invalidate potentially stale cache line
332 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
333 #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
336 * If VA_BITS < 48, we have to configure an additional table level.
337 * First, we have to verify our assumption that the current value of
338 * VA_BITS was chosen such that all translation levels are fully
339 * utilised, and that lowering T0SZ will always result in an additional
340 * translation level to be configured.
342 #if VA_BITS != EXTRA_SHIFT
343 #error "Mismatch between VA_BITS and page size/number of translation levels"
347 create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
350 * If VA_BITS == 48, we don't have to configure an additional
351 * translation level, but the top-level table has more entries.
353 mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
354 str_l x4, idmap_ptrs_per_pgd, x5
357 ldr_l x4, idmap_ptrs_per_pgd
358 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
360 map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
363 * Map the kernel image (starting with PHYS_OFFSET).
366 mov_q x5, KIMAGE_VADDR // compile time __va(_text)
367 add x5, x5, x23 // add KASLR displacement
369 adrp x6, _end // runtime __pa(_end)
370 adrp x3, _text // runtime __pa(_text)
371 sub x6, x6, x3 // _end - _text
372 add x6, x6, x5 // runtime __va(_end)
374 map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
377 * Since the page tables have been populated with non-cacheable
378 * accesses (MMU disabled), invalidate those tables again to
379 * remove any speculatively loaded cache lines.
383 adrp x0, idmap_pg_dir
384 adrp x1, idmap_pg_end
392 SYM_FUNC_END(__create_page_tables)
395 * Initialize CPU registers with task-specific and cpu-specific context.
397 * Create a final frame record at task_pt_regs(current)->stackframe, so
398 * that the unwinder can identify the final frame record of any task by
399 * its location in the task stack. We reserve the entire pt_regs space
400 * for consistency with user tasks and kthreads.
402 .macro init_cpu_task tsk, tmp1, tmp2
405 ldr \tmp1, [\tsk, #TSK_STACK]
406 add sp, \tmp1, #THREAD_SIZE
407 sub sp, sp, #PT_REGS_SIZE
409 stp xzr, xzr, [sp, #S_STACKFRAME]
410 add x29, sp, #S_STACKFRAME
414 adr_l \tmp1, __per_cpu_offset
415 ldr w\tmp2, [\tsk, #TSK_TI_CPU]
416 ldr \tmp1, [\tmp1, \tmp2, lsl #3]
417 set_this_cpu_offset \tmp1
421 * The following fragment of code is executed with the MMU enabled.
425 SYM_FUNC_START_LOCAL(__primary_switched)
427 init_cpu_task x4, x5, x6
429 adr_l x8, vectors // load VBAR_EL1 with virtual
430 msr vbar_el1, x8 // vector table address
433 stp x29, x30, [sp, #-16]!
436 str_l x21, __fdt_pointer, x5 // Save FDT pointer
438 ldr_l x4, kimage_vaddr // Save the offset between
439 sub x4, x4, x0 // the kernel virtual and
440 str_l x4, kimage_voffset, x5 // physical mappings
443 adr_l x0, __bss_start
448 dsb ishst // Make zero page visible to PTW
450 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
453 mov x0, x21 // pass FDT address in x0
454 bl early_fdt_map // Try mapping the FDT early
455 bl init_feature_override // Parse cpu feature overrides
456 #ifdef CONFIG_RANDOMIZE_BASE
457 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
459 bl kaslr_early_init // parse FDT for KASLR options
460 cbz x0, 0f // KASLR disabled? just proceed
461 orr x23, x23, x0 // record KASLR offset
462 ldp x29, x30, [sp], #16 // we must enable KASLR, return
463 ret // to __primary_switch()
466 bl switch_to_vhe // Prefer VHE if possible
467 ldp x29, x30, [sp], #16
470 SYM_FUNC_END(__primary_switched)
472 .pushsection ".rodata", "a"
473 SYM_DATA_START(kimage_vaddr)
475 SYM_DATA_END(kimage_vaddr)
476 EXPORT_SYMBOL(kimage_vaddr)
480 * end early head section, begin head code that is also used for
481 * hotplug and needs to have the same protections as the text region
483 .section ".idmap.text","awx"
486 * Starting from EL2 or EL1, configure the CPU to execute at the highest
487 * reachable EL supported by the kernel in a chosen default state. If dropping
488 * from EL2 to EL1, configure EL2 before configuring EL1.
490 * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
491 * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
493 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
494 * booted in EL1 or EL2 respectively.
496 SYM_FUNC_START(init_kernel_el)
498 cmp x0, #CurrentEL_EL2
501 SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
502 mov_q x0, INIT_SCTLR_EL1_MMU_OFF
505 mov_q x0, INIT_PSTATE_EL1
508 mov w0, #BOOT_CPU_MODE_EL1
511 SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
512 mov_q x0, HCR_HOST_NVHE_FLAGS
518 /* Hypervisor stub */
519 adr_l x0, __hyp_stub_vectors
524 * Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
525 * making it impossible to start in nVHE mode. Is that
526 * compliant with the architecture? Absolutely not!
