1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
29 * Some implementation details worth remembering:
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
63 #define pr_fmt(fmt) "CPU features: " fmt
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
72 #include <linux/cpu.h>
74 #include <asm/cpufeature.h>
75 #include <asm/cpu_ops.h>
76 #include <asm/fpsimd.h>
77 #include <asm/kvm_host.h>
78 #include <asm/mmu_context.h>
80 #include <asm/processor.h>
81 #include <asm/sysreg.h>
82 #include <asm/traps.h>
85 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
86 static unsigned long elf_hwcap __read_mostly;
89 #define COMPAT_ELF_HWCAP_DEFAULT \
90 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
91 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
92 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
94 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
95 unsigned int compat_elf_hwcap2 __read_mostly;
98 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
99 EXPORT_SYMBOL(cpu_hwcaps);
100 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
102 /* Need also bit for ARM64_CB_PATCH */
103 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
105 bool arm64_use_ng_mappings = false;
106 EXPORT_SYMBOL(arm64_use_ng_mappings);
109 * Flag to indicate if we have computed the system wide
110 * capabilities based on the boot time active CPUs. This
111 * will be used to determine if a new booting CPU should
112 * go through the verification process to make sure that it
113 * supports the system capabilities, without using a hotplug
114 * notifier. This is also used to decide if we could use
115 * the fast path for checking constant CPU caps.
117 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
118 EXPORT_SYMBOL(arm64_const_caps_ready);
119 static inline void finalize_system_capabilities(void)
121 static_branch_enable(&arm64_const_caps_ready);
124 void dump_cpu_features(void)
126 /* file-wide pr_fmt adds "CPU features: " prefix */
127 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
130 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
131 EXPORT_SYMBOL(cpu_hwcap_keys);
133 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
136 .visible = VISIBLE, \
141 .safe_val = SAFE_VAL, \
144 /* Define a feature with unsigned values */
145 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
146 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
148 /* Define a feature with a signed value */
149 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
150 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
152 #define ARM64_FTR_END \
157 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
159 static bool __system_matches_cap(unsigned int n);
162 * NOTE: Any changes to the visibility of features should be kept in
163 * sync with the documentation of the CPU feature register ABI.
165 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
166 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
172 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
173 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
176 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
183 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
184 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
191 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
193 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
198 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
200 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
205 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
206 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
213 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
216 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
217 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
225 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
229 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
231 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
232 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
236 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
237 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
238 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
240 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
242 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
244 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
246 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
248 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
250 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
252 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
253 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
254 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
258 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
263 * Page size not being supported at Stage-2 is not fatal. You
264 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
265 * your favourite nesting hypervisor.
267 * There is a small corner case where the hypervisor explicitly
268 * advertises a given granule size at Stage-2 (value 2) on some
269 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
270 * vCPUs. Although this is not forbidden by the architecture, it
271 * indicates that the hypervisor is being silly (or buggy).
273 * We make no effort to cope with this and pretend that if these
274 * fields are inconsistent across vCPUs, then it isn't worth
275 * trying to bring KVM up.
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
281 * We already refuse to boot CPUs that don't support our configured
282 * page size, so we can only detect mismatches for a page size other
283 * than the one we're currently using. Unfortunately, SoCs like this
284 * exist in the wild so, even though we don't like it, we'll have to go
285 * along with it and treat them as non-strict.
287 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
288 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
292 /* Linux shouldn't care about secure memory */
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
297 * Differing PARange is fine as long as all peripherals and memory are mapped
298 * within the minimum PARange of all CPUs
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
304 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
305 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
307 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
310 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
318 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
325 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
327 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
332 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
333 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
337 static const struct arm64_ftr_bits ftr_ctr[] = {
338 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
339 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
340 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
341 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
342 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
343 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
345 * Linux can handle differing I-cache policies. Userspace JITs will
346 * make use of *minLine.
347 * If we have differing I-cache policies, report it as the weakest - VIPT.
349 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */
350 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
354 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
355 .name = "SYS_CTR_EL0",
359 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
360 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
361 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
362 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
363 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
364 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
365 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
371 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
372 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
378 * We can instantiate multiple PMU instances with different levels
381 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
387 static const struct arm64_ftr_bits ftr_mvfr2[] = {
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
393 static const struct arm64_ftr_bits ftr_dczid[] = {
394 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
395 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
399 static const struct arm64_ftr_bits ftr_id_isar0[] = {
400 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
401 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
402 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
405 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
406 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
410 static const struct arm64_ftr_bits ftr_id_isar5[] = {
411 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
412 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
413 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
414 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
415 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
416 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
420 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
421 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
422 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
423 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
430 * SpecSEI = 1 indicates that the PE might generate an SError on an
431 * external abort on speculative read. It is safe to assume that an
432 * SError might be generated than it will not be. Hence it has been
433 * classified as FTR_HIGHER_SAFE.
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
439 static const struct arm64_ftr_bits ftr_id_isar4[] = {
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
451 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
456 static const struct arm64_ftr_bits ftr_id_isar6[] = {
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
467 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
477 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
489 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
495 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
496 /* [31:28] TraceFilt */
497 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
500 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
507 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
508 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
512 static const struct arm64_ftr_bits ftr_zcr[] = {
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
514 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
519 * Common ftr bits for a 32bit register with all hidden, strict
520 * attributes, with 4bit feature fields and a default safe value of
521 * 0. Covers the following 32bit registers:
522 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
524 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
531 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
532 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
536 /* Table for a single 32bit feature value */
537 static const struct arm64_ftr_bits ftr_single32[] = {
538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
542 static const struct arm64_ftr_bits ftr_raz[] = {
546 #define ARM64_FTR_REG(id, table) { \
548 .reg = &(struct arm64_ftr_reg){ \
550 .ftr_bits = &((table)[0]), \
553 static const struct __ftr_reg_entry {
555 struct arm64_ftr_reg *reg;
556 } arm64_ftr_regs[] = {
558 /* Op1 = 0, CRn = 0, CRm = 1 */
559 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
560 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
561 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
562 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
563 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
564 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
565 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
567 /* Op1 = 0, CRn = 0, CRm = 2 */
568 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
569 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
570 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
571 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
572 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
573 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
574 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
575 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
577 /* Op1 = 0, CRn = 0, CRm = 3 */
578 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
579 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
580 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
581 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
582 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
583 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
585 /* Op1 = 0, CRn = 0, CRm = 4 */
586 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
587 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
588 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
590 /* Op1 = 0, CRn = 0, CRm = 5 */
591 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
592 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
594 /* Op1 = 0, CRn = 0, CRm = 6 */
595 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
596 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
598 /* Op1 = 0, CRn = 0, CRm = 7 */
599 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
600 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
601 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
603 /* Op1 = 0, CRn = 1, CRm = 2 */
604 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
606 /* Op1 = 3, CRn = 0, CRm = 0 */
607 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
608 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
610 /* Op1 = 3, CRn = 14, CRm = 0 */
611 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
614 static int search_cmp_ftr_reg(const void *id, const void *regp)
616 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
620 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
621 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
622 * ascending order of sys_id, we use binary search to find a matching
625 * returns - Upon success, matching ftr_reg entry for id.
