Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[platform/kernel/linux-starfive.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <asm/cpu.h>
77 #include <asm/cpufeature.h>
78 #include <asm/cpu_ops.h>
79 #include <asm/fpsimd.h>
80 #include <asm/insn.h>
81 #include <asm/kvm_host.h>
82 #include <asm/mmu_context.h>
83 #include <asm/mte.h>
84 #include <asm/processor.h>
85 #include <asm/smp.h>
86 #include <asm/sysreg.h>
87 #include <asm/traps.h>
88 #include <asm/virt.h>
89
90 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
91 static unsigned long elf_hwcap __read_mostly;
92
93 #ifdef CONFIG_COMPAT
94 #define COMPAT_ELF_HWCAP_DEFAULT        \
95                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
96                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
97                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
98                                  COMPAT_HWCAP_LPAE)
99 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
100 unsigned int compat_elf_hwcap2 __read_mostly;
101 #endif
102
103 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
104 EXPORT_SYMBOL(cpu_hwcaps);
105 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
106
107 /* Need also bit for ARM64_CB_PATCH */
108 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
109
110 bool arm64_use_ng_mappings = false;
111 EXPORT_SYMBOL(arm64_use_ng_mappings);
112
113 /*
114  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
115  * support it?
116  */
117 static bool __read_mostly allow_mismatched_32bit_el0;
118
119 /*
120  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
121  * seen at least one CPU capable of 32-bit EL0.
122  */
123 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
124
125 /*
126  * Mask of CPUs supporting 32-bit EL0.
127  * Only valid if arm64_mismatched_32bit_el0 is enabled.
128  */
129 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
130
131 /*
132  * Flag to indicate if we have computed the system wide
133  * capabilities based on the boot time active CPUs. This
134  * will be used to determine if a new booting CPU should
135  * go through the verification process to make sure that it
136  * supports the system capabilities, without using a hotplug
137  * notifier. This is also used to decide if we could use
138  * the fast path for checking constant CPU caps.
139  */
140 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
141 EXPORT_SYMBOL(arm64_const_caps_ready);
142 static inline void finalize_system_capabilities(void)
143 {
144         static_branch_enable(&arm64_const_caps_ready);
145 }
146
147 void dump_cpu_features(void)
148 {
149         /* file-wide pr_fmt adds "CPU features: " prefix */
150         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
151 }
152
153 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
154 EXPORT_SYMBOL(cpu_hwcap_keys);
155
156 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
157         {                                               \
158                 .sign = SIGNED,                         \
159                 .visible = VISIBLE,                     \
160                 .strict = STRICT,                       \
161                 .type = TYPE,                           \
162                 .shift = SHIFT,                         \
163                 .width = WIDTH,                         \
164                 .safe_val = SAFE_VAL,                   \
165         }
166
167 /* Define a feature with unsigned values */
168 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
169         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
170
171 /* Define a feature with a signed value */
172 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
173         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
174
175 #define ARM64_FTR_END                                   \
176         {                                               \
177                 .width = 0,                             \
178         }
179
180 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
181
182 static bool __system_matches_cap(unsigned int n);
183
184 /*
185  * NOTE: Any changes to the visibility of features should be kept in
186  * sync with the documentation of the CPU feature register ABI.
187  */
188 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
203         ARM64_FTR_END,
204 };
205
206 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
207         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
208         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
214                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
216                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
221                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
223                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
225         ARM64_FTR_END,
226 };
227
228 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
229         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0),
230         ARM64_FTR_END,
231 };
232
233 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
235         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
236         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
241                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
244         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
245         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
248         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
250         ARM64_FTR_END,
251 };
252
253 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
255         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
256         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
257                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
258         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
259         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
260                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
261         ARM64_FTR_END,
262 };
263
264 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
265         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
266                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
267         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
268                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
269         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
270                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
271         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
273         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
275         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
279         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
281         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
283         ARM64_FTR_END,
284 };
285
286 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
287         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
290         /*
291          * Page size not being supported at Stage-2 is not fatal. You
292          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
293          * your favourite nesting hypervisor.
294          *
295          * There is a small corner case where the hypervisor explicitly
296          * advertises a given granule size at Stage-2 (value 2) on some
297          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
298          * vCPUs. Although this is not forbidden by the architecture, it
299          * indicates that the hypervisor is being silly (or buggy).
300          *
301          * We make no effort to cope with this and pretend that if these
302          * fields are inconsistent across vCPUs, then it isn't worth
303          * trying to bring KVM up.
304          */
305         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
308         /*
309          * We already refuse to boot CPUs that don't support our configured
310          * page size, so we can only detect mismatches for a page size other
311          * than the one we're currently using. Unfortunately, SoCs like this
312          * exist in the wild so, even though we don't like it, we'll have to go
313          * along with it and treat them as non-strict.
314          */
315         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
316         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
318
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
320         /* Linux shouldn't care about secure memory */
321         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
324         /*
325          * Differing PARange is fine as long as all peripherals and memory are mapped
326          * within the minimum PARange of all CPUs
327          */
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
329         ARM64_FTR_END,
330 };
331
332 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
333         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
335         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
336         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
338         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
339         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
340         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
341         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
342         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
343         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
344         ARM64_FTR_END,
345 };
346
347 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
348         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
349         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
350         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
351         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
352         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
354         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
355         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
356         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
357         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
358         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
359         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
360         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
361         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
362         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
363         ARM64_FTR_END,
364 };
365
366 static const struct arm64_ftr_bits ftr_ctr[] = {
367         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
368         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
369         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
370         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
371         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
372         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
373         /*
374          * Linux can handle differing I-cache policies. Userspace JITs will
375          * make use of *minLine.
376          * If we have differing I-cache policies, report it as the weakest - VIPT.
377          */
378         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
379         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
380         ARM64_FTR_END,
381 };
382
383 static struct arm64_ftr_override __ro_after_init no_override = { };
384
385 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
386         .name           = "SYS_CTR_EL0",
387         .ftr_bits       = ftr_ctr,
388         .override       = &no_override,
389 };
390
391 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
392         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
394         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
395         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
396         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
397         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
398         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
399         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
400         ARM64_FTR_END,
401 };
402
403 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
404         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
407         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
408         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
409         /*
410          * We can instantiate multiple PMU instances with different levels
411          * of support.
412          */
413         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
414         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
415         ARM64_FTR_END,
416 };
417
418 static const struct arm64_ftr_bits ftr_mvfr2[] = {
419         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
420         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
421         ARM64_FTR_END,
422 };
423
424 static const struct arm64_ftr_bits ftr_dczid[] = {
425         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
426         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
427         ARM64_FTR_END,
428 };
429
430 static const struct arm64_ftr_bits ftr_gmid[] = {
431         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
432         ARM64_FTR_END,
433 };
434
435 static const struct arm64_ftr_bits ftr_id_isar0[] = {
436         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
437         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
440         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
441         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
443         ARM64_FTR_END,
444 };
445
446 static const struct arm64_ftr_bits ftr_id_isar5[] = {
447         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
448         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
452         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
453         ARM64_FTR_END,
454 };
455
456 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
457         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
458         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
459         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
460         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
464
465         /*
466          * SpecSEI = 1 indicates that the PE might generate an SError on an
467          * external abort on speculative read. It is safe to assume that an
468          * SError might be generated than it will not be. Hence it has been
469          * classified as FTR_HIGHER_SAFE.
470          */
471         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
472         ARM64_FTR_END,
473 };
474
475 static const struct arm64_ftr_bits ftr_id_isar4[] = {
476         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
478         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
479         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
481         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
483         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
484         ARM64_FTR_END,
485 };
486
487 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
489         ARM64_FTR_END,
490 };
491
492 static const struct arm64_ftr_bits ftr_id_isar6[] = {
493         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
494         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
495         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
496         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
497         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
498         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
499         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
500         ARM64_FTR_END,
501 };
502
503 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
509         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
510         ARM64_FTR_END,
511 };
512
513 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
514         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
515         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
516         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
517         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
518         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
519         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
520         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
521         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
522         ARM64_FTR_END,
523 };
524
525 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
528         ARM64_FTR_END,
529 };
530
531 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
532         /* [31:28] TraceFilt */
533         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
534         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
535         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
536         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
537         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
538         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
539         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
540         ARM64_FTR_END,
541 };
542
543 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
544         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
545         ARM64_FTR_END,
546 };
547
548 static const struct arm64_ftr_bits ftr_zcr[] = {
549         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
550                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
551         ARM64_FTR_END,
552 };
553
554 /*
555  * Common ftr bits for a 32bit register with all hidden, strict
556  * attributes, with 4bit feature fields and a default safe value of
557  * 0. Covers the following 32bit registers:
558  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
559  */
560 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
561         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
562         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
563         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
564         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
565         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
566         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
567         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
568         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
569         ARM64_FTR_END,
570 };
571
572 /* Table for a single 32bit feature value */
573 static const struct arm64_ftr_bits ftr_single32[] = {
574         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
575         ARM64_FTR_END,
576 };
577
578 static const struct arm64_ftr_bits ftr_raz[] = {
579         ARM64_FTR_END,
580 };
581
582 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {      \
583                 .sys_id = id,                                   \
584                 .reg =  &(struct arm64_ftr_reg){                \
585                         .name = id_str,                         \
586                         .override = (ovr),                      \
587                         .ftr_bits = &((table)[0]),              \
588         }}
589
590 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
591         __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
592
593 #define ARM64_FTR_REG(id, table)                \
594         __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
595
596 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
597 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
598 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
599
600 static const struct __ftr_reg_entry {
601         u32                     sys_id;
602         struct arm64_ftr_reg    *reg;
603 } arm64_ftr_regs[] = {
604
605         /* Op1 = 0, CRn = 0, CRm = 1 */
606         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
607         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
608         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
609         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
610         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
611         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
612         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
613
614         /* Op1 = 0, CRn = 0, CRm = 2 */
615         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
616         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
617         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
618         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
619         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
620         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
621         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
622         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
623
624         /* Op1 = 0, CRn = 0, CRm = 3 */
625         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
626         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
627         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
628         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
629         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
630         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
631
632         /* Op1 = 0, CRn = 0, CRm = 4 */
633         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
634         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
635                                &id_aa64pfr1_override),
636         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
637
638         /* Op1 = 0, CRn = 0, CRm = 5 */
639         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
640         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
641
642         /* Op1 = 0, CRn = 0, CRm = 6 */
643         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
644         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
645                                &id_aa64isar1_override),
646         ARM64_FTR_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2),
647
648         /* Op1 = 0, CRn = 0, CRm = 7 */
649         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
650         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
651                                &id_aa64mmfr1_override),
652         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
653
654         /* Op1 = 0, CRn = 1, CRm = 2 */
655         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
656
657         /* Op1 = 1, CRn = 0, CRm = 0 */
658         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
659
660         /* Op1 = 3, CRn = 0, CRm = 0 */
661         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
662         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
663
664         /* Op1 = 3, CRn = 14, CRm = 0 */
665         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
666 };
667
668 static int search_cmp_ftr_reg(const void *id, const void *regp)
669 {
670         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
671 }
672
673 /*
674  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
675  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
676  * ascending order of sys_id, we use binary search to find a matching
677  * entry.