532 /* Switching to VHE requires a sane SCTLR_EL1 as a start */
533 mov_q x0, INIT_SCTLR_EL1_MMU_OFF
534 msr_s SYS_SCTLR_EL12, x0
537 * Force an eret into a helper "function", and let it return
538 * to our original caller... This makes sure that we have
539 * initialised the basic PSTATE state.
541 mov x0, #INIT_PSTATE_EL2
543 adr x0, __cpu_stick_to_vhe
548 mov_q x0, INIT_SCTLR_EL1_MMU_OFF
552 mov w0, #BOOT_CPU_MODE_EL2
556 mov x0, #HVC_VHE_RESTART
558 mov x0, #BOOT_CPU_MODE_EL2
560 SYM_FUNC_END(init_kernel_el)
563 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
564 * in w0. See arch/arm64/include/asm/virt.h for more info.
566 SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
567 adr_l x1, __boot_cpu_mode
568 cmp w0, #BOOT_CPU_MODE_EL2
571 1: str w0, [x1] // Save CPU boot mode
573 dc ivac, x1 // Invalidate potentially stale cache line
575 SYM_FUNC_END(set_cpu_boot_mode_flag)
578 * These values are written with the MMU off, but read with the MMU on.
579 * Writers will invalidate the corresponding address, discarding up to a
580 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
581 * sufficient alignment that the CWG doesn't overlap another section.
583 .pushsection ".mmuoff.data.write", "aw"
585 * We need to find out the CPU boot mode long after boot, so we need to
586 * store it in a writable variable.
588 * This is not in .bss, because we set it sufficiently early that the boot-time
589 * zeroing of .bss would clobber it.
591 SYM_DATA_START(__boot_cpu_mode)
592 .long BOOT_CPU_MODE_EL2
593 .long BOOT_CPU_MODE_EL1
594 SYM_DATA_END(__boot_cpu_mode)
596 * The booting CPU updates the failed status @__early_cpu_boot_status,
597 * with MMU turned off.
599 SYM_DATA_START(__early_cpu_boot_status)
601 SYM_DATA_END(__early_cpu_boot_status)
606 * This provides a "holding pen" for platforms to hold all secondary
607 * cores are held until we're ready for them to initialise.
609 SYM_FUNC_START(secondary_holding_pen)
610 bl init_kernel_el // w0=cpu_boot_mode
611 bl set_cpu_boot_mode_flag
613 mov_q x1, MPIDR_HWID_BITMASK
615 adr_l x3, secondary_holding_pen_release
618 b.eq secondary_startup
621 SYM_FUNC_END(secondary_holding_pen)
624 * Secondary entry point that jumps straight into the kernel. Only to
625 * be used where CPUs are brought online dynamically by the kernel.
627 SYM_FUNC_START(secondary_entry)
628 bl init_kernel_el // w0=cpu_boot_mode
629 bl set_cpu_boot_mode_flag
631 SYM_FUNC_END(secondary_entry)
633 SYM_FUNC_START_LOCAL(secondary_startup)
635 * Common entry point for secondary CPUs.
638 bl __cpu_secondary_check52bitva
639 bl __cpu_setup // initialise processor
640 adrp x1, swapper_pg_dir
642 ldr x8, =__secondary_switched
644 SYM_FUNC_END(secondary_startup)
646 SYM_FUNC_START_LOCAL(__secondary_switched)
651 adr_l x0, secondary_data
652 ldr x2, [x0, #CPU_BOOT_TASK]
653 cbz x2, __secondary_too_slow
655 init_cpu_task x2, x1, x3
657 #ifdef CONFIG_ARM64_PTR_AUTH
658 ptrauth_keys_init_cpu x2, x3, x4, x5
661 bl secondary_start_kernel
663 SYM_FUNC_END(__secondary_switched)
665 SYM_FUNC_START_LOCAL(__secondary_too_slow)
668 b __secondary_too_slow
669 SYM_FUNC_END(__secondary_too_slow)
672 * The booting CPU updates the failed status @__early_cpu_boot_status,
673 * with MMU turned off.
675 * update_early_cpu_boot_status tmp, status
676 * - Corrupts tmp1, tmp2
677 * - Writes 'status' to __early_cpu_boot_status and makes sure
678 * it is committed to memory.
681 .macro update_early_cpu_boot_status status, tmp1, tmp2
683 adr_l \tmp1, __early_cpu_boot_status
686 dc ivac, \tmp1 // Invalidate potentially stale cache line
692 * x0 = SCTLR_EL1 value for turning on the MMU.
693 * x1 = TTBR1_EL1 value
695 * Returns to the caller via x30/lr. This requires the caller to be covered
696 * by the .idmap.text section.
698 * Checks if the selected granule size is supported by the CPU.