626 * - NULL on failure. It is upto the caller to decide
627 * the impact of a failure.
629 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
631 const struct __ftr_reg_entry *ret;
633 ret = bsearch((const void *)(unsigned long)sys_id,
635 ARRAY_SIZE(arm64_ftr_regs),
636 sizeof(arm64_ftr_regs[0]),
644 * get_arm64_ftr_reg - Looks up a feature register entry using
645 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
647 * returns - Upon success, matching ftr_reg entry for id.
648 * - NULL on failure but with an WARN_ON().
650 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
652 struct arm64_ftr_reg *reg;
654 reg = get_arm64_ftr_reg_nowarn(sys_id);
657 * Requesting a non-existent register search is an error. Warn
658 * and let the caller handle it.
664 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
667 u64 mask = arm64_ftr_mask(ftrp);
670 reg |= (ftr_val << ftrp->shift) & mask;
674 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
679 switch (ftrp->type) {
681 ret = ftrp->safe_val;
684 ret = new < cur ? new : cur;
686 case FTR_HIGHER_OR_ZERO_SAFE:
690 case FTR_HIGHER_SAFE:
691 ret = new > cur ? new : cur;
700 static void __init sort_ftr_regs(void)
704 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
705 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
706 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
710 * Features here must be sorted in descending order with respect
711 * to their shift values and should not overlap with each other.
713 for (; ftr_bits->width != 0; ftr_bits++, j++) {
714 unsigned int width = ftr_reg->ftr_bits[j].width;
715 unsigned int shift = ftr_reg->ftr_bits[j].shift;
716 unsigned int prev_shift;
718 WARN((shift + width) > 64,
719 "%s has invalid feature at shift %d\n",
720 ftr_reg->name, shift);
723 * Skip the first feature. There is nothing to
724 * compare against for now.
729 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
730 WARN((shift + width) > prev_shift,
731 "%s has feature overlap at shift %d\n",
732 ftr_reg->name, shift);
736 * Skip the first register. There is nothing to
737 * compare against for now.
742 * Registers here must be sorted in ascending order with respect
743 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
746 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
751 * Initialise the CPU feature register from Boot CPU values.
752 * Also initiliases the strict_mask for the register.
753 * Any bits that are not covered by an arm64_ftr_bits entry are considered
754 * RES0 for the system-wide value, and must strictly match.
756 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
759 u64 strict_mask = ~0x0ULL;
763 const struct arm64_ftr_bits *ftrp;
764 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
769 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
770 u64 ftr_mask = arm64_ftr_mask(ftrp);
771 s64 ftr_new = arm64_ftr_value(ftrp, new);
773 val = arm64_ftr_set_value(ftrp, val, ftr_new);
775 valid_mask |= ftr_mask;
777 strict_mask &= ~ftr_mask;
779 user_mask |= ftr_mask;
781 reg->user_val = arm64_ftr_set_value(ftrp,
789 reg->strict_mask = strict_mask;
790 reg->user_mask = user_mask;
793 extern const struct arm64_cpu_capabilities arm64_errata[];
794 static const struct arm64_cpu_capabilities arm64_features[];
797 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
799 for (; caps->matches; caps++) {
800 if (WARN(caps->capability >= ARM64_NCAPS,
801 "Invalid capability %d\n", caps->capability))
803 if (WARN(cpu_hwcaps_ptrs[caps->capability],
804 "Duplicate entry for capability %d\n",
807 cpu_hwcaps_ptrs[caps->capability] = caps;
811 static void __init init_cpu_hwcaps_indirect_list(void)
813 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
814 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
817 static void __init setup_boot_cpu_capabilities(void);
819 void __init init_cpu_features(struct cpuinfo_arm64 *info)
821 /* Before we start using the tables, make sure it is sorted */
824 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
825 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
826 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
827 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
828 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
829 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
830 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
831 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
832 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
833 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
834 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
835 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
836 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
838 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
839 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
840 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
841 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
842 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
843 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
844 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
845 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
846 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
847 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
848 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
849 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
850 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
851 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
852 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
853 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
854 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
855 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
856 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
857 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
858 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
859 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
862 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
863 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
868 * Initialize the indirect array of CPU hwcaps capabilities pointers
869 * before we handle the boot CPU below.
871 init_cpu_hwcaps_indirect_list();
874 * Detect and enable early CPU capabilities based on the boot CPU,
875 * after we have initialised the CPU feature infrastructure.
877 setup_boot_cpu_capabilities();
880 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
882 const struct arm64_ftr_bits *ftrp;
884 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
885 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
886 s64 ftr_new = arm64_ftr_value(ftrp, new);
888 if (ftr_cur == ftr_new)
890 /* Find a safe value */
891 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
892 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
897 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
899 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
904 update_cpu_ftr_reg(regp, val);
905 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
907 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
908 regp->name, boot, cpu, val);
912 static void relax_cpu_ftr_reg(u32 sys_id, int field)
914 const struct arm64_ftr_bits *ftrp;
915 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
920 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
921 if (ftrp->shift == field) {
922 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
928 WARN_ON(!ftrp->width);
931 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
932 struct cpuinfo_arm64 *boot)
935 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
938 * If we don't have AArch32 at all then skip the checks entirely
939 * as the register values may be UNKNOWN and we're not going to be
940 * using them for anything.
942 if (!id_aa64pfr0_32bit_el0(pfr0))
946 * If we don't have AArch32 at EL1, then relax the strictness of
947 * EL1-dependent register fields to avoid spurious sanity check fails.
949 if (!id_aa64pfr0_32bit_el1(pfr0)) {
950 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
951 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
952 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
953 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
954 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
955 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
958 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
959 info->reg_id_dfr0, boot->reg_id_dfr0);
960 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
961 info->reg_id_dfr1, boot->reg_id_dfr1);
962 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
963 info->reg_id_isar0, boot->reg_id_isar0);
964 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
965 info->reg_id_isar1, boot->reg_id_isar1);
966 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
967 info->reg_id_isar2, boot->reg_id_isar2);
968 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
969 info->reg_id_isar3, boot->reg_id_isar3);
970 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
971 info->reg_id_isar4, boot->reg_id_isar4);
972 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
973 info->reg_id_isar5, boot->reg_id_isar5);
974 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
975 info->reg_id_isar6, boot->reg_id_isar6);
978 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
979 * ACTLR formats could differ across CPUs and therefore would have to
980 * be trapped for virtualization anyway.
982 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
983 info->reg_id_mmfr0, boot->reg_id_mmfr0);
984 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
985 info->reg_id_mmfr1, boot->reg_id_mmfr1);
986 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
987 info->reg_id_mmfr2, boot->reg_id_mmfr2);
988 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
989 info->reg_id_mmfr3, boot->reg_id_mmfr3);
990 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
991 info->reg_id_mmfr4, boot->reg_id_mmfr4);
992 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
993 info->reg_id_mmfr5, boot->reg_id_mmfr5);
994 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
995 info->reg_id_pfr0, boot->reg_id_pfr0);
996 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
997 info->reg_id_pfr1, boot->reg_id_pfr1);
998 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
999 info->reg_id_pfr2, boot->reg_id_pfr2);
1000 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1001 info->reg_mvfr0, boot->reg_mvfr0);
1002 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1003 info->reg_mvfr1, boot->reg_mvfr1);
1004 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1005 info->reg_mvfr2, boot->reg_mvfr2);
1011 * Update system wide CPU feature registers with the values from a
1012 * non-boot CPU. Also performs SANITY checks to make sure that there
1013 * aren't any insane variations from that of the boot CPU.