678  *
679  * returns - Upon success,  matching ftr_reg entry for id.
680  *         - NULL on failure. It is upto the caller to decide
681  *           the impact of a failure.
682  */
683 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
684 {
685         const struct __ftr_reg_entry *ret;
686
687         ret = bsearch((const void *)(unsigned long)sys_id,
688                         arm64_ftr_regs,
689                         ARRAY_SIZE(arm64_ftr_regs),
690                         sizeof(arm64_ftr_regs[0]),
691                         search_cmp_ftr_reg);
692         if (ret)
693                 return ret->reg;
694         return NULL;
695 }
696
697 /*
698  * get_arm64_ftr_reg - Looks up a feature register entry using
699  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
700  *
701  * returns - Upon success,  matching ftr_reg entry for id.
702  *         - NULL on failure but with an WARN_ON().
703  */
704 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
705 {
706         struct arm64_ftr_reg *reg;
707
708         reg = get_arm64_ftr_reg_nowarn(sys_id);
709
710         /*
711          * Requesting a non-existent register search is an error. Warn
712          * and let the caller handle it.
713          */
714         WARN_ON(!reg);
715         return reg;
716 }
717
718 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
719                                s64 ftr_val)
720 {
721         u64 mask = arm64_ftr_mask(ftrp);
722
723         reg &= ~mask;
724         reg |= (ftr_val << ftrp->shift) & mask;
725         return reg;
726 }
727
728 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
729                                 s64 cur)
730 {
731         s64 ret = 0;
732
733         switch (ftrp->type) {
734         case FTR_EXACT:
735                 ret = ftrp->safe_val;
736                 break;
737         case FTR_LOWER_SAFE:
738                 ret = min(new, cur);
739                 break;
740         case FTR_HIGHER_OR_ZERO_SAFE:
741                 if (!cur || !new)
742                         break;
743                 fallthrough;
744         case FTR_HIGHER_SAFE:
745                 ret = max(new, cur);
746                 break;
747         default:
748                 BUG();
749         }
750
751         return ret;
752 }
753
754 static void __init sort_ftr_regs(void)
755 {
756         unsigned int i;
757
758         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
759                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
760                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
761                 unsigned int j = 0;
762
763                 /*
764                  * Features here must be sorted in descending order with respect
765                  * to their shift values and should not overlap with each other.
766                  */
767                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
768                         unsigned int width = ftr_reg->ftr_bits[j].width;
769                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
770                         unsigned int prev_shift;
771
772                         WARN((shift  + width) > 64,
773                                 "%s has invalid feature at shift %d\n",
774                                 ftr_reg->name, shift);
775
776                         /*
777                          * Skip the first feature. There is nothing to
778                          * compare against for now.
779                          */
780                         if (j == 0)
781                                 continue;
782
783                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
784                         WARN((shift + width) > prev_shift,
785                                 "%s has feature overlap at shift %d\n",
786                                 ftr_reg->name, shift);
787                 }
788
789                 /*
790                  * Skip the first register. There is nothing to
791                  * compare against for now.
792                  */
793                 if (i == 0)
794                         continue;
795                 /*
796                  * Registers here must be sorted in ascending order with respect
797                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
798                  * to work correctly.
799                  */
800                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
801         }
802 }
803
804 /*
805  * Initialise the CPU feature register from Boot CPU values.
806  * Also initiliases the strict_mask for the register.
807  * Any bits that are not covered by an arm64_ftr_bits entry are considered
808  * RES0 for the system-wide value, and must strictly match.
809  */
810 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
811 {
812         u64 val = 0;
813         u64 strict_mask = ~0x0ULL;
814         u64 user_mask = 0;
815         u64 valid_mask = 0;
816
817         const struct arm64_ftr_bits *ftrp;
818         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
819
820         if (!reg)
821                 return;
822
823         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
824                 u64 ftr_mask = arm64_ftr_mask(ftrp);
825                 s64 ftr_new = arm64_ftr_value(ftrp, new);
826                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
827
828                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
829                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
830                         char *str = NULL;
831
832                         if (ftr_ovr != tmp) {
833                                 /* Unsafe, remove the override */
834                                 reg->override->mask &= ~ftr_mask;
835                                 reg->override->val &= ~ftr_mask;
836                                 tmp = ftr_ovr;
837                                 str = "ignoring override";
838                         } else if (ftr_new != tmp) {
839                                 /* Override was valid */
840                                 ftr_new = tmp;
841                                 str = "forced";
842                         } else if (ftr_ovr == tmp) {
843                                 /* Override was the safe value */
844                                 str = "already set";
845                         }
846
847                         if (str)
848                                 pr_warn("%s[%d:%d]: %s to %llx\n",
849                                         reg->name,
850                                         ftrp->shift + ftrp->width - 1,
851                                         ftrp->shift, str, tmp);
852                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
853                         reg->override->val &= ~ftr_mask;
854                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
855                                 reg->name,
856                                 ftrp->shift + ftrp->width - 1,
857                                 ftrp->shift);
858                 }
859
860                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
861
862                 valid_mask |= ftr_mask;
863                 if (!ftrp->strict)
864                         strict_mask &= ~ftr_mask;
865                 if (ftrp->visible)
866                         user_mask |= ftr_mask;
867                 else
868                         reg->user_val = arm64_ftr_set_value(ftrp,
869                                                             reg->user_val,
870                                                             ftrp->safe_val);
871         }
872
873         val &= valid_mask;
874
875         reg->sys_val = val;
876         reg->strict_mask = strict_mask;
877         reg->user_mask = user_mask;
878 }
879
880 extern const struct arm64_cpu_capabilities arm64_errata[];
881 static const struct arm64_cpu_capabilities arm64_features[];
882
883 static void __init
884 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
885 {
886         for (; caps->matches; caps++) {
887                 if (WARN(caps->capability >= ARM64_NCAPS,
888                         "Invalid capability %d\n", caps->capability))
889                         continue;
890                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
891                         "Duplicate entry for capability %d\n",
892                         caps->capability))
893                         continue;
894                 cpu_hwcaps_ptrs[caps->capability] = caps;
895         }
896 }
897
898 static void __init init_cpu_hwcaps_indirect_list(void)
899 {
900         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
901         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
902 }
903
904 static void __init setup_boot_cpu_capabilities(void);
905
906 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
907 {
908         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
909         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
910         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
911         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
912         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
913         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
914         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
915         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
916         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
917         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
918         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
919         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
920         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
921         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
922         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
923         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
924         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
925         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
926         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
927         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
928         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
929 }
930
931 void __init init_cpu_features(struct cpuinfo_arm64 *info)
932 {
933         /* Before we start using the tables, make sure it is sorted */
934         sort_ftr_regs();
935
936         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
937         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
938         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
939         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
940         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
941         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
942         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
943         init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
944         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
945         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
946         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
947         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
948         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
949         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
950
951         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
952                 init_32bit_cpu_features(&info->aarch32);
953
954         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
955                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
956                 vec_init_vq_map(ARM64_VEC_SVE);
957         }
958
959         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
960                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
961
962         /*
963          * Initialize the indirect array of CPU hwcaps capabilities pointers
964          * before we handle the boot CPU below.
965          */
966         init_cpu_hwcaps_indirect_list();
967
968         /*
969          * Detect and enable early CPU capabilities based on the boot CPU,
970          * after we have initialised the CPU feature infrastructure.
971          */
972         setup_boot_cpu_capabilities();
973 }
974
975 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
976 {
977         const struct arm64_ftr_bits *ftrp;
978
979         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
980                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
981                 s64 ftr_new = arm64_ftr_value(ftrp, new);
982
983                 if (ftr_cur == ftr_new)
984                         continue;
985                 /* Find a safe value */
986                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
987                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
988         }
989
990 }
991
992 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
993 {
994         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
995
996         if (!regp)
997                 return 0;
998
999         update_cpu_ftr_reg(regp, val);
1000         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1001                 return 0;
1002         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1003                         regp->name, boot, cpu, val);
1004         return 1;
1005 }
1006
1007 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1008 {
1009         const struct arm64_ftr_bits *ftrp;
1010         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1011
1012         if (!regp)
1013                 return;
1014
1015         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1016                 if (ftrp->shift == field) {
1017                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1018                         break;
1019                 }
1020         }
1021
1022         /* Bogus field? */
1023         WARN_ON(!ftrp->width);
1024 }
1025
1026 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1027                                          struct cpuinfo_arm64 *boot)
1028 {
1029         static bool boot_cpu_32bit_regs_overridden = false;
1030
1031         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1032                 return;
1033
1034         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1035                 return;
1036
1037         boot->aarch32 = info->aarch32;
1038         init_32bit_cpu_features(&boot->aarch32);
1039         boot_cpu_32bit_regs_overridden = true;
1040 }
1041
1042 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1043                                      struct cpuinfo_32bit *boot)
1044 {
1045         int taint = 0;
1046         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1047
1048         /*
1049          * If we don't have AArch32 at EL1, then relax the strictness of
1050          * EL1-dependent register fields to avoid spurious sanity check fails.
