1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
29 * Some implementation details worth remembering:
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
63 #define pr_fmt(fmt) "CPU features: " fmt
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
88 #include <asm/processor.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
99 #define COMPAT_ELF_HWCAP_DEFAULT \
100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
123 static bool __read_mostly allow_mismatched_32bit_el0;
126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127 * seen at least one CPU capable of 32-bit EL0.
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
132 * Mask of CPUs supporting 32-bit EL0.
133 * Only valid if arm64_mismatched_32bit_el0 is enabled.
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
137 void dump_cpu_features(void)
139 /* file-wide pr_fmt adds "CPU features: " prefix */
140 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
143 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
144 .sys_reg = SYS_##reg, \
145 .field_pos = reg##_##field##_SHIFT, \
146 .field_width = reg##_##field##_WIDTH, \
147 .sign = reg##_##field##_SIGNED, \
148 .min_field_value = reg##_##field##_##min_value,
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
153 .visible = VISIBLE, \
158 .safe_val = SAFE_VAL, \
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
169 #define ARM64_FTR_END \
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
176 static bool __system_matches_cap(unsigned int n);
179 * NOTE: Any changes to the visibility of features should be kept in
180 * sync with the documentation of the CPU feature register ABI.
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
228 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
229 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
230 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
236 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
244 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
247 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
248 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
256 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
257 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
258 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
262 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
263 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
264 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
265 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
269 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
270 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
271 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
272 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
273 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
274 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
275 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
276 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
277 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
278 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
279 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
280 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
282 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
283 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
284 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
285 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
286 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
287 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
291 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
292 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
293 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
294 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
296 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
297 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
298 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
299 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
300 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
301 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
302 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
303 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
304 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
305 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
306 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
307 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
308 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
309 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
310 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
311 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
312 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
313 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
314 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
315 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
319 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
320 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
324 * Page size not being supported at Stage-2 is not fatal. You
325 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
326 * your favourite nesting hypervisor.
328 * There is a small corner case where the hypervisor explicitly
329 * advertises a given granule size at Stage-2 (value 2) on some
330 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
331 * vCPUs. Although this is not forbidden by the architecture, it
332 * indicates that the hypervisor is being silly (or buggy).
334 * We make no effort to cope with this and pretend that if these
335 * fields are inconsistent across vCPUs, then it isn't worth
336 * trying to bring KVM up.
338 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
340 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
342 * We already refuse to boot CPUs that don't support our configured
343 * page size, so we can only detect mismatches for a page size other
344 * than the one we're currently using. Unfortunately, SoCs like this
345 * exist in the wild so, even though we don't like it, we'll have to go
346 * along with it and treat them as non-strict.
348 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
349 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
350 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
352 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
353 /* Linux shouldn't care about secure memory */
354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
358 * Differing PARange is fine as long as all peripherals and memory are mapped
359 * within the minimum PARange of all CPUs
361 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
365 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
368 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
371 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
372 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
377 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
378 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
382 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
390 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
394 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
395 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
396 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
397 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
401 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
402 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
407 static const struct arm64_ftr_bits ftr_ctr[] = {
408 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
409 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
413 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
415 * Linux can handle differing I-cache policies. Userspace JITs will
416 * make use of *minLine.
417 * If we have differing I-cache policies, report it as the weakest - VIPT.
419 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
420 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
424 static struct arm64_ftr_override __ro_after_init no_override = { };
426 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
427 .name = "SYS_CTR_EL0",
429 .override = &no_override,
432 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
433 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
434 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
438 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
444 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
445 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
448 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
451 * We can instantiate multiple PMU instances with different levels
454 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
459 static const struct arm64_ftr_bits ftr_mvfr0[] = {
460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
465 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
466 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
471 static const struct arm64_ftr_bits ftr_mvfr1[] = {
472 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
478 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
483 static const struct arm64_ftr_bits ftr_mvfr2[] = {
484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
489 static const struct arm64_ftr_bits ftr_dczid[] = {
490 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
491 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
495 static const struct arm64_ftr_bits ftr_gmid[] = {
496 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
500 static const struct arm64_ftr_bits ftr_id_isar0[] = {
501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
504 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
505 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
511 static const struct arm64_ftr_bits ftr_id_isar5[] = {
512 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
513 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
516 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
517 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
521 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
522 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
523 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
524 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
531 * SpecSEI = 1 indicates that the PE might generate an SError on an
532 * external abort on speculative read. It is safe to assume that an
533 * SError might be generated than it will not be. Hence it has been
534 * classified as FTR_HIGHER_SAFE.