699 * If it isn't, park the CPU
701 SYM_FUNC_START(__enable_mmu)
702 mrs x2, ID_AA64MMFR0_EL1
703 ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
704 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
705 b.lt __no_granule_support
706 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
707 b.gt __no_granule_support
708 update_early_cpu_boot_status 0, x2, x3
709 adrp x2, idmap_pg_dir
712 msr ttbr0_el1, x2 // load TTBR0
714 msr ttbr1_el1, x1 // load TTBR1
720 SYM_FUNC_END(__enable_mmu)
722 SYM_FUNC_START(__cpu_secondary_check52bitva)
723 #ifdef CONFIG_ARM64_VA_BITS_52
724 ldr_l x0, vabits_actual
728 mrs_s x0, SYS_ID_AA64MMFR2_EL1
729 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
732 update_early_cpu_boot_status \
733 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
740 SYM_FUNC_END(__cpu_secondary_check52bitva)
742 SYM_FUNC_START_LOCAL(__no_granule_support)
743 /* Indicate that this CPU can't boot and is stuck in the kernel */
744 update_early_cpu_boot_status \
745 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
750 SYM_FUNC_END(__no_granule_support)
752 #ifdef CONFIG_RELOCATABLE
753 SYM_FUNC_START_LOCAL(__relocate_kernel)
755 * Iterate over each entry in the relocation table, and apply the
756 * relocations in place.
758 ldr w9, =__rela_offset // offset to reloc table
759 ldr w10, =__rela_size // size of reloc table
761 mov_q x11, KIMAGE_VADDR // default virtual offset
762 add x11, x11, x23 // actual virtual offset
763 add x9, x9, x11 // __va(.rela)
764 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
768 ldp x12, x13, [x9], #24
770 cmp w13, #R_AARCH64_RELATIVE
772 add x14, x14, x23 // relocate
779 * Apply RELR relocations.
781 * RELR is a compressed format for storing relative relocations. The
782 * encoded sequence of entries looks like:
783 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
785 * i.e. start with an address, followed by any number of bitmaps. The
786 * address entry encodes 1 relocation. The subsequent bitmap entries
787 * encode up to 63 relocations each, at subsequent offsets following
788 * the last address entry.
790 * The bitmap entries must have 1 in the least significant bit. The
791 * assumption here is that an address cannot have 1 in lsb. Odd
792 * addresses are not supported. Any odd addresses are stored in the RELA
793 * section, which is handled above.
795 * Excluding the least significant bit in the bitmap, each non-zero
796 * bit in the bitmap represents a relocation to be applied to
797 * a corresponding machine word that follows the base address
798 * word. The second least significant bit represents the machine
799 * word immediately following the initial address, and each bit
800 * that follows represents the next word, in linear order. As such,
801 * a single bitmap can encode up to 63 relocations in a 64-bit object.
803 * In this implementation we store the address of the next RELR table
804 * entry in x9, the address being relocated by the current address or
805 * bitmap entry in x13 and the address being relocated by the current
808 * Because addends are stored in place in the binary, RELR relocations
809 * cannot be applied idempotently. We use x24 to keep track of the
810 * currently applied displacement so that we can correctly relocate if
811 * __relocate_kernel is called twice with non-zero displacements (i.e.
812 * if there is both a physical misalignment and a KASLR displacement).
814 ldr w9, =__relr_offset // offset to reloc table
815 ldr w10, =__relr_size // size of reloc table
816 add x9, x9, x11 // __va(.relr)
817 add x10, x9, x10 // __va(.relr) + sizeof(.relr)
819 sub x15, x23, x24 // delta from previous offset
820 cbz x15, 7f // nothing to do if unchanged
821 mov x24, x23 // save new offset
826 tbnz x11, #0, 3f // branch to handle bitmaps
828 ldr x12, [x13] // relocate address entry
830 str x12, [x13], #8 // adjust to start of bitmap
836 tbz x11, #0, 5f // skip bit if not set
837 ldr x12, [x14] // relocate bit
841 5: add x14, x14, #8 // move to next bit's address
845 * Move to the next bitmap's address. 8 is the word size, and 63 is the
846 * number of significant bits in a bitmap entry.
848 add x13, x13, #(8 * 63)
855 SYM_FUNC_END(__relocate_kernel)
858 SYM_FUNC_START_LOCAL(__primary_switch)
859 #ifdef CONFIG_RANDOMIZE_BASE
860 mov x19, x0 // preserve new SCTLR_EL1 value
861 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
866 #ifdef CONFIG_RELOCATABLE
868 mov x24, #0 // no RELR displacement yet
871 #ifdef CONFIG_RANDOMIZE_BASE
872 ldr x8, =__primary_switched
873 adrp x0, __PHYS_OFFSET
877 * If we return here, we have a KASLR displacement in x23 which we need
878 * to take into account by discarding the current kernel mapping and
879 * creating a new one.
881 pre_disable_mmu_workaround
882 msr sctlr_el1, x20 // disable the MMU
884 bl __create_page_tables // recreate kernel mapping
886 tlbi vmalle1 // Remove any stale TLB entries
890 set_sctlr_el1 x19 // re-enable the MMU
895 ldr x8, =__primary_switched
896 adrp x0, __PHYS_OFFSET
898 SYM_FUNC_END(__primary_switch)