1051          */
1052         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1053                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1054                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1055                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1056                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1057                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1058                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1059         }
1060
1061         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1062                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1063         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1064                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1065         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1066                                       info->reg_id_isar0, boot->reg_id_isar0);
1067         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1068                                       info->reg_id_isar1, boot->reg_id_isar1);
1069         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1070                                       info->reg_id_isar2, boot->reg_id_isar2);
1071         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1072                                       info->reg_id_isar3, boot->reg_id_isar3);
1073         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1074                                       info->reg_id_isar4, boot->reg_id_isar4);
1075         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1076                                       info->reg_id_isar5, boot->reg_id_isar5);
1077         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1078                                       info->reg_id_isar6, boot->reg_id_isar6);
1079
1080         /*
1081          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1082          * ACTLR formats could differ across CPUs and therefore would have to
1083          * be trapped for virtualization anyway.
1084          */
1085         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1086                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1087         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1088                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1089         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1090                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1091         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1092                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1093         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1094                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1095         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1096                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1097         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1098                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1099         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1100                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1101         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1102                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1103         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1104                                       info->reg_mvfr0, boot->reg_mvfr0);
1105         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1106                                       info->reg_mvfr1, boot->reg_mvfr1);
1107         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1108                                       info->reg_mvfr2, boot->reg_mvfr2);
1109
1110         return taint;
1111 }
1112
1113 /*
1114  * Update system wide CPU feature registers with the values from a
1115  * non-boot CPU. Also performs SANITY checks to make sure that there
1116  * aren't any insane variations from that of the boot CPU.
1117  */
1118 void update_cpu_features(int cpu,
1119                          struct cpuinfo_arm64 *info,
1120                          struct cpuinfo_arm64 *boot)
1121 {
1122         int taint = 0;
1123
1124         /*
1125          * The kernel can handle differing I-cache policies, but otherwise
1126          * caches should look identical. Userspace JITs will make use of
1127          * *minLine.
1128          */
1129         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1130                                       info->reg_ctr, boot->reg_ctr);
1131
1132         /*
1133          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1134          * could result in too much or too little memory being zeroed if a
1135          * process is preempted and migrated between CPUs.
1136          */
1137         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1138                                       info->reg_dczid, boot->reg_dczid);
1139
1140         /* If different, timekeeping will be broken (especially with KVM) */
1141         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1142                                       info->reg_cntfrq, boot->reg_cntfrq);
1143
1144         /*
1145          * The kernel uses self-hosted debug features and expects CPUs to
1146          * support identical debug features. We presently need CTX_CMPs, WRPs,
1147          * and BRPs to be identical.
1148          * ID_AA64DFR1 is currently RES0.
1149          */
1150         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1151                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1152         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1153                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1154         /*
1155          * Even in big.LITTLE, processors should be identical instruction-set
1156          * wise.
1157          */
1158         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1159                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1160         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1161                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1162         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1163                                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1164
1165         /*
1166          * Differing PARange support is fine as long as all peripherals and
1167          * memory are mapped within the minimum PARange of all CPUs.
1168          * Linux should not care about secure memory.
1169          */
1170         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1171                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1172         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1173                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1174         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1175                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1176
1177         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1178                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1179         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1180                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1181
1182         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1183                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1184
1185         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1186                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1187                                         info->reg_zcr, boot->reg_zcr);
1188
1189                 /* Probe vector lengths, unless we already gave up on SVE */
1190                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1191                     !system_capabilities_finalized())
1192                         vec_update_vq_map(ARM64_VEC_SVE);
1193         }
1194
1195         /*
1196          * The kernel uses the LDGM/STGM instructions and the number of tags
1197          * they read/write depends on the GMID_EL1.BS field. Check that the
1198          * value is the same on all CPUs.
1199          */
1200         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1201             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1202                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1203                                               info->reg_gmid, boot->reg_gmid);
1204         }
1205
1206         /*
1207          * If we don't have AArch32 at all then skip the checks entirely
1208          * as the register values may be UNKNOWN and we're not going to be
1209          * using them for anything.
1210          *
1211          * This relies on a sanitised view of the AArch64 ID registers
1212          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1213          */
1214         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1215                 lazy_init_32bit_cpu_features(info, boot);
1216                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1217                                                    &boot->aarch32);
1218         }
1219
1220         /*
1221          * Mismatched CPU features are a recipe for disaster. Don't even
1222          * pretend to support them.
1223          */
1224         if (taint) {
1225                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1226                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1227         }
1228 }
1229
1230 u64 read_sanitised_ftr_reg(u32 id)
1231 {
1232         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1233
1234         if (!regp)
1235                 return 0;
1236         return regp->sys_val;
1237 }
1238 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1239
1240 #define read_sysreg_case(r)     \
1241         case r:         val = read_sysreg_s(r); break;
1242
1243 /*
1244  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1245  * Read the system register on the current CPU
1246  */
1247 u64 __read_sysreg_by_encoding(u32 sys_id)
1248 {
1249         struct arm64_ftr_reg *regp;
1250         u64 val;
1251
1252         switch (sys_id) {
1253         read_sysreg_case(SYS_ID_PFR0_EL1);
1254         read_sysreg_case(SYS_ID_PFR1_EL1);
1255         read_sysreg_case(SYS_ID_PFR2_EL1);
1256         read_sysreg_case(SYS_ID_DFR0_EL1);
1257         read_sysreg_case(SYS_ID_DFR1_EL1);
1258         read_sysreg_case(SYS_ID_MMFR0_EL1);
1259         read_sysreg_case(SYS_ID_MMFR1_EL1);
1260         read_sysreg_case(SYS_ID_MMFR2_EL1);
1261         read_sysreg_case(SYS_ID_MMFR3_EL1);
1262         read_sysreg_case(SYS_ID_MMFR4_EL1);
1263         read_sysreg_case(SYS_ID_MMFR5_EL1);
1264         read_sysreg_case(SYS_ID_ISAR0_EL1);
1265         read_sysreg_case(SYS_ID_ISAR1_EL1);
1266         read_sysreg_case(SYS_ID_ISAR2_EL1);
1267         read_sysreg_case(SYS_ID_ISAR3_EL1);
1268         read_sysreg_case(SYS_ID_ISAR4_EL1);
1269         read_sysreg_case(SYS_ID_ISAR5_EL1);
1270         read_sysreg_case(SYS_ID_ISAR6_EL1);
1271         read_sysreg_case(SYS_MVFR0_EL1);
1272         read_sysreg_case(SYS_MVFR1_EL1);
1273         read_sysreg_case(SYS_MVFR2_EL1);
1274
1275         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1276         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1277         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1278         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1279         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1280         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1281         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1282         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1283         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1284         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1285         read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1286
1287         read_sysreg_case(SYS_CNTFRQ_EL0);
1288         read_sysreg_case(SYS_CTR_EL0);
1289         read_sysreg_case(SYS_DCZID_EL0);
1290
1291         default:
1292                 BUG();
1293                 return 0;
1294         }
1295
1296         regp  = get_arm64_ftr_reg(sys_id);
1297         if (regp) {
1298                 val &= ~regp->override->mask;
1299                 val |= (regp->override->val & regp->override->mask);
1300         }
1301
1302         return val;
1303 }
1304
1305 #include <linux/irqchip/arm-gic-v3.h>
1306
1307 static bool
1308 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1309 {
1310         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1311
1312         return val >= entry->min_field_value;
1313 }
1314
1315 static bool
1316 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1317 {
1318         u64 val;
1319
1320         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1321         if (scope == SCOPE_SYSTEM)
1322                 val = read_sanitised_ftr_reg(entry->sys_reg);
1323         else
1324                 val = __read_sysreg_by_encoding(entry->sys_reg);
1325
1326         return feature_matches(val, entry);
1327 }
1328
1329 const struct cpumask *system_32bit_el0_cpumask(void)
1330 {
1331         if (!system_supports_32bit_el0())
1332                 return cpu_none_mask;
1333
1334         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1335                 return cpu_32bit_el0_mask;
1336
1337         return cpu_possible_mask;
1338 }
1339
1340 static int __init parse_32bit_el0_param(char *str)
1341 {
1342         allow_mismatched_32bit_el0 = true;
1343         return 0;
1344 }
1345 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1346
1347 static ssize_t aarch32_el0_show(struct device *dev,
1348                                 struct device_attribute *attr, char *buf)
1349 {
1350         const struct cpumask *mask = system_32bit_el0_cpumask();
1351
1352         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1353 }
1354 static const DEVICE_ATTR_RO(aarch32_el0);
1355
1356 static int __init aarch32_el0_sysfs_init(void)
1357 {
1358         if (!allow_mismatched_32bit_el0)
1359                 return 0;
1360
1361         return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1362 }
1363 device_initcall(aarch32_el0_sysfs_init);
1364
1365 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1366 {
1367         if (!has_cpuid_feature(entry, scope))
1368                 return allow_mismatched_32bit_el0;
1369
1370         if (scope == SCOPE_SYSTEM)
1371                 pr_info("detected: 32-bit EL0 Support\n");
1372
1373         return true;
1374 }
1375
1376 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1377 {
1378         bool has_sre;
1379
1380         if (!has_cpuid_feature(entry, scope))
1381                 return false;
1382
1383         has_sre = gic_enable_sre();
1384         if (!has_sre)
1385                 pr_warn_once("%s present but disabled by higher exception level\n",
1386                              entry->desc);
1387
1388         return has_sre;
1389 }
1390
1391 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1392 {
1393         u32 midr = read_cpuid_id();
1394
1395         /* Cavium ThunderX pass 1.x and 2.x */
1396         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1397                 MIDR_CPU_VAR_REV(0, 0),
1398                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1399 }
1400
1401 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1402 {
1403         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1404
1405         return cpuid_feature_extract_signed_field(pfr0,
1406                                         ID_AA64PFR0_FP_SHIFT) < 0;
1407 }
1408
1409 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1410                           int scope)
1411 {
1412         u64 ctr;
1413
1414         if (scope == SCOPE_SYSTEM)
1415                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1416         else
1417                 ctr = read_cpuid_effective_cachetype();
1418
1419         return ctr & BIT(CTR_IDC_SHIFT);
1420 }
1421
1422 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1423 {
1424         /*
1425          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1426          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1427          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1428          * value.