1015 void update_cpu_features(int cpu,
1016 struct cpuinfo_arm64 *info,
1017 struct cpuinfo_arm64 *boot)
1022 * The kernel can handle differing I-cache policies, but otherwise
1023 * caches should look identical. Userspace JITs will make use of
1026 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1027 info->reg_ctr, boot->reg_ctr);
1030 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1031 * could result in too much or too little memory being zeroed if a
1032 * process is preempted and migrated between CPUs.
1034 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1035 info->reg_dczid, boot->reg_dczid);
1037 /* If different, timekeeping will be broken (especially with KVM) */
1038 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1039 info->reg_cntfrq, boot->reg_cntfrq);
1042 * The kernel uses self-hosted debug features and expects CPUs to
1043 * support identical debug features. We presently need CTX_CMPs, WRPs,
1044 * and BRPs to be identical.
1045 * ID_AA64DFR1 is currently RES0.
1047 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1048 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1049 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1050 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1052 * Even in big.LITTLE, processors should be identical instruction-set
1055 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1056 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1057 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1058 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1061 * Differing PARange support is fine as long as all peripherals and
1062 * memory are mapped within the minimum PARange of all CPUs.
1063 * Linux should not care about secure memory.
1065 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1066 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1067 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1068 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1069 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1070 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1072 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1073 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1074 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1075 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1077 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1078 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1080 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1081 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1082 info->reg_zcr, boot->reg_zcr);
1084 /* Probe vector lengths, unless we already gave up on SVE */
1085 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1086 !system_capabilities_finalized())
1087 sve_update_vq_map();
1091 * This relies on a sanitised view of the AArch64 ID registers
1092 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1094 taint |= update_32bit_cpu_features(cpu, info, boot);
1097 * Mismatched CPU features are a recipe for disaster. Don't even
1098 * pretend to support them.
1101 pr_warn_once("Unsupported CPU feature variation detected.\n");
1102 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1106 u64 read_sanitised_ftr_reg(u32 id)
1108 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1112 return regp->sys_val;
1114 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1116 #define read_sysreg_case(r) \
1117 case r: return read_sysreg_s(r)
1120 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1121 * Read the system register on the current CPU
1123 static u64 __read_sysreg_by_encoding(u32 sys_id)
1126 read_sysreg_case(SYS_ID_PFR0_EL1);
1127 read_sysreg_case(SYS_ID_PFR1_EL1);
1128 read_sysreg_case(SYS_ID_PFR2_EL1);
1129 read_sysreg_case(SYS_ID_DFR0_EL1);
1130 read_sysreg_case(SYS_ID_DFR1_EL1);
1131 read_sysreg_case(SYS_ID_MMFR0_EL1);
1132 read_sysreg_case(SYS_ID_MMFR1_EL1);
1133 read_sysreg_case(SYS_ID_MMFR2_EL1);
1134 read_sysreg_case(SYS_ID_MMFR3_EL1);
1135 read_sysreg_case(SYS_ID_MMFR4_EL1);
1136 read_sysreg_case(SYS_ID_MMFR5_EL1);
1137 read_sysreg_case(SYS_ID_ISAR0_EL1);
1138 read_sysreg_case(SYS_ID_ISAR1_EL1);
1139 read_sysreg_case(SYS_ID_ISAR2_EL1);
1140 read_sysreg_case(SYS_ID_ISAR3_EL1);
1141 read_sysreg_case(SYS_ID_ISAR4_EL1);
1142 read_sysreg_case(SYS_ID_ISAR5_EL1);
1143 read_sysreg_case(SYS_ID_ISAR6_EL1);
1144 read_sysreg_case(SYS_MVFR0_EL1);
1145 read_sysreg_case(SYS_MVFR1_EL1);
1146 read_sysreg_case(SYS_MVFR2_EL1);
1148 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1149 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1150 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1151 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1152 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1153 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1154 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1155 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1156 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1157 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1159 read_sysreg_case(SYS_CNTFRQ_EL0);
1160 read_sysreg_case(SYS_CTR_EL0);
1161 read_sysreg_case(SYS_DCZID_EL0);
1169 #include <linux/irqchip/arm-gic-v3.h>
1172 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1174 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1176 return val >= entry->min_field_value;
1180 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1184 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1185 if (scope == SCOPE_SYSTEM)
1186 val = read_sanitised_ftr_reg(entry->sys_reg);
1188 val = __read_sysreg_by_encoding(entry->sys_reg);
1190 return feature_matches(val, entry);
1193 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1197 if (!has_cpuid_feature(entry, scope))
1200 has_sre = gic_enable_sre();
1202 pr_warn_once("%s present but disabled by higher exception level\n",
1208 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1210 u32 midr = read_cpuid_id();
1212 /* Cavium ThunderX pass 1.x and 2.x */
1213 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1214 MIDR_CPU_VAR_REV(0, 0),
1215 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1218 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1220 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1222 return cpuid_feature_extract_signed_field(pfr0,
1223 ID_AA64PFR0_FP_SHIFT) < 0;
1226 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1231 if (scope == SCOPE_SYSTEM)
1232 ctr = arm64_ftr_reg_ctrel0.sys_val;
1234 ctr = read_cpuid_effective_cachetype();
1236 return ctr & BIT(CTR_IDC_SHIFT);
1239 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1242 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1243 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1244 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1247 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1248 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1251 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1256 if (scope == SCOPE_SYSTEM)
1257 ctr = arm64_ftr_reg_ctrel0.sys_val;
1259 ctr = read_cpuid_cachetype();
1261 return ctr & BIT(CTR_DIC_SHIFT);
1264 static bool __maybe_unused
1265 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1268 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1269 * may share TLB entries with a CPU stuck in the crashed
1272 if (is_kdump_kernel())
1275 return has_cpuid_feature(entry, scope);
1279 * This check is triggered during the early boot before the cpufeature
1280 * is initialised. Checking the status on the local CPU allows the boot
1281 * CPU to detect the need for non-global mappings and thus avoiding a
1282 * pagetable re-write after all the CPUs are booted. This check will be
1283 * anyway run on individual CPUs, allowing us to get the consistent
1284 * state once the SMP CPUs are up and thus make the switch to non-global
1285 * mappings if required.