536 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
540 static const struct arm64_ftr_bits ftr_id_isar4[] = {
541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
542 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
543 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
544 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
552 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
553 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
557 static const struct arm64_ftr_bits ftr_id_isar6[] = {
558 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
559 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
560 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
561 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
562 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
563 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
564 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
568 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
569 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
571 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
578 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
579 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
581 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
582 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
583 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
585 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
586 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
590 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
591 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
592 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
596 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
597 /* [31:28] TraceFilt */
598 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
599 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
603 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
604 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
608 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
609 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
613 static const struct arm64_ftr_bits ftr_zcr[] = {
614 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
615 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */
619 static const struct arm64_ftr_bits ftr_smcr[] = {
620 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
621 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */
626 * Common ftr bits for a 32bit register with all hidden, strict
627 * attributes, with 4bit feature fields and a default safe value of
628 * 0. Covers the following 32bit registers:
629 * id_isar[1-3], id_mmfr[1-3]
631 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
632 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
633 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
635 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
639 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
643 /* Table for a single 32bit feature value */
644 static const struct arm64_ftr_bits ftr_single32[] = {
645 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
649 static const struct arm64_ftr_bits ftr_raz[] = {
653 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
655 .reg = &(struct arm64_ftr_reg){ \
658 .ftr_bits = &((table)[0]), \
661 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
662 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
664 #define ARM64_FTR_REG(id, table) \
665 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
667 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
668 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
669 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
670 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
671 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
672 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
673 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
675 struct arm64_ftr_override arm64_sw_feature_override;
677 static const struct __ftr_reg_entry {
679 struct arm64_ftr_reg *reg;
680 } arm64_ftr_regs[] = {
682 /* Op1 = 0, CRn = 0, CRm = 1 */
683 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
684 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
685 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
686 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
687 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
688 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
689 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
691 /* Op1 = 0, CRn = 0, CRm = 2 */
692 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
693 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
694 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
695 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
696 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
697 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
698 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
699 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
701 /* Op1 = 0, CRn = 0, CRm = 3 */
702 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
703 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
704 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
705 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
706 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
707 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
709 /* Op1 = 0, CRn = 0, CRm = 4 */
710 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
711 &id_aa64pfr0_override),
712 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
713 &id_aa64pfr1_override),
714 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
715 &id_aa64zfr0_override),
716 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
717 &id_aa64smfr0_override),
719 /* Op1 = 0, CRn = 0, CRm = 5 */
720 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
721 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
723 /* Op1 = 0, CRn = 0, CRm = 6 */
724 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
725 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
726 &id_aa64isar1_override),
727 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
728 &id_aa64isar2_override),
730 /* Op1 = 0, CRn = 0, CRm = 7 */
731 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
732 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
733 &id_aa64mmfr1_override),
734 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
735 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
737 /* Op1 = 0, CRn = 1, CRm = 2 */
738 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
739 ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
741 /* Op1 = 1, CRn = 0, CRm = 0 */
742 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
744 /* Op1 = 3, CRn = 0, CRm = 0 */
745 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
746 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
748 /* Op1 = 3, CRn = 14, CRm = 0 */
749 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
752 static int search_cmp_ftr_reg(const void *id, const void *regp)
754 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
758 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
759 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
760 * ascending order of sys_id, we use binary search to find a matching
763 * returns - Upon success, matching ftr_reg entry for id.
764 * - NULL on failure. It is upto the caller to decide
765 * the impact of a failure.