1429          */
1430         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1431                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1432 }
1433
1434 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1435                           int scope)
1436 {
1437         u64 ctr;
1438
1439         if (scope == SCOPE_SYSTEM)
1440                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1441         else
1442                 ctr = read_cpuid_cachetype();
1443
1444         return ctr & BIT(CTR_DIC_SHIFT);
1445 }
1446
1447 static bool __maybe_unused
1448 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1449 {
1450         /*
1451          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1452          * may share TLB entries with a CPU stuck in the crashed
1453          * kernel.
1454          */
1455         if (is_kdump_kernel())
1456                 return false;
1457
1458         if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1459                 return false;
1460
1461         return has_cpuid_feature(entry, scope);
1462 }
1463
1464 /*
1465  * This check is triggered during the early boot before the cpufeature
1466  * is initialised. Checking the status on the local CPU allows the boot
1467  * CPU to detect the need for non-global mappings and thus avoiding a
1468  * pagetable re-write after all the CPUs are booted. This check will be
1469  * anyway run on individual CPUs, allowing us to get the consistent
1470  * state once the SMP CPUs are up and thus make the switch to non-global
1471  * mappings if required.
1472  */
1473 bool kaslr_requires_kpti(void)
1474 {
1475         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1476                 return false;
1477
1478         /*
1479          * E0PD does a similar job to KPTI so can be used instead
1480          * where available.
1481          */
1482         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1483                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1484                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1485                                                 ID_AA64MMFR2_E0PD_SHIFT))
1486                         return false;
1487         }
1488
1489         /*
1490          * Systems affected by Cavium erratum 24756 are incompatible
1491          * with KPTI.
1492          */
1493         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1494                 extern const struct midr_range cavium_erratum_27456_cpus[];
1495
1496                 if (is_midr_in_range_list(read_cpuid_id(),
1497                                           cavium_erratum_27456_cpus))
1498                         return false;
1499         }
1500
1501         return kaslr_offset() > 0;
1502 }
1503
1504 static bool __meltdown_safe = true;
1505 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1506
1507 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1508                                 int scope)
1509 {
1510         /* List of CPUs that are not vulnerable and don't need KPTI */
1511         static const struct midr_range kpti_safe_list[] = {
1512                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1513                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1514                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1515                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1516                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1517                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1518                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1519                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1520                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1521                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1522                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1523                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1524                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1525                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1526                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1527                 { /* sentinel */ }
1528         };
1529         char const *str = "kpti command line option";
1530         bool meltdown_safe;
1531
1532         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1533
1534         /* Defer to CPU feature registers */
1535         if (has_cpuid_feature(entry, scope))
1536                 meltdown_safe = true;
1537
1538         if (!meltdown_safe)
1539                 __meltdown_safe = false;
1540
1541         /*
1542          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1543          * ThunderX leads to apparent I-cache corruption of kernel text, which
1544          * ends as well as you might imagine. Don't even try. We cannot rely
1545          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1546          * because cpucap detection order may change. However, since we know
1547          * affected CPUs are always in a homogeneous configuration, it is
1548          * safe to rely on this_cpu_has_cap() here.
1549          */
1550         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1551                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1552                 __kpti_forced = -1;
1553         }
1554
1555         /* Useful for KASLR robustness */
1556         if (kaslr_requires_kpti()) {
1557                 if (!__kpti_forced) {
1558                         str = "KASLR";
1559                         __kpti_forced = 1;
1560                 }
1561         }
1562
1563         if (cpu_mitigations_off() && !__kpti_forced) {
1564                 str = "mitigations=off";
1565                 __kpti_forced = -1;
1566         }
1567
1568         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1569                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1570                 return false;
1571         }
1572
1573         /* Forced? */
1574         if (__kpti_forced) {
1575                 pr_info_once("kernel page table isolation forced %s by %s\n",
1576                              __kpti_forced > 0 ? "ON" : "OFF", str);
1577                 return __kpti_forced > 0;
1578         }
1579
1580         return !meltdown_safe;
1581 }
1582
1583 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1584 static void __nocfi
1585 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1586 {
1587         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1588         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1589         kpti_remap_fn *remap_fn;
1590
1591         int cpu = smp_processor_id();
1592
1593         /*
1594          * We don't need to rewrite the page-tables if either we've done
1595          * it already or we have KASLR enabled and therefore have not
1596          * created any global mappings at all.
1597          */
1598         if (arm64_use_ng_mappings)
1599                 return;
1600
1601         remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1602
1603         cpu_install_idmap();
1604         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1605         cpu_uninstall_idmap();
1606
1607         if (!cpu)
1608                 arm64_use_ng_mappings = true;
1609 }
1610 #else
1611 static void
1612 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1613 {
1614 }
1615 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1616
1617 static int __init parse_kpti(char *str)
1618 {
1619         bool enabled;
1620         int ret = strtobool(str, &enabled);
1621
1622         if (ret)
1623                 return ret;
1624
1625         __kpti_forced = enabled ? 1 : -1;
1626         return 0;
1627 }
1628 early_param("kpti", parse_kpti);
1629
1630 #ifdef CONFIG_ARM64_HW_AFDBM
1631 static inline void __cpu_enable_hw_dbm(void)
1632 {
1633         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1634
1635         write_sysreg(tcr, tcr_el1);
1636         isb();
1637         local_flush_tlb_all();
1638 }
1639
1640 static bool cpu_has_broken_dbm(void)
1641 {
1642         /* List of CPUs which have broken DBM support. */
1643         static const struct midr_range cpus[] = {
1644 #ifdef CONFIG_ARM64_ERRATUM_1024718
1645                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1646                 /* Kryo4xx Silver (rdpe => r1p0) */
1647                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1648 #endif
1649 #ifdef CONFIG_ARM64_ERRATUM_2051678
1650                 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1651 #endif
1652                 {},
1653         };
1654
1655         return is_midr_in_range_list(read_cpuid_id(), cpus);
1656 }
1657
1658 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1659 {
1660         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1661                !cpu_has_broken_dbm();
1662 }
1663
1664 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1665 {
1666         if (cpu_can_use_dbm(cap))
1667                 __cpu_enable_hw_dbm();
1668 }
1669
1670 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1671                        int __unused)
1672 {
1673         static bool detected = false;
1674         /*
1675          * DBM is a non-conflicting feature. i.e, the kernel can safely
1676          * run a mix of CPUs with and without the feature. So, we
1677          * unconditionally enable the capability to allow any late CPU
1678          * to use the feature. We only enable the control bits on the
1679          * CPU, if it actually supports.
1680          *
1681          * We have to make sure we print the "feature" detection only
1682          * when at least one CPU actually uses it. So check if this CPU
1683          * can actually use it and print the message exactly once.
1684          *
1685          * This is safe as all CPUs (including secondary CPUs - due to the
1686          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1687          * goes through the "matches" check exactly once. Also if a CPU
1688          * matches the criteria, it is guaranteed that the CPU will turn
1689          * the DBM on, as the capability is unconditionally enabled.
1690          */
1691         if (!detected && cpu_can_use_dbm(cap)) {
1692                 detected = true;
1693                 pr_info("detected: Hardware dirty bit management\n");
1694         }
1695
1696         return true;
1697 }
1698
1699 #endif
1700
1701 #ifdef CONFIG_ARM64_AMU_EXTN
1702
1703 /*
1704  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1705  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1706  * information regarding all the events that it supports. When a CPU bit is
1707  * set in the cpumask, the user of this feature can only rely on the presence
1708  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1709  * counters are enabled or access to these counters is enabled by code
1710  * executed at higher exception levels (firmware).
1711  */
1712 static struct cpumask amu_cpus __read_mostly;
1713
1714 bool cpu_has_amu_feat(int cpu)
1715 {
1716         return cpumask_test_cpu(cpu, &amu_cpus);
1717 }
1718
1719 int get_cpu_with_amu_feat(void)
1720 {
1721         return cpumask_any(&amu_cpus);
1722 }
1723
1724 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1725 {
1726         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1727                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1728                         smp_processor_id());
1729                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1730                 update_freq_counters_refs();
1731         }
1732 }
1733
1734 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1735                     int __unused)
1736 {
1737         /*
1738          * The AMU extension is a non-conflicting feature: the kernel can
1739          * safely run a mix of CPUs with and without support for the
1740          * activity monitors extension. Therefore, unconditionally enable
1741          * the capability to allow any late CPU to use the feature.
1742          *
1743          * With this feature unconditionally enabled, the cpu_enable
1744          * function will be called for all CPUs that match the criteria,
1745          * including secondary and hotplugged, marking this feature as
1746          * present on that respective CPU. The enable function will also
1747          * print a detection message.
1748          */
1749
1750         return true;
1751 }
1752 #else
1753 int get_cpu_with_amu_feat(void)
1754 {
1755         return nr_cpu_ids;
1756 }
1757 #endif
1758
1759 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1760 {
1761         return is_kernel_in_hyp_mode();
1762 }
1763
1764 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1765 {
1766         /*
1767          * Copy register values that aren't redirected by hardware.