1287 bool kaslr_requires_kpti(void)
1289 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1293 * E0PD does a similar job to KPTI so can be used instead
1296 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1297 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1298 if (cpuid_feature_extract_unsigned_field(mmfr2,
1299 ID_AA64MMFR2_E0PD_SHIFT))
1304 * Systems affected by Cavium erratum 24756 are incompatible
1307 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1308 extern const struct midr_range cavium_erratum_27456_cpus[];
1310 if (is_midr_in_range_list(read_cpuid_id(),
1311 cavium_erratum_27456_cpus))
1315 return kaslr_offset() > 0;
1318 static bool __meltdown_safe = true;
1319 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1321 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1324 /* List of CPUs that are not vulnerable and don't need KPTI */
1325 static const struct midr_range kpti_safe_list[] = {
1326 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1327 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1328 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1329 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1330 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1331 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1332 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1333 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1334 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1335 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1336 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1337 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1338 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1339 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1340 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1343 char const *str = "kpti command line option";
1346 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1348 /* Defer to CPU feature registers */
1349 if (has_cpuid_feature(entry, scope))
1350 meltdown_safe = true;
1353 __meltdown_safe = false;
1356 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1357 * ThunderX leads to apparent I-cache corruption of kernel text, which
1358 * ends as well as you might imagine. Don't even try.
1360 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1361 str = "ARM64_WORKAROUND_CAVIUM_27456";
1365 /* Useful for KASLR robustness */
1366 if (kaslr_requires_kpti()) {
1367 if (!__kpti_forced) {
1373 if (cpu_mitigations_off() && !__kpti_forced) {
1374 str = "mitigations=off";
1378 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1379 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1384 if (__kpti_forced) {
1385 pr_info_once("kernel page table isolation forced %s by %s\n",
1386 __kpti_forced > 0 ? "ON" : "OFF", str);
1387 return __kpti_forced > 0;
1390 return !meltdown_safe;
1393 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1395 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1397 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1398 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1399 kpti_remap_fn *remap_fn;
1401 int cpu = smp_processor_id();
1404 * We don't need to rewrite the page-tables if either we've done
1405 * it already or we have KASLR enabled and therefore have not
1406 * created any global mappings at all.
1408 if (arm64_use_ng_mappings)
1411 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1413 cpu_install_idmap();
1414 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1415 cpu_uninstall_idmap();
1418 arm64_use_ng_mappings = true;
1424 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1427 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1429 static int __init parse_kpti(char *str)
1432 int ret = strtobool(str, &enabled);
1437 __kpti_forced = enabled ? 1 : -1;
1440 early_param("kpti", parse_kpti);
1442 #ifdef CONFIG_ARM64_HW_AFDBM
1443 static inline void __cpu_enable_hw_dbm(void)
1445 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1447 write_sysreg(tcr, tcr_el1);
1449 local_flush_tlb_all();
1452 static bool cpu_has_broken_dbm(void)
1454 /* List of CPUs which have broken DBM support. */
1455 static const struct midr_range cpus[] = {
1456 #ifdef CONFIG_ARM64_ERRATUM_1024718
1457 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
1458 /* Kryo4xx Silver (rdpe => r1p0) */
1459 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1464 return is_midr_in_range_list(read_cpuid_id(), cpus);
1467 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1469 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1470 !cpu_has_broken_dbm();
1473 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1475 if (cpu_can_use_dbm(cap))
1476 __cpu_enable_hw_dbm();
1479 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1482 static bool detected = false;
1484 * DBM is a non-conflicting feature. i.e, the kernel can safely
1485 * run a mix of CPUs with and without the feature. So, we
1486 * unconditionally enable the capability to allow any late CPU
1487 * to use the feature. We only enable the control bits on the
1488 * CPU, if it actually supports.
1490 * We have to make sure we print the "feature" detection only
1491 * when at least one CPU actually uses it. So check if this CPU
1492 * can actually use it and print the message exactly once.
1494 * This is safe as all CPUs (including secondary CPUs - due to the
1495 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1496 * goes through the "matches" check exactly once. Also if a CPU
1497 * matches the criteria, it is guaranteed that the CPU will turn
1498 * the DBM on, as the capability is unconditionally enabled.
1500 if (!detected && cpu_can_use_dbm(cap)) {
1502 pr_info("detected: Hardware dirty bit management\n");
1510 #ifdef CONFIG_ARM64_AMU_EXTN
1513 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1514 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1515 * information regarding all the events that it supports. When a CPU bit is
1516 * set in the cpumask, the user of this feature can only rely on the presence
1517 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1518 * counters are enabled or access to these counters is enabled by code
1519 * executed at higher exception levels (firmware).
1521 static struct cpumask amu_cpus __read_mostly;
1523 bool cpu_has_amu_feat(int cpu)
1525 return cpumask_test_cpu(cpu, &amu_cpus);
1528 int get_cpu_with_amu_feat(void)
1530 return cpumask_any(&amu_cpus);
1533 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1535 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1536 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1537 smp_processor_id());
1538 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1539 update_freq_counters_refs();
1543 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1547 * The AMU extension is a non-conflicting feature: the kernel can
1548 * safely run a mix of CPUs with and without support for the
1549 * activity monitors extension. Therefore, unconditionally enable
1550 * the capability to allow any late CPU to use the feature.
1552 * With this feature unconditionally enabled, the cpu_enable
1553 * function will be called for all CPUs that match the criteria,
1554 * including secondary and hotplugged, marking this feature as
1555 * present on that respective CPU. The enable function will also
1556 * print a detection message.
1562 int get_cpu_with_amu_feat(void)
1568 #ifdef CONFIG_ARM64_VHE
1569 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1571 return is_kernel_in_hyp_mode();
1574 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1577 * Copy register values that aren't redirected by hardware.
1579 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1580 * this value to tpidr_el2 before we patch the code. Once we've done
1581 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1584 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1585 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1589 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1591 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1593 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1594 WARN_ON(val & (7 << 27 | 7 << 21));
1597 #ifdef CONFIG_ARM64_PAN
1598 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1601 * We modify PSTATE. This won't work from irq context as the PSTATE
1602 * is discarded once we return from the exception.
1604 WARN_ON_ONCE(in_interrupt());
1606 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1609 #endif /* CONFIG_ARM64_PAN */
1611 #ifdef CONFIG_ARM64_RAS_EXTN
1612 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1614 /* Firmware may have left a deferred SError in this register. */
1615 write_sysreg_s(0, SYS_DISR_EL1);
1617 #endif /* CONFIG_ARM64_RAS_EXTN */
1619 #ifdef CONFIG_ARM64_PTR_AUTH
1620 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1622 int boot_val, sec_val;
1624 /* We don't expect to be called with SCOPE_SYSTEM */
1625 WARN_ON(scope == SCOPE_SYSTEM);
1627 * The ptr-auth feature levels are not intercompatible with lower
1628 * levels. Hence we must match ptr-auth feature level of the secondary
1629 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1630 * from the sanitised register whereas direct register read is done for
1631 * the secondary CPUs.
1632 * The sanitised feature state is guaranteed to match that of the
1633 * boot CPU as a mismatched secondary CPU is parked before it gets
1634 * a chance to update the state, with the capability.