1768          *
1769          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1770          * this value to tpidr_el2 before we patch the code. Once we've done
1771          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1772          * do anything here.
1773          */
1774         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1775                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1776 }
1777
1778 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1779 {
1780         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1781
1782         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1783         WARN_ON(CLIDR_LOUU(val) || CLIDR_LOUIS(val));
1784 }
1785
1786 #ifdef CONFIG_ARM64_PAN
1787 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1788 {
1789         /*
1790          * We modify PSTATE. This won't work from irq context as the PSTATE
1791          * is discarded once we return from the exception.
1792          */
1793         WARN_ON_ONCE(in_interrupt());
1794
1795         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1796         set_pstate_pan(1);
1797 }
1798 #endif /* CONFIG_ARM64_PAN */
1799
1800 #ifdef CONFIG_ARM64_RAS_EXTN
1801 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1802 {
1803         /* Firmware may have left a deferred SError in this register. */
1804         write_sysreg_s(0, SYS_DISR_EL1);
1805 }
1806 #endif /* CONFIG_ARM64_RAS_EXTN */
1807
1808 #ifdef CONFIG_ARM64_PTR_AUTH
1809 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1810 {
1811         int boot_val, sec_val;
1812
1813         /* We don't expect to be called with SCOPE_SYSTEM */
1814         WARN_ON(scope == SCOPE_SYSTEM);
1815         /*
1816          * The ptr-auth feature levels are not intercompatible with lower
1817          * levels. Hence we must match ptr-auth feature level of the secondary
1818          * CPUs with that of the boot CPU. The level of boot cpu is fetched
1819          * from the sanitised register whereas direct register read is done for
1820          * the secondary CPUs.
1821          * The sanitised feature state is guaranteed to match that of the
1822          * boot CPU as a mismatched secondary CPU is parked before it gets
1823          * a chance to update the state, with the capability.
1824          */
1825         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1826                                                entry->field_pos, entry->sign);
1827         if (scope & SCOPE_BOOT_CPU)
1828                 return boot_val >= entry->min_field_value;
1829         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1830         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1831                                               entry->field_pos, entry->sign);
1832         return sec_val == boot_val;
1833 }
1834
1835 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1836                                      int scope)
1837 {
1838         return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1839                has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1840 }
1841
1842 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1843                              int __unused)
1844 {
1845         return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1846                __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1847 }
1848 #endif /* CONFIG_ARM64_PTR_AUTH */
1849
1850 #ifdef CONFIG_ARM64_E0PD
1851 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1852 {
1853         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1854                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1855 }
1856 #endif /* CONFIG_ARM64_E0PD */
1857
1858 #ifdef CONFIG_ARM64_PSEUDO_NMI
1859 static bool enable_pseudo_nmi;
1860
1861 static int __init early_enable_pseudo_nmi(char *p)
1862 {
1863         return strtobool(p, &enable_pseudo_nmi);
1864 }
1865 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1866
1867 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1868                                    int scope)
1869 {
1870         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1871 }
1872 #endif
1873
1874 #ifdef CONFIG_ARM64_BTI
1875 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1876 {
1877         /*
1878          * Use of X16/X17 for tail-calls and trampolines that jump to
1879          * function entry points using BR is a requirement for
1880          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1881          * So, be strict and forbid other BRs using other registers to
1882          * jump onto a PACIxSP instruction:
1883          */
1884         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1885         isb();
1886 }
1887 #endif /* CONFIG_ARM64_BTI */
1888
1889 #ifdef CONFIG_ARM64_MTE
1890 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1891 {
1892         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
1893         isb();
1894
1895         /*
1896          * Clear the tags in the zero page. This needs to be done via the
1897          * linear map which has the Tagged attribute.
1898          */
1899         if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1900                 mte_clear_page_tags(lm_alias(empty_zero_page));
1901
1902         kasan_init_hw_tags_cpu();
1903 }
1904 #endif /* CONFIG_ARM64_MTE */
1905
1906 #ifdef CONFIG_KVM
1907 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1908 {
1909         if (kvm_get_mode() != KVM_MODE_PROTECTED)
1910                 return false;
1911
1912         if (is_kernel_in_hyp_mode()) {
1913                 pr_warn("Protected KVM not available with VHE\n");
1914                 return false;
1915         }
1916
1917         return true;
1918 }
1919 #endif /* CONFIG_KVM */
1920
1921 /* Internal helper functions to match cpu capability type */
1922 static bool
1923 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1924 {
1925         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1926 }
1927
1928 static bool
1929 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1930 {
1931         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1932 }
1933
1934 static bool
1935 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1936 {
1937         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1938 }
1939
1940 static const struct arm64_cpu_capabilities arm64_features[] = {
1941         {
1942                 .desc = "GIC system register CPU interface",
1943                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1944                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1945                 .matches = has_useable_gicv3_cpuif,
1946                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1947                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1948                 .sign = FTR_UNSIGNED,
1949                 .min_field_value = 1,
1950         },
1951         {
1952                 .desc = "Enhanced Counter Virtualization",
1953                 .capability = ARM64_HAS_ECV,
1954                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1955                 .matches = has_cpuid_feature,
1956                 .sys_reg = SYS_ID_AA64MMFR0_EL1,
1957                 .field_pos = ID_AA64MMFR0_ECV_SHIFT,
1958                 .sign = FTR_UNSIGNED,
1959                 .min_field_value = 1,
1960         },
1961 #ifdef CONFIG_ARM64_PAN
1962         {
1963                 .desc = "Privileged Access Never",
1964                 .capability = ARM64_HAS_PAN,
1965                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1966                 .matches = has_cpuid_feature,
1967                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1968                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1969                 .sign = FTR_UNSIGNED,
1970                 .min_field_value = 1,
1971                 .cpu_enable = cpu_enable_pan,
1972         },
1973 #endif /* CONFIG_ARM64_PAN */
1974 #ifdef CONFIG_ARM64_EPAN
1975         {
1976                 .desc = "Enhanced Privileged Access Never",
1977                 .capability = ARM64_HAS_EPAN,
1978                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1979                 .matches = has_cpuid_feature,
1980                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1981                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1982                 .sign = FTR_UNSIGNED,
1983                 .min_field_value = 3,
1984         },
1985 #endif /* CONFIG_ARM64_EPAN */
1986 #ifdef CONFIG_ARM64_LSE_ATOMICS
1987         {
1988                 .desc = "LSE atomic instructions",
1989                 .capability = ARM64_HAS_LSE_ATOMICS,
1990                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1991                 .matches = has_cpuid_feature,
1992                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1993                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1994                 .sign = FTR_UNSIGNED,
1995                 .min_field_value = 2,
1996         },
1997 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1998         {
1999                 .desc = "Software prefetching using PRFM",
2000                 .capability = ARM64_HAS_NO_HW_PREFETCH,
2001                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2002                 .matches = has_no_hw_prefetch,
2003         },
2004         {
2005                 .desc = "Virtualization Host Extensions",
2006                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2007                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2008                 .matches = runs_at_el2,
2009                 .cpu_enable = cpu_copy_el2regs,
2010         },
2011         {
2012                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2013                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2014                 .matches = has_32bit_el0,
2015                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2016                 .sign = FTR_UNSIGNED,
2017                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
2018                 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2019         },
2020 #ifdef CONFIG_KVM
2021         {
2022                 .desc = "32-bit EL1 Support",
2023                 .capability = ARM64_HAS_32BIT_EL1,
2024                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2025                 .matches = has_cpuid_feature,
2026                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2027                 .sign = FTR_UNSIGNED,
2028                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
2029                 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2030         },
2031         {
2032                 .desc = "Protected KVM",
2033                 .capability = ARM64_KVM_PROTECTED_MODE,
2034                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2035                 .matches = is_kvm_protected_mode,
2036         },
2037 #endif
2038         {
2039                 .desc = "Kernel page table isolation (KPTI)",
2040                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2041                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2042                 /*
2043                  * The ID feature fields below are used to indicate that
2044                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2045                  * more details.
2046                  */
2047                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2048                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
2049                 .min_field_value = 1,
2050                 .matches = unmap_kernel_at_el0,
2051                 .cpu_enable = kpti_install_ng_mappings,
2052         },
2053         {
2054                 /* FP/SIMD is not implemented */
2055                 .capability = ARM64_HAS_NO_FPSIMD,
2056                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2057                 .min_field_value = 0,
2058                 .matches = has_no_fpsimd,
2059         },
2060 #ifdef CONFIG_ARM64_PMEM
2061         {
2062                 .desc = "Data cache clean to Point of Persistence",
2063                 .capability = ARM64_HAS_DCPOP,
2064                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2065                 .matches = has_cpuid_feature,
2066                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2067                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2068                 .min_field_value = 1,
2069         },
2070         {
2071                 .desc = "Data cache clean to Point of Deep Persistence",
2072                 .capability = ARM64_HAS_DCPODP,
2073                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2074                 .matches = has_cpuid_feature,
2075                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2076                 .sign = FTR_UNSIGNED,
2077                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2078                 .min_field_value = 2,
2079         },
2080 #endif
2081 #ifdef CONFIG_ARM64_SVE
2082         {
2083                 .desc = "Scalable Vector Extension",
2084                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2085                 .capability = ARM64_SVE,
2086                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2087                 .sign = FTR_UNSIGNED,
2088                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
2089                 .min_field_value = ID_AA64PFR0_SVE,
2090                 .matches = has_cpuid_feature,
2091                 .cpu_enable = sve_kernel_enable,
2092         },
2093 #endif /* CONFIG_ARM64_SVE */
2094 #ifdef CONFIG_ARM64_RAS_EXTN
2095         {
2096                 .desc = "RAS Extension Support",
2097                 .capability = ARM64_HAS_RAS_EXTN,
2098                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2099                 .matches = has_cpuid_feature,
2100                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2101                 .sign = FTR_UNSIGNED,
2102                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
2103                 .min_field_value = ID_AA64PFR0_RAS_V1,
2104                 .cpu_enable = cpu_clear_disr,
2105         },
2106 #endif /* CONFIG_ARM64_RAS_EXTN */
2107 #ifdef CONFIG_ARM64_AMU_EXTN
2108         {
2109                 /*
2110                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2111                  * Therefore, don't provide .desc as we don't want the detection
2112                  * message to be shown until at least one CPU is detected to
2113                  * support the feature.
2114                  */
2115                 .capability = ARM64_HAS_AMU_EXTN,
2116                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2117                 .matches = has_amu,
2118                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2119                 .sign = FTR_UNSIGNED,
2120                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
2121                 .min_field_value = ID_AA64PFR0_AMU,
2122                 .cpu_enable = cpu_amu_enable,
2123         },
2124 #endif /* CONFIG_ARM64_AMU_EXTN */
2125         {
2126                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2127                 .capability = ARM64_HAS_CACHE_IDC,
2128                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2129                 .matches = has_cache_idc,
2130                 .cpu_enable = cpu_emulate_effective_ctr,
2131         },
2132         {
2133                 .desc = "Instruction cache invalidation not required for I/D coherence",
2134                 .capability = ARM64_HAS_CACHE_DIC,
2135                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2136                 .matches = has_cache_dic,
2137         },
2138         {
2139                 .desc = "Stage-2 Force Write-Back",
2140                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2141                 .capability = ARM64_HAS_STAGE2_FWB,
2142                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2143                 .sign = FTR_UNSIGNED,
2144                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2145                 .min_field_value = 1,
2146                 .matches = has_cpuid_feature,
2147                 .cpu_enable = cpu_has_fwb,
2148         },
2149         {
2150                 .desc = "ARMv8.4 Translation Table Level",
2151                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2152                 .capability = ARM64_HAS_ARMv8_4_TTL,
2153                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2154                 .sign = FTR_UNSIGNED,
2155                 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2156                 .min_field_value = 1,
2157                 .matches = has_cpuid_feature,
2158         },
2159         {
2160                 .desc = "TLB range maintenance instructions",
2161                 .capability = ARM64_HAS_TLB_RANGE,
2162                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2163                 .matches = has_cpuid_feature,
2164                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2165                 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
2166                 .sign = FTR_UNSIGNED,
2167                 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
2168         },
2169 #ifdef CONFIG_ARM64_HW_AFDBM
2170         {
2171                 /*
2172                  * Since we turn this on always, we don't want the user to
2173                  * think that the feature is available when it may not be.
2174                  * So hide the description.
2175                  *
2176                  * .desc = "Hardware pagetable Dirty Bit Management",
2177                  *
2178                  */
2179                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2180                 .capability = ARM64_HW_DBM,
2181                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2182                 .sign = FTR_UNSIGNED,
2183                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2184                 .min_field_value = 2,
2185                 .matches = has_hw_dbm,
2186                 .cpu_enable = cpu_enable_hw_dbm,
2187         },
2188 #endif
2189         {
2190                 .desc = "CRC32 instructions",
2191                 .capability = ARM64_HAS_CRC32,
2192                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2193                 .matches = has_cpuid_feature,
2194                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2195                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2196                 .min_field_value = 1,
2197         },
2198         {
2199                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2200                 .capability = ARM64_SSBS,
2201                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2202                 .matches = has_cpuid_feature,
2203                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2204                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2205                 .sign = FTR_UNSIGNED,
2206                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2207         },
2208 #ifdef CONFIG_ARM64_CNP
2209         {
2210                 .desc = "Common not Private translations",
2211                 .capability = ARM64_HAS_CNP,
2212                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2213                 .matches = has_useable_cnp,
2214                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2215                 .sign = FTR_UNSIGNED,
2216                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2217                 .min_field_value = 1,
2218                 .cpu_enable = cpu_enable_cnp,
2219         },
2220 #endif
2221         {
2222                 .desc = "Speculation barrier (SB)",
2223                 .capability = ARM64_HAS_SB,
2224                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2225                 .matches = has_cpuid_feature,
2226                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2227                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2228                 .sign = FTR_UNSIGNED,
2229                 .min_field_value = 1,
2230         },
2231 #ifdef CONFIG_ARM64_PTR_AUTH
2232         {
2233                 .desc = "Address authentication (architected algorithm)",
2234                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2235                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2236                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2237                 .sign = FTR_UNSIGNED,
2238                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2239                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2240                 .matches = has_address_auth_cpucap,
2241         },
2242         {
2243                 .desc = "Address authentication (IMP DEF algorithm)",
2244                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2245                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2246                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2247                 .sign = FTR_UNSIGNED,
2248                 .field_pos = ID_AA64ISAR1_API_SHIFT,
2249                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2250                 .matches = has_address_auth_cpucap,
2251         },
2252         {
2253                 .capability = ARM64_HAS_ADDRESS_AUTH,
2254                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2255                 .matches = has_address_auth_metacap,
2256         },
2257         {
2258                 .desc = "Generic authentication (architected algorithm)",
2259                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2260                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2261                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2262                 .sign = FTR_UNSIGNED,
2263                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2264                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2265                 .matches = has_cpuid_feature,
2266         },
2267         {
2268                 .desc = "Generic authentication (IMP DEF algorithm)",
2269                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2270                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2271                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2272                 .sign = FTR_UNSIGNED,
2273                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2274                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2275                 .matches = has_cpuid_feature,
2276         },
2277         {
2278                 .capability = ARM64_HAS_GENERIC_AUTH,
2279                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2280                 .matches = has_generic_auth,
2281         },
2282 #endif /* CONFIG_ARM64_PTR_AUTH */
2283 #ifdef CONFIG_ARM64_PSEUDO_NMI
2284         {
2285                 /*
2286                  * Depends on having GICv3
2287                  */
2288                 .desc = "IRQ priority masking",
2289                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2290                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2291                 .matches = can_use_gic_priorities,
2292                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2293                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2294                 .sign = FTR_UNSIGNED,
2295                 .min_field_value = 1,
2296         },
2297 #endif
2298 #ifdef CONFIG_ARM64_E0PD
2299         {
2300                 .desc = "E0PD",
2301                 .capability = ARM64_HAS_E0PD,
2302                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2303                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2304                 .sign = FTR_UNSIGNED,
2305                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2306                 .matches = has_cpuid_feature,
2307                 .min_field_value = 1,
2308                 .cpu_enable = cpu_enable_e0pd,
2309         },
2310 #endif
2311 #ifdef CONFIG_ARCH_RANDOM
2312         {
2313                 .desc = "Random Number Generator",
2314                 .capability = ARM64_HAS_RNG,
2315                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2316                 .matches = has_cpuid_feature,
2317                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2318                 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2319                 .sign = FTR_UNSIGNED,
2320                 .min_field_value = 1,
2321         },
2322 #endif
2323 #ifdef CONFIG_ARM64_BTI
2324         {
2325                 .desc = "Branch Target Identification",
2326                 .capability = ARM64_BTI,
2327 #ifdef CONFIG_ARM64_BTI_KERNEL
2328                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2329 #else
2330                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2331 #endif
2332                 .matches = has_cpuid_feature,
2333                 .cpu_enable = bti_enable,
2334                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2335                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2336                 .min_field_value = ID_AA64PFR1_BT_BTI,
2337                 .sign = FTR_UNSIGNED,
2338         },
2339 #endif
2340 #ifdef CONFIG_ARM64_MTE
2341         {
2342                 .desc = "Memory Tagging Extension",
2343                 .capability = ARM64_MTE,
2344                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2345                 .matches = has_cpuid_feature,
2346                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2347                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2348                 .min_field_value = ID_AA64PFR1_MTE,
2349                 .sign = FTR_UNSIGNED,
2350                 .cpu_enable = cpu_enable_mte,
2351         },
2352         {
2353                 .desc = "Asymmetric MTE Tag Check Fault",
2354                 .capability = ARM64_MTE_ASYMM,
2355                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2356                 .matches = has_cpuid_feature,
2357                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2358                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2359                 .min_field_value = ID_AA64PFR1_MTE_ASYMM,
2360                 .sign = FTR_UNSIGNED,
2361         },
2362 #endif /* CONFIG_ARM64_MTE */
2363         {
2364                 .desc = "RCpc load-acquire (LDAPR)",
2365                 .capability = ARM64_HAS_LDAPR,
2366                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2367                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2368                 .sign = FTR_UNSIGNED,
2369                 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2370                 .matches = has_cpuid_feature,
2371                 .min_field_value = 1,
2372         },
2373         {},
2374 };
2375
2376 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2377                 .matches = has_cpuid_feature,                                   \
2378                 .sys_reg = reg,                                                 \
2379                 .field_pos = field,                                             \
2380                 .sign = s,                                                      \
2381                 .min_field_value = min_value,
2382
2383 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2384                 .desc = name,                                                   \
2385                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2386                 .hwcap_type = cap_type,                                         \
2387                 .hwcap = cap,                                                   \
2388
2389 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2390         {                                                                       \
2391                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2392                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2393         }
2394
2395 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2396         {                                                                       \
2397                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2398                 .matches = cpucap_multi_entry_cap_matches,                      \
2399                 .match_list = list,                                             \
2400         }
2401
2402 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2403         {                                                                       \
2404                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2405                 .matches = match,                                               \
2406         }
2407
2408 #ifdef CONFIG_ARM64_PTR_AUTH
2409 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2410         {
2411                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2412                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2413         },
2414         {
2415                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2416                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2417         },
2418         {},
2419 };
2420
2421 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2422         {
2423                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2424                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2425         },
2426         {
2427                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2428                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2429         },
2430         {},
2431 };
2432 #endif
2433
2434 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2435         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2436         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2437         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2438         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2439         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2440         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2441         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2442         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2443         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2444         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2445         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2446         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2447         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2448         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2449         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2450         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2451         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2452         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2453         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2454         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2455         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2456         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2457         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2458         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2459         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2460         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2461         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2462         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2463         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2464         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2465         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2466         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2467         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2468 #ifdef CONFIG_ARM64_SVE
2469         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2470         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2471         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2472         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2473         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2474         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2475         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2476         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2477         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2478         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2479         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2480 #endif
2481         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2482 #ifdef CONFIG_ARM64_BTI
2483         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2484 #endif
2485 #ifdef CONFIG_ARM64_PTR_AUTH
2486         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2487         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2488 #endif
2489 #ifdef CONFIG_ARM64_MTE
2490         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2491 #endif /* CONFIG_ARM64_MTE */
2492         HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2493         HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2494         HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2495         {},
2496 };
2497
2498 #ifdef CONFIG_COMPAT
2499 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2500 {
2501         /*
2502          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2503          * in line with that of arm32 as in vfp_init(). We make sure that the
2504          * check is future proof, by making sure value is non-zero.