1636 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1637 entry->field_pos, entry->sign);
1638 if (scope & SCOPE_BOOT_CPU)
1639 return boot_val >= entry->min_field_value;
1640 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1641 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1642 entry->field_pos, entry->sign);
1643 return sec_val == boot_val;
1646 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1649 return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1650 has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1653 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1656 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1657 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1659 #endif /* CONFIG_ARM64_PTR_AUTH */
1661 #ifdef CONFIG_ARM64_E0PD
1662 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1664 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1665 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1667 #endif /* CONFIG_ARM64_E0PD */
1669 #ifdef CONFIG_ARM64_PSEUDO_NMI
1670 static bool enable_pseudo_nmi;
1672 static int __init early_enable_pseudo_nmi(char *p)
1674 return strtobool(p, &enable_pseudo_nmi);
1676 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1678 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1681 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1685 #ifdef CONFIG_ARM64_BTI
1686 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1689 * Use of X16/X17 for tail-calls and trampolines that jump to
1690 * function entry points using BR is a requirement for
1691 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1692 * So, be strict and forbid other BRs using other registers to
1693 * jump onto a PACIxSP instruction:
1695 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1698 #endif /* CONFIG_ARM64_BTI */
1700 #ifdef CONFIG_ARM64_MTE
1701 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1703 static bool cleared_zero_page = false;
1706 * Clear the tags in the zero page. This needs to be done via the
1707 * linear map which has the Tagged attribute.
1709 if (!cleared_zero_page) {
1710 cleared_zero_page = true;
1711 mte_clear_page_tags(lm_alias(empty_zero_page));
1714 #endif /* CONFIG_ARM64_MTE */
1717 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1719 if (kvm_get_mode() != KVM_MODE_PROTECTED)
1722 if (is_kernel_in_hyp_mode()) {
1723 pr_warn("Protected KVM not available with VHE\n");
1729 #endif /* CONFIG_KVM */
1731 /* Internal helper functions to match cpu capability type */
1733 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1735 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1739 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1741 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1745 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1747 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1750 static const struct arm64_cpu_capabilities arm64_features[] = {
1752 .desc = "GIC system register CPU interface",
1753 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1754 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1755 .matches = has_useable_gicv3_cpuif,
1756 .sys_reg = SYS_ID_AA64PFR0_EL1,
1757 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1758 .sign = FTR_UNSIGNED,
1759 .min_field_value = 1,
1761 #ifdef CONFIG_ARM64_PAN
1763 .desc = "Privileged Access Never",
1764 .capability = ARM64_HAS_PAN,
1765 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1766 .matches = has_cpuid_feature,
1767 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1768 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1769 .sign = FTR_UNSIGNED,
1770 .min_field_value = 1,
1771 .cpu_enable = cpu_enable_pan,
1773 #endif /* CONFIG_ARM64_PAN */
1774 #ifdef CONFIG_ARM64_LSE_ATOMICS
1776 .desc = "LSE atomic instructions",
1777 .capability = ARM64_HAS_LSE_ATOMICS,
1778 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1779 .matches = has_cpuid_feature,
1780 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1781 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1782 .sign = FTR_UNSIGNED,
1783 .min_field_value = 2,
1785 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1787 .desc = "Software prefetching using PRFM",
1788 .capability = ARM64_HAS_NO_HW_PREFETCH,
1789 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1790 .matches = has_no_hw_prefetch,
1792 #ifdef CONFIG_ARM64_VHE
1794 .desc = "Virtualization Host Extensions",
1795 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1796 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1797 .matches = runs_at_el2,
1798 .cpu_enable = cpu_copy_el2regs,
1800 #endif /* CONFIG_ARM64_VHE */
1802 .desc = "32-bit EL0 Support",
1803 .capability = ARM64_HAS_32BIT_EL0,
1804 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1805 .matches = has_cpuid_feature,
1806 .sys_reg = SYS_ID_AA64PFR0_EL1,
1807 .sign = FTR_UNSIGNED,
1808 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1809 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1813 .desc = "32-bit EL1 Support",
1814 .capability = ARM64_HAS_32BIT_EL1,
1815 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1816 .matches = has_cpuid_feature,
1817 .sys_reg = SYS_ID_AA64PFR0_EL1,
1818 .sign = FTR_UNSIGNED,
1819 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1820 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1823 .desc = "Protected KVM",
1824 .capability = ARM64_KVM_PROTECTED_MODE,
1825 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1826 .matches = is_kvm_protected_mode,
1830 .desc = "Kernel page table isolation (KPTI)",
1831 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1832 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1834 * The ID feature fields below are used to indicate that
1835 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1838 .sys_reg = SYS_ID_AA64PFR0_EL1,
1839 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1840 .min_field_value = 1,
1841 .matches = unmap_kernel_at_el0,
1842 .cpu_enable = kpti_install_ng_mappings,
1845 /* FP/SIMD is not implemented */
1846 .capability = ARM64_HAS_NO_FPSIMD,
1847 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1848 .min_field_value = 0,
1849 .matches = has_no_fpsimd,
1851 #ifdef CONFIG_ARM64_PMEM
1853 .desc = "Data cache clean to Point of Persistence",
1854 .capability = ARM64_HAS_DCPOP,
1855 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1856 .matches = has_cpuid_feature,
1857 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1858 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1859 .min_field_value = 1,
1862 .desc = "Data cache clean to Point of Deep Persistence",
1863 .capability = ARM64_HAS_DCPODP,
1864 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1865 .matches = has_cpuid_feature,
1866 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1867 .sign = FTR_UNSIGNED,
1868 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1869 .min_field_value = 2,
1872 #ifdef CONFIG_ARM64_SVE
1874 .desc = "Scalable Vector Extension",
1875 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1876 .capability = ARM64_SVE,
1877 .sys_reg = SYS_ID_AA64PFR0_EL1,
1878 .sign = FTR_UNSIGNED,
1879 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1880 .min_field_value = ID_AA64PFR0_SVE,
1881 .matches = has_cpuid_feature,
1882 .cpu_enable = sve_kernel_enable,
1884 #endif /* CONFIG_ARM64_SVE */
1885 #ifdef CONFIG_ARM64_RAS_EXTN
1887 .desc = "RAS Extension Support",
1888 .capability = ARM64_HAS_RAS_EXTN,
1889 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1890 .matches = has_cpuid_feature,
1891 .sys_reg = SYS_ID_AA64PFR0_EL1,
1892 .sign = FTR_UNSIGNED,
1893 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1894 .min_field_value = ID_AA64PFR0_RAS_V1,
1895 .cpu_enable = cpu_clear_disr,
1897 #endif /* CONFIG_ARM64_RAS_EXTN */
1898 #ifdef CONFIG_ARM64_AMU_EXTN
1901 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1902 * Therefore, don't provide .desc as we don't want the detection
1903 * message to be shown until at least one CPU is detected to
1904 * support the feature.
1906 .capability = ARM64_HAS_AMU_EXTN,
1907 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1909 .sys_reg = SYS_ID_AA64PFR0_EL1,
1910 .sign = FTR_UNSIGNED,
1911 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1912 .min_field_value = ID_AA64PFR0_AMU,
1913 .cpu_enable = cpu_amu_enable,
1915 #endif /* CONFIG_ARM64_AMU_EXTN */
1917 .desc = "Data cache clean to the PoU not required for I/D coherence",
1918 .capability = ARM64_HAS_CACHE_IDC,
1919 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1920 .matches = has_cache_idc,
1921 .cpu_enable = cpu_emulate_effective_ctr,
1924 .desc = "Instruction cache invalidation not required for I/D coherence",
1925 .capability = ARM64_HAS_CACHE_DIC,
1926 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1927 .matches = has_cache_dic,
1930 .desc = "Stage-2 Force Write-Back",
1931 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1932 .capability = ARM64_HAS_STAGE2_FWB,
1933 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1934 .sign = FTR_UNSIGNED,
1935 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1936 .min_field_value = 1,
1937 .matches = has_cpuid_feature,
1938 .cpu_enable = cpu_has_fwb,
1941 .desc = "ARMv8.4 Translation Table Level",
1942 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1943 .capability = ARM64_HAS_ARMv8_4_TTL,
1944 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1945 .sign = FTR_UNSIGNED,
1946 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1947 .min_field_value = 1,
1948 .matches = has_cpuid_feature,
1951 .desc = "TLB range maintenance instructions",
1952 .capability = ARM64_HAS_TLB_RANGE,
1953 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1954 .matches = has_cpuid_feature,
1955 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1956 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
1957 .sign = FTR_UNSIGNED,
1958 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
1960 #ifdef CONFIG_ARM64_HW_AFDBM
1963 * Since we turn this on always, we don't want the user to
1964 * think that the feature is available when it may not be.
1965 * So hide the description.
1967 * .desc = "Hardware pagetable Dirty Bit Management",
1970 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1971 .capability = ARM64_HW_DBM,
1972 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1973 .sign = FTR_UNSIGNED,
1974 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1975 .min_field_value = 2,
1976 .matches = has_hw_dbm,
1977 .cpu_enable = cpu_enable_hw_dbm,
1981 .desc = "CRC32 instructions",
1982 .capability = ARM64_HAS_CRC32,
1983 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1984 .matches = has_cpuid_feature,
1985 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1986 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1987 .min_field_value = 1,
1990 .desc = "Speculative Store Bypassing Safe (SSBS)",
1991 .capability = ARM64_SSBS,
1992 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1993 .matches = has_cpuid_feature,
1994 .sys_reg = SYS_ID_AA64PFR1_EL1,
1995 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1996 .sign = FTR_UNSIGNED,
1997 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1999 #ifdef CONFIG_ARM64_CNP
2001 .desc = "Common not Private translations",
2002 .capability = ARM64_HAS_CNP,
2003 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2004 .matches = has_useable_cnp,
2005 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2006 .sign = FTR_UNSIGNED,
2007 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2008 .min_field_value = 1,
2009 .cpu_enable = cpu_enable_cnp,
2013 .desc = "Speculation barrier (SB)",
2014 .capability = ARM64_HAS_SB,
2015 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2016 .matches = has_cpuid_feature,
2017 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2018 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2019 .sign = FTR_UNSIGNED,
2020 .min_field_value = 1,
2022 #ifdef CONFIG_ARM64_PTR_AUTH
2024 .desc = "Address authentication (architected algorithm)",
2025 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2026 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2027 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2028 .sign = FTR_UNSIGNED,
2029 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2030 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2031 .matches = has_address_auth_cpucap,
2034 .desc = "Address authentication (IMP DEF algorithm)",
2035 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2036 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2037 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2038 .sign = FTR_UNSIGNED,
2039 .field_pos = ID_AA64ISAR1_API_SHIFT,
2040 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2041 .matches = has_address_auth_cpucap,
2044 .capability = ARM64_HAS_ADDRESS_AUTH,
2045 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2046 .matches = has_address_auth_metacap,
2049 .desc = "Generic authentication (architected algorithm)",
2050 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2051 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2052 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2053 .sign = FTR_UNSIGNED,
2054 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2055 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2056 .matches = has_cpuid_feature,
2059 .desc = "Generic authentication (IMP DEF algorithm)",
2060 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2061 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2062 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2063 .sign = FTR_UNSIGNED,
2064 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2065 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2066 .matches = has_cpuid_feature,
2069 .capability = ARM64_HAS_GENERIC_AUTH,
2070 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2071 .matches = has_generic_auth,
2073 #endif /* CONFIG_ARM64_PTR_AUTH */
2074 #ifdef CONFIG_ARM64_PSEUDO_NMI
2077 * Depends on having GICv3
2079 .desc = "IRQ priority masking",
2080 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2081 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2082 .matches = can_use_gic_priorities,
2083 .sys_reg = SYS_ID_AA64PFR0_EL1,
2084 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2085 .sign = FTR_UNSIGNED,
2086 .min_field_value = 1,
2089 #ifdef CONFIG_ARM64_E0PD
2092 .capability = ARM64_HAS_E0PD,
2093 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2094 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2095 .sign = FTR_UNSIGNED,
2096 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2097 .matches = has_cpuid_feature,
2098 .min_field_value = 1,
2099 .cpu_enable = cpu_enable_e0pd,
2102 #ifdef CONFIG_ARCH_RANDOM
2104 .desc = "Random Number Generator",
2105 .capability = ARM64_HAS_RNG,
2106 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2107 .matches = has_cpuid_feature,
2108 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2109 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2110 .sign = FTR_UNSIGNED,
2111 .min_field_value = 1,
2114 #ifdef CONFIG_ARM64_BTI
2116 .desc = "Branch Target Identification",
2117 .capability = ARM64_BTI,
2118 #ifdef CONFIG_ARM64_BTI_KERNEL
2119 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2121 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2123 .matches = has_cpuid_feature,
2124 .cpu_enable = bti_enable,
2125 .sys_reg = SYS_ID_AA64PFR1_EL1,
2126 .field_pos = ID_AA64PFR1_BT_SHIFT,
2127 .min_field_value = ID_AA64PFR1_BT_BTI,
2128 .sign = FTR_UNSIGNED,
2131 #ifdef CONFIG_ARM64_MTE
2133 .desc = "Memory Tagging Extension",
2134 .capability = ARM64_MTE,
2135 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2136 .matches = has_cpuid_feature,
2137 .sys_reg = SYS_ID_AA64PFR1_EL1,
2138 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2139 .min_field_value = ID_AA64PFR1_MTE,
2140 .sign = FTR_UNSIGNED,
2141 .cpu_enable = cpu_enable_mte,
2143 #endif /* CONFIG_ARM64_MTE */
2145 .desc = "RCpc load-acquire (LDAPR)",
2146 .capability = ARM64_HAS_LDAPR,
2147 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2148 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2149 .sign = FTR_UNSIGNED,
2150 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2151 .matches = has_cpuid_feature,
2152 .min_field_value = 1,
2157 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2158 .matches = has_cpuid_feature, \
2160 .field_pos = field, \
2162 .min_field_value = min_value,
2164 #define __HWCAP_CAP(name, cap_type, cap) \
2166 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2167 .hwcap_type = cap_type, \
2170 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
2172 __HWCAP_CAP(#cap, cap_type, cap) \
2173 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2176 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2178 __HWCAP_CAP(#cap, cap_type, cap) \
2179 .matches = cpucap_multi_entry_cap_matches, \
2180 .match_list = list, \
2183 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2185 __HWCAP_CAP(#cap, cap_type, cap) \
2189 #ifdef CONFIG_ARM64_PTR_AUTH
2190 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2192 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2193 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2196 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2197 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2202 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2204 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2205 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2208 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2209 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2215 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2216 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2217 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2218 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2219 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2220 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2221 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2222 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2223 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2224 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2225 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2226 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2227 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2228 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2229 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2230 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2231 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2232 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2233 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2234 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2235 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2236 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2237 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2238 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2239 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2240 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2241 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2242 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2243 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2244 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2245 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2246 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2247 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2248 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2249 #ifdef CONFIG_ARM64_SVE
2250 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2251 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2252 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2253 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2254 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2255 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2256 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2257 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2258 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2259 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2260 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2262 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2263 #ifdef CONFIG_ARM64_BTI
2264 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2266 #ifdef CONFIG_ARM64_PTR_AUTH
2267 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2268 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2270 #ifdef CONFIG_ARM64_MTE
2271 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2272 #endif /* CONFIG_ARM64_MTE */
2276 #ifdef CONFIG_COMPAT
2277 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2280 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2281 * in line with that of arm32 as in vfp_init(). We make sure that the
2282 * check is future proof, by making sure value is non-zero.