2505          */
2506         u32 mvfr1;
2507
2508         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2509         if (scope == SCOPE_SYSTEM)
2510                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2511         else
2512                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2513
2514         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2515                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2516                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2517 }
2518 #endif
2519
2520 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2521 #ifdef CONFIG_COMPAT
2522         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2523         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2524         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2525         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2526         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2527         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2528         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2529         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2530         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2531         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2532 #endif
2533         {},
2534 };
2535
2536 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2537 {
2538         switch (cap->hwcap_type) {
2539         case CAP_HWCAP:
2540                 cpu_set_feature(cap->hwcap);
2541                 break;
2542 #ifdef CONFIG_COMPAT
2543         case CAP_COMPAT_HWCAP:
2544                 compat_elf_hwcap |= (u32)cap->hwcap;
2545                 break;
2546         case CAP_COMPAT_HWCAP2:
2547                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2548                 break;
2549 #endif
2550         default:
2551                 WARN_ON(1);
2552                 break;
2553         }
2554 }
2555
2556 /* Check if we have a particular HWCAP enabled */
2557 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2558 {
2559         bool rc;
2560
2561         switch (cap->hwcap_type) {
2562         case CAP_HWCAP:
2563                 rc = cpu_have_feature(cap->hwcap);
2564                 break;
2565 #ifdef CONFIG_COMPAT
2566         case CAP_COMPAT_HWCAP:
2567                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2568                 break;
2569         case CAP_COMPAT_HWCAP2:
2570                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2571                 break;
2572 #endif
2573         default:
2574                 WARN_ON(1);
2575                 rc = false;
2576         }
2577
2578         return rc;
2579 }
2580
2581 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2582 {
2583         /* We support emulation of accesses to CPU ID feature registers */
2584         cpu_set_named_feature(CPUID);
2585         for (; hwcaps->matches; hwcaps++)
2586                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2587                         cap_set_elf_hwcap(hwcaps);
2588 }
2589
2590 static void update_cpu_capabilities(u16 scope_mask)
2591 {
2592         int i;
2593         const struct arm64_cpu_capabilities *caps;
2594
2595         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2596         for (i = 0; i < ARM64_NCAPS; i++) {
2597                 caps = cpu_hwcaps_ptrs[i];
2598                 if (!caps || !(caps->type & scope_mask) ||
2599                     cpus_have_cap(caps->capability) ||
2600                     !caps->matches(caps, cpucap_default_scope(caps)))
2601                         continue;
2602
2603                 if (caps->desc)
2604                         pr_info("detected: %s\n", caps->desc);
2605                 cpus_set_cap(caps->capability);
2606
2607                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2608                         set_bit(caps->capability, boot_capabilities);
2609         }
2610 }
2611
2612 /*
2613  * Enable all the available capabilities on this CPU. The capabilities
2614  * with BOOT_CPU scope are handled separately and hence skipped here.
2615  */
2616 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2617 {
2618         int i;
2619         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2620
2621         for_each_available_cap(i) {
2622                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2623
2624                 if (WARN_ON(!cap))
2625                         continue;
2626
2627                 if (!(cap->type & non_boot_scope))
2628                         continue;
2629
2630                 if (cap->cpu_enable)
2631                         cap->cpu_enable(cap);
2632         }
2633         return 0;
2634 }
2635
2636 /*
2637  * Run through the enabled capabilities and enable() it on all active
2638  * CPUs
2639  */
2640 static void __init enable_cpu_capabilities(u16 scope_mask)
2641 {
2642         int i;
2643         const struct arm64_cpu_capabilities *caps;
2644         bool boot_scope;
2645
2646         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2647         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2648
2649         for (i = 0; i < ARM64_NCAPS; i++) {
2650                 unsigned int num;
2651
2652                 caps = cpu_hwcaps_ptrs[i];
2653                 if (!caps || !(caps->type & scope_mask))
2654                         continue;
2655                 num = caps->capability;
2656                 if (!cpus_have_cap(num))
2657                         continue;
2658
2659                 /* Ensure cpus_have_const_cap(num) works */
2660                 static_branch_enable(&cpu_hwcap_keys[num]);
2661
2662                 if (boot_scope && caps->cpu_enable)
2663                         /*
2664                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2665                          * before any secondary CPU boots. Thus, each secondary
2666                          * will enable the capability as appropriate via
2667                          * check_local_cpu_capabilities(). The only exception is
2668                          * the boot CPU, for which the capability must be
2669                          * enabled here. This approach avoids costly
2670                          * stop_machine() calls for this case.
2671                          */
2672                         caps->cpu_enable(caps);
2673         }
2674
2675         /*
2676          * For all non-boot scope capabilities, use stop_machine()
2677          * as it schedules the work allowing us to modify PSTATE,
2678          * instead of on_each_cpu() which uses an IPI, giving us a
2679          * PSTATE that disappears when we return.
2680          */
2681         if (!boot_scope)
2682                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2683                              NULL, cpu_online_mask);
2684 }
2685
2686 /*
2687  * Run through the list of capabilities to check for conflicts.
2688  * If the system has already detected a capability, take necessary
2689  * action on this CPU.
2690  */
2691 static void verify_local_cpu_caps(u16 scope_mask)
2692 {
2693         int i;
2694         bool cpu_has_cap, system_has_cap;
2695         const struct arm64_cpu_capabilities *caps;
2696
2697         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2698
2699         for (i = 0; i < ARM64_NCAPS; i++) {
2700                 caps = cpu_hwcaps_ptrs[i];
2701                 if (!caps || !(caps->type & scope_mask))
2702                         continue;
2703
2704                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2705                 system_has_cap = cpus_have_cap(caps->capability);
2706
2707                 if (system_has_cap) {
2708                         /*
2709                          * Check if the new CPU misses an advertised feature,
2710                          * which is not safe to miss.
2711                          */
2712                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2713                                 break;
2714                         /*
2715                          * We have to issue cpu_enable() irrespective of
2716                          * whether the CPU has it or not, as it is enabeld
2717                          * system wide. It is upto the call back to take
2718                          * appropriate action on this CPU.
2719                          */
2720                         if (caps->cpu_enable)
2721                                 caps->cpu_enable(caps);
2722                 } else {
2723                         /*
2724                          * Check if the CPU has this capability if it isn't
2725                          * safe to have when the system doesn't.
2726                          */
2727                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2728                                 break;
2729                 }
2730         }
2731
2732         if (i < ARM64_NCAPS) {
2733                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2734                         smp_processor_id(), caps->capability,
2735                         caps->desc, system_has_cap, cpu_has_cap);
2736
2737                 if (cpucap_panic_on_conflict(caps))
2738                         cpu_panic_kernel();
2739                 else
2740                         cpu_die_early();
2741         }
2742 }
2743
2744 /*
2745  * Check for CPU features that are used in early boot
2746  * based on the Boot CPU value.
2747  */
2748 static void check_early_cpu_features(void)
2749 {
2750         verify_cpu_asid_bits();
2751
2752         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2753 }
2754
2755 static void
2756 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2757 {
2758
2759         for (; caps->matches; caps++)
2760                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2761                         pr_crit("CPU%d: missing HWCAP: %s\n",
2762                                         smp_processor_id(), caps->desc);
2763                         cpu_die_early();
2764                 }
2765 }
2766
2767 static void verify_local_elf_hwcaps(void)
2768 {
2769         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
2770
2771         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
2772                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
2773 }
2774
2775 static void verify_sve_features(void)
2776 {
2777         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2778         u64 zcr = read_zcr_features();
2779
2780         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2781         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2782
2783         if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
2784                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2785                         smp_processor_id());
2786                 cpu_die_early();
2787         }
2788
2789         /* Add checks on other ZCR bits here if necessary */
2790 }
2791
2792 static void verify_hyp_capabilities(void)
2793 {
2794         u64 safe_mmfr1, mmfr0, mmfr1;
2795         int parange, ipa_max;
2796         unsigned int safe_vmid_bits, vmid_bits;
2797
2798         if (!IS_ENABLED(CONFIG_KVM))
2799                 return;
2800
2801         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2802         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2803         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2804
2805         /* Verify VMID bits */
2806         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2807         vmid_bits = get_vmid_bits(mmfr1);
2808         if (vmid_bits < safe_vmid_bits) {
2809                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2810                 cpu_die_early();
2811         }
2812
2813         /* Verify IPA range */
2814         parange = cpuid_feature_extract_unsigned_field(mmfr0,
2815                                 ID_AA64MMFR0_PARANGE_SHIFT);
2816         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2817         if (ipa_max < get_kvm_ipa_limit()) {
2818                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2819                 cpu_die_early();
2820         }
2821 }
2822
2823 /*
2824  * Run through the enabled system capabilities and enable() it on this CPU.