2286 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2287 if (scope == SCOPE_SYSTEM)
2288 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2290 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2292 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2293 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2294 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2298 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2299 #ifdef CONFIG_COMPAT
2300 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2301 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2302 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2303 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2304 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2305 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2306 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2307 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2308 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2309 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2314 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2316 switch (cap->hwcap_type) {
2318 cpu_set_feature(cap->hwcap);
2320 #ifdef CONFIG_COMPAT
2321 case CAP_COMPAT_HWCAP:
2322 compat_elf_hwcap |= (u32)cap->hwcap;
2324 case CAP_COMPAT_HWCAP2:
2325 compat_elf_hwcap2 |= (u32)cap->hwcap;
2334 /* Check if we have a particular HWCAP enabled */
2335 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2339 switch (cap->hwcap_type) {
2341 rc = cpu_have_feature(cap->hwcap);
2343 #ifdef CONFIG_COMPAT
2344 case CAP_COMPAT_HWCAP:
2345 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2347 case CAP_COMPAT_HWCAP2:
2348 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2359 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2361 /* We support emulation of accesses to CPU ID feature registers */
2362 cpu_set_named_feature(CPUID);
2363 for (; hwcaps->matches; hwcaps++)
2364 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2365 cap_set_elf_hwcap(hwcaps);
2368 static void update_cpu_capabilities(u16 scope_mask)
2371 const struct arm64_cpu_capabilities *caps;
2373 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2374 for (i = 0; i < ARM64_NCAPS; i++) {
2375 caps = cpu_hwcaps_ptrs[i];
2376 if (!caps || !(caps->type & scope_mask) ||
2377 cpus_have_cap(caps->capability) ||
2378 !caps->matches(caps, cpucap_default_scope(caps)))
2382 pr_info("detected: %s\n", caps->desc);
2383 cpus_set_cap(caps->capability);
2385 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2386 set_bit(caps->capability, boot_capabilities);
2391 * Enable all the available capabilities on this CPU. The capabilities
2392 * with BOOT_CPU scope are handled separately and hence skipped here.
2394 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2397 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2399 for_each_available_cap(i) {
2400 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2405 if (!(cap->type & non_boot_scope))
2408 if (cap->cpu_enable)
2409 cap->cpu_enable(cap);
2415 * Run through the enabled capabilities and enable() it on all active
2418 static void __init enable_cpu_capabilities(u16 scope_mask)
2421 const struct arm64_cpu_capabilities *caps;
2424 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2425 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2427 for (i = 0; i < ARM64_NCAPS; i++) {
2430 caps = cpu_hwcaps_ptrs[i];
2431 if (!caps || !(caps->type & scope_mask))
2433 num = caps->capability;
2434 if (!cpus_have_cap(num))
2437 /* Ensure cpus_have_const_cap(num) works */
2438 static_branch_enable(&cpu_hwcap_keys[num]);
2440 if (boot_scope && caps->cpu_enable)
2442 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2443 * before any secondary CPU boots. Thus, each secondary
2444 * will enable the capability as appropriate via
2445 * check_local_cpu_capabilities(). The only exception is
2446 * the boot CPU, for which the capability must be
2447 * enabled here. This approach avoids costly
2448 * stop_machine() calls for this case.
2450 caps->cpu_enable(caps);
2454 * For all non-boot scope capabilities, use stop_machine()
2455 * as it schedules the work allowing us to modify PSTATE,
2456 * instead of on_each_cpu() which uses an IPI, giving us a
2457 * PSTATE that disappears when we return.
2460 stop_machine(cpu_enable_non_boot_scope_capabilities,
2461 NULL, cpu_online_mask);
2465 * Run through the list of capabilities to check for conflicts.
2466 * If the system has already detected a capability, take necessary
2467 * action on this CPU.
2469 static void verify_local_cpu_caps(u16 scope_mask)
2472 bool cpu_has_cap, system_has_cap;
2473 const struct arm64_cpu_capabilities *caps;
2475 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2477 for (i = 0; i < ARM64_NCAPS; i++) {
2478 caps = cpu_hwcaps_ptrs[i];
2479 if (!caps || !(caps->type & scope_mask))
2482 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2483 system_has_cap = cpus_have_cap(caps->capability);
2485 if (system_has_cap) {
2487 * Check if the new CPU misses an advertised feature,
2488 * which is not safe to miss.
2490 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2493 * We have to issue cpu_enable() irrespective of
2494 * whether the CPU has it or not, as it is enabeld
2495 * system wide. It is upto the call back to take
2496 * appropriate action on this CPU.
2498 if (caps->cpu_enable)
2499 caps->cpu_enable(caps);
2502 * Check if the CPU has this capability if it isn't
2503 * safe to have when the system doesn't.
2505 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2510 if (i < ARM64_NCAPS) {
2511 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2512 smp_processor_id(), caps->capability,
2513 caps->desc, system_has_cap, cpu_has_cap);
2515 if (cpucap_panic_on_conflict(caps))
2523 * Check for CPU features that are used in early boot
2524 * based on the Boot CPU value.
2526 static void check_early_cpu_features(void)
2528 verify_cpu_asid_bits();
2530 verify_local_cpu_caps(SCOPE_BOOT_CPU);
2534 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2537 for (; caps->matches; caps++)
2538 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2539 pr_crit("CPU%d: missing HWCAP: %s\n",
2540 smp_processor_id(), caps->desc);
2545 static void verify_sve_features(void)
2547 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2548 u64 zcr = read_zcr_features();
2550 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2551 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2553 if (len < safe_len || sve_verify_vq_map()) {
2554 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2555 smp_processor_id());
2559 /* Add checks on other ZCR bits here if necessary */
2562 static void verify_hyp_capabilities(void)
2564 u64 safe_mmfr1, mmfr0, mmfr1;
2565 int parange, ipa_max;
2566 unsigned int safe_vmid_bits, vmid_bits;
2568 if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST))
2571 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2572 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2573 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2575 /* Verify VMID bits */
2576 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2577 vmid_bits = get_vmid_bits(mmfr1);
2578 if (vmid_bits < safe_vmid_bits) {
2579 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2583 /* Verify IPA range */
2584 parange = cpuid_feature_extract_unsigned_field(mmfr0,
2585 ID_AA64MMFR0_PARANGE_SHIFT);
2586 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2587 if (ipa_max < get_kvm_ipa_limit()) {
2588 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2594 * Run through the enabled system capabilities and enable() it on this CPU.