2825  * The capabilities were decided based on the available CPUs at the boot time.
2826  * Any new CPU should match the system wide status of the capability. If the
2827  * new CPU doesn't have a capability which the system now has enabled, we
2828  * cannot do anything to fix it up and could cause unexpected failures. So
2829  * we park the CPU.
2830  */
2831 static void verify_local_cpu_capabilities(void)
2832 {
2833         /*
2834          * The capabilities with SCOPE_BOOT_CPU are checked from
2835          * check_early_cpu_features(), as they need to be verified
2836          * on all secondary CPUs.
2837          */
2838         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2839         verify_local_elf_hwcaps();
2840
2841         if (system_supports_sve())
2842                 verify_sve_features();
2843
2844         if (is_hyp_mode_available())
2845                 verify_hyp_capabilities();
2846 }
2847
2848 void check_local_cpu_capabilities(void)
2849 {
2850         /*
2851          * All secondary CPUs should conform to the early CPU features
2852          * in use by the kernel based on boot CPU.
2853          */
2854         check_early_cpu_features();
2855
2856         /*
2857          * If we haven't finalised the system capabilities, this CPU gets
2858          * a chance to update the errata work arounds and local features.
2859          * Otherwise, this CPU should verify that it has all the system
2860          * advertised capabilities.
2861          */
2862         if (!system_capabilities_finalized())
2863                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2864         else
2865                 verify_local_cpu_capabilities();
2866 }
2867
2868 static void __init setup_boot_cpu_capabilities(void)
2869 {
2870         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2871         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2872         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2873         enable_cpu_capabilities(SCOPE_BOOT_CPU);
2874 }
2875
2876 bool this_cpu_has_cap(unsigned int n)
2877 {
2878         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2879                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2880
2881                 if (cap)
2882                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2883         }
2884
2885         return false;
2886 }
2887 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
2888
2889 /*
2890  * This helper function is used in a narrow window when,
2891  * - The system wide safe registers are set with all the SMP CPUs and,
2892  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2893  * In all other cases cpus_have_{const_}cap() should be used.
2894  */
2895 static bool __maybe_unused __system_matches_cap(unsigned int n)
2896 {
2897         if (n < ARM64_NCAPS) {
2898                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2899
2900                 if (cap)
2901                         return cap->matches(cap, SCOPE_SYSTEM);
2902         }
2903         return false;
2904 }
2905
2906 void cpu_set_feature(unsigned int num)
2907 {
2908         WARN_ON(num >= MAX_CPU_FEATURES);
2909         elf_hwcap |= BIT(num);
2910 }
2911 EXPORT_SYMBOL_GPL(cpu_set_feature);
2912
2913 bool cpu_have_feature(unsigned int num)
2914 {
2915         WARN_ON(num >= MAX_CPU_FEATURES);
2916         return elf_hwcap & BIT(num);
2917 }
2918 EXPORT_SYMBOL_GPL(cpu_have_feature);
2919
2920 unsigned long cpu_get_elf_hwcap(void)
2921 {
2922         /*
2923          * We currently only populate the first 32 bits of AT_HWCAP. Please
2924          * note that for userspace compatibility we guarantee that bits 62
2925          * and 63 will always be returned as 0.
2926          */
2927         return lower_32_bits(elf_hwcap);
2928 }
2929
2930 unsigned long cpu_get_elf_hwcap2(void)
2931 {
2932         return upper_32_bits(elf_hwcap);
2933 }
2934
2935 static void __init setup_system_capabilities(void)
2936 {
2937         /*
2938          * We have finalised the system-wide safe feature
2939          * registers, finalise the capabilities that depend
2940          * on it. Also enable all the available capabilities,
2941          * that are not enabled already.
2942          */
2943         update_cpu_capabilities(SCOPE_SYSTEM);
2944         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2945 }
2946
2947 void __init setup_cpu_features(void)
2948 {
2949         u32 cwg;
2950
2951         setup_system_capabilities();
2952         setup_elf_hwcaps(arm64_elf_hwcaps);
2953
2954         if (system_supports_32bit_el0())
2955                 setup_elf_hwcaps(compat_elf_hwcaps);
2956
2957         if (system_uses_ttbr0_pan())
2958                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2959
2960         sve_setup();
2961         minsigstksz_setup();
2962
2963         /* Advertise that we have computed the system capabilities */
2964         finalize_system_capabilities();
2965
2966         /*
2967          * Check for sane CTR_EL0.CWG value.
2968          */
2969         cwg = cache_type_cwg();
2970         if (!cwg)
2971                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2972                         ARCH_DMA_MINALIGN);
2973 }
2974
2975 static int enable_mismatched_32bit_el0(unsigned int cpu)
2976 {
2977         /*
2978          * The first 32-bit-capable CPU we detected and so can no longer
2979          * be offlined by userspace. -1 indicates we haven't yet onlined
2980          * a 32-bit-capable CPU.
2981          */
2982         static int lucky_winner = -1;
2983
2984         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
2985         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
2986
2987         if (cpu_32bit) {
2988                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
2989                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
2990         }
2991
2992         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
2993                 return 0;
2994
2995         if (lucky_winner >= 0)
2996                 return 0;
2997
2998         /*
2999          * We've detected a mismatch. We need to keep one of our CPUs with
3000          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3001          * every CPU in the system for a 32-bit task.
3002          */
3003         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3004                                                          cpu_active_mask);
3005         get_cpu_device(lucky_winner)->offline_disabled = true;
3006         setup_elf_hwcaps(compat_elf_hwcaps);
3007         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3008                 cpu, lucky_winner);
3009         return 0;
3010 }
3011
3012 static int __init init_32bit_el0_mask(void)
3013 {
3014         if (!allow_mismatched_32bit_el0)
3015                 return 0;
3016
3017         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3018                 return -ENOMEM;
3019
3020         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3021                                  "arm64/mismatched_32bit_el0:online",
3022                                  enable_mismatched_32bit_el0, NULL);
3023 }
3024 subsys_initcall_sync(init_32bit_el0_mask);
3025
3026 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3027 {
3028         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
3029 }
3030
3031 /*
3032  * We emulate only the following system register space.
3033  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3034  * See Table C5-6 System instruction encodings for System register accesses,
3035  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3036  */
3037 static inline bool __attribute_const__ is_emulated(u32 id)
3038 {
3039         return (sys_reg_Op0(id) == 0x3 &&
3040                 sys_reg_CRn(id) == 0x0 &&
3041                 sys_reg_Op1(id) == 0x0 &&
3042                 (sys_reg_CRm(id) == 0 ||
3043                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3044 }
3045
3046 /*
3047  * With CRm == 0, reg should be one of :
3048  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3049  */
3050 static inline int emulate_id_reg(u32 id, u64 *valp)
3051 {
3052         switch (id) {
3053         case SYS_MIDR_EL1:
3054                 *valp = read_cpuid_id();
3055                 break;
3056         case SYS_MPIDR_EL1:
3057                 *valp = SYS_MPIDR_SAFE_VAL;
3058                 break;
3059         case SYS_REVIDR_EL1:
3060                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3061                 *valp = 0;
3062                 break;
3063         default:
3064                 return -EINVAL;
3065         }
3066
3067         return 0;
3068 }
3069
3070 static int emulate_sys_reg(u32 id, u64 *valp)
3071 {
3072         struct arm64_ftr_reg *regp;
3073
3074         if (!is_emulated(id))
3075                 return -EINVAL;
3076
3077         if (sys_reg_CRm(id) == 0)
3078                 return emulate_id_reg(id, valp);
3079
3080         regp = get_arm64_ftr_reg_nowarn(id);
3081         if (regp)
3082                 *valp = arm64_ftr_reg_user_value(regp);
3083         else
3084                 /*
3085                  * The untracked registers are either IMPLEMENTATION DEFINED
3086                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3087                  */
3088                 *valp = 0;
3089         return 0;
3090 }
3091
3092 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3093 {
3094         int rc;
3095         u64 val;
3096
3097         rc = emulate_sys_reg(sys_reg, &val);
3098         if (!rc) {
3099                 pt_regs_write_reg(regs, rt, val);
3100                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3101         }
3102         return rc;
3103 }
3104
3105 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3106 {
3107         u32 sys_reg, rt;
3108
3109         /*
3110          * sys_reg values are defined as used in mrs/msr instruction.
3111          * shift the imm value to get the encoding.
3112          */
3113         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3114         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3115         return do_emulate_mrs(regs, sys_reg, rt);
3116 }
3117
3118 static struct undef_hook mrs_hook = {
3119         .instr_mask = 0xffff0000,
3120         .instr_val  = 0xd5380000,
3121         .pstate_mask = PSR_AA32_MODE_MASK,
3122         .pstate_val = PSR_MODE_EL0t,
3123         .fn = emulate_mrs,
3124 };
3125
3126 static int __init enable_mrs_emulation(void)
3127 {
3128         register_undef_hook(&mrs_hook);
3129         return 0;
3130 }
3131
3132 core_initcall(enable_mrs_emulation);
3133
3134 enum mitigation_state arm64_get_meltdown_state(void)
3135 {
3136         if (__meltdown_safe)
3137                 return SPECTRE_UNAFFECTED;
3138
3139         if (arm64_kernel_unmapped_at_el0())
3140                 return SPECTRE_MITIGATED;
3141
3142         return SPECTRE_VULNERABLE;
3143 }
3144
3145 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3146                           char *buf)
3147 {
3148         switch (arm64_get_meltdown_state()) {
3149         case SPECTRE_UNAFFECTED:
3150                 return sprintf(buf, "Not affected\n");
3151
3152         case SPECTRE_MITIGATED:
3153                 return sprintf(buf, "Mitigation: PTI\n");
3154
3155         default:
3156                 return sprintf(buf, "Vulnerable\n");
3157         }
3158 }