2595 * The capabilities were decided based on the available CPUs at the boot time.
2596 * Any new CPU should match the system wide status of the capability. If the
2597 * new CPU doesn't have a capability which the system now has enabled, we
2598 * cannot do anything to fix it up and could cause unexpected failures. So
2601 static void verify_local_cpu_capabilities(void)
2604 * The capabilities with SCOPE_BOOT_CPU are checked from
2605 * check_early_cpu_features(), as they need to be verified
2606 * on all secondary CPUs.
2608 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2610 verify_local_elf_hwcaps(arm64_elf_hwcaps);
2612 if (system_supports_32bit_el0())
2613 verify_local_elf_hwcaps(compat_elf_hwcaps);
2615 if (system_supports_sve())
2616 verify_sve_features();
2618 if (is_hyp_mode_available())
2619 verify_hyp_capabilities();
2622 void check_local_cpu_capabilities(void)
2625 * All secondary CPUs should conform to the early CPU features
2626 * in use by the kernel based on boot CPU.
2628 check_early_cpu_features();
2631 * If we haven't finalised the system capabilities, this CPU gets
2632 * a chance to update the errata work arounds and local features.
2633 * Otherwise, this CPU should verify that it has all the system
2634 * advertised capabilities.
2636 if (!system_capabilities_finalized())
2637 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2639 verify_local_cpu_capabilities();
2642 static void __init setup_boot_cpu_capabilities(void)
2644 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2645 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2646 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2647 enable_cpu_capabilities(SCOPE_BOOT_CPU);
2650 bool this_cpu_has_cap(unsigned int n)
2652 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2653 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2656 return cap->matches(cap, SCOPE_LOCAL_CPU);
2663 * This helper function is used in a narrow window when,
2664 * - The system wide safe registers are set with all the SMP CPUs and,
2665 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2666 * In all other cases cpus_have_{const_}cap() should be used.
2668 static bool __maybe_unused __system_matches_cap(unsigned int n)
2670 if (n < ARM64_NCAPS) {
2671 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2674 return cap->matches(cap, SCOPE_SYSTEM);
2679 void cpu_set_feature(unsigned int num)
2681 WARN_ON(num >= MAX_CPU_FEATURES);
2682 elf_hwcap |= BIT(num);
2684 EXPORT_SYMBOL_GPL(cpu_set_feature);
2686 bool cpu_have_feature(unsigned int num)
2688 WARN_ON(num >= MAX_CPU_FEATURES);
2689 return elf_hwcap & BIT(num);
2691 EXPORT_SYMBOL_GPL(cpu_have_feature);
2693 unsigned long cpu_get_elf_hwcap(void)
2696 * We currently only populate the first 32 bits of AT_HWCAP. Please
2697 * note that for userspace compatibility we guarantee that bits 62
2698 * and 63 will always be returned as 0.
2700 return lower_32_bits(elf_hwcap);
2703 unsigned long cpu_get_elf_hwcap2(void)
2705 return upper_32_bits(elf_hwcap);
2708 static void __init setup_system_capabilities(void)
2711 * We have finalised the system-wide safe feature
2712 * registers, finalise the capabilities that depend
2713 * on it. Also enable all the available capabilities,
2714 * that are not enabled already.
2716 update_cpu_capabilities(SCOPE_SYSTEM);
2717 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2720 void __init setup_cpu_features(void)
2724 setup_system_capabilities();
2725 setup_elf_hwcaps(arm64_elf_hwcaps);
2727 if (system_supports_32bit_el0())
2728 setup_elf_hwcaps(compat_elf_hwcaps);
2730 if (system_uses_ttbr0_pan())
2731 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2734 minsigstksz_setup();
2736 /* Advertise that we have computed the system capabilities */
2737 finalize_system_capabilities();
2740 * Check for sane CTR_EL0.CWG value.
2742 cwg = cache_type_cwg();
2744 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2748 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2750 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2754 * We emulate only the following system register space.
2755 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2756 * See Table C5-6 System instruction encodings for System register accesses,
2757 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2759 static inline bool __attribute_const__ is_emulated(u32 id)
2761 return (sys_reg_Op0(id) == 0x3 &&
2762 sys_reg_CRn(id) == 0x0 &&
2763 sys_reg_Op1(id) == 0x0 &&
2764 (sys_reg_CRm(id) == 0 ||
2765 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2769 * With CRm == 0, reg should be one of :
2770 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2772 static inline int emulate_id_reg(u32 id, u64 *valp)
2776 *valp = read_cpuid_id();
2779 *valp = SYS_MPIDR_SAFE_VAL;
2781 case SYS_REVIDR_EL1:
2782 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2792 static int emulate_sys_reg(u32 id, u64 *valp)
2794 struct arm64_ftr_reg *regp;
2796 if (!is_emulated(id))
2799 if (sys_reg_CRm(id) == 0)
2800 return emulate_id_reg(id, valp);
2802 regp = get_arm64_ftr_reg_nowarn(id);
2804 *valp = arm64_ftr_reg_user_value(regp);
2807 * The untracked registers are either IMPLEMENTATION DEFINED
2808 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2814 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2819 rc = emulate_sys_reg(sys_reg, &val);
2821 pt_regs_write_reg(regs, rt, val);
2822 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2827 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2832 * sys_reg values are defined as used in mrs/msr instruction.
2833 * shift the imm value to get the encoding.
2835 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2836 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2837 return do_emulate_mrs(regs, sys_reg, rt);
2840 static struct undef_hook mrs_hook = {
2841 .instr_mask = 0xfff00000,
2842 .instr_val = 0xd5300000,
2843 .pstate_mask = PSR_AA32_MODE_MASK,
2844 .pstate_val = PSR_MODE_EL0t,
2848 static int __init enable_mrs_emulation(void)
2850 register_undef_hook(&mrs_hook);
2854 core_initcall(enable_mrs_emulation);
2856 enum mitigation_state arm64_get_meltdown_state(void)
2858 if (__meltdown_safe)
2859 return SPECTRE_UNAFFECTED;
2861 if (arm64_kernel_unmapped_at_el0())
2862 return SPECTRE_MITIGATED;
2864 return SPECTRE_VULNERABLE;
2867 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2870 switch (arm64_get_meltdown_state()) {
2871 case SPECTRE_UNAFFECTED:
2872 return sprintf(buf, "Not affected\n");
2874 case SPECTRE_MITIGATED:
2875 return sprintf(buf, "Mitigation: PTI\n");
2878 return sprintf(buf, "Vulnerable\n");