767 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
769 const struct __ftr_reg_entry *ret;
771 ret = bsearch((const void *)(unsigned long)sys_id,
773 ARRAY_SIZE(arm64_ftr_regs),
774 sizeof(arm64_ftr_regs[0]),
782 * get_arm64_ftr_reg - Looks up a feature register entry using
783 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
785 * returns - Upon success, matching ftr_reg entry for id.
786 * - NULL on failure but with an WARN_ON().
788 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
790 struct arm64_ftr_reg *reg;
792 reg = get_arm64_ftr_reg_nowarn(sys_id);
795 * Requesting a non-existent register search is an error. Warn
796 * and let the caller handle it.
802 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
805 u64 mask = arm64_ftr_mask(ftrp);
808 reg |= (ftr_val << ftrp->shift) & mask;
812 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
817 switch (ftrp->type) {
819 ret = ftrp->safe_val;
824 case FTR_HIGHER_OR_ZERO_SAFE:
828 case FTR_HIGHER_SAFE:
838 static void __init sort_ftr_regs(void)
842 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
843 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
844 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
848 * Features here must be sorted in descending order with respect
849 * to their shift values and should not overlap with each other.
851 for (; ftr_bits->width != 0; ftr_bits++, j++) {
852 unsigned int width = ftr_reg->ftr_bits[j].width;
853 unsigned int shift = ftr_reg->ftr_bits[j].shift;
854 unsigned int prev_shift;
856 WARN((shift + width) > 64,
857 "%s has invalid feature at shift %d\n",
858 ftr_reg->name, shift);
861 * Skip the first feature. There is nothing to
862 * compare against for now.
867 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
868 WARN((shift + width) > prev_shift,
869 "%s has feature overlap at shift %d\n",
870 ftr_reg->name, shift);
874 * Skip the first register. There is nothing to
875 * compare against for now.
880 * Registers here must be sorted in ascending order with respect
881 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
884 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
889 * Initialise the CPU feature register from Boot CPU values.
890 * Also initiliases the strict_mask for the register.
891 * Any bits that are not covered by an arm64_ftr_bits entry are considered
892 * RES0 for the system-wide value, and must strictly match.
894 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
897 u64 strict_mask = ~0x0ULL;
901 const struct arm64_ftr_bits *ftrp;
902 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
907 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
908 u64 ftr_mask = arm64_ftr_mask(ftrp);
909 s64 ftr_new = arm64_ftr_value(ftrp, new);
910 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
912 if ((ftr_mask & reg->override->mask) == ftr_mask) {
913 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
916 if (ftr_ovr != tmp) {
917 /* Unsafe, remove the override */
918 reg->override->mask &= ~ftr_mask;
919 reg->override->val &= ~ftr_mask;
921 str = "ignoring override";
922 } else if (ftr_new != tmp) {
923 /* Override was valid */
926 } else if (ftr_ovr == tmp) {
927 /* Override was the safe value */
932 pr_warn("%s[%d:%d]: %s to %llx\n",
934 ftrp->shift + ftrp->width - 1,
935 ftrp->shift, str, tmp);
936 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
937 reg->override->val &= ~ftr_mask;
938 pr_warn("%s[%d:%d]: impossible override, ignored\n",
940 ftrp->shift + ftrp->width - 1,
944 val = arm64_ftr_set_value(ftrp, val, ftr_new);
946 valid_mask |= ftr_mask;
948 strict_mask &= ~ftr_mask;
950 user_mask |= ftr_mask;
952 reg->user_val = arm64_ftr_set_value(ftrp,
960 reg->strict_mask = strict_mask;
961 reg->user_mask = user_mask;
964 extern const struct arm64_cpu_capabilities arm64_errata[];
965 static const struct arm64_cpu_capabilities arm64_features[];
968 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
970 for (; caps->matches; caps++) {
971 if (WARN(caps->capability >= ARM64_NCAPS,
972 "Invalid capability %d\n", caps->capability))
974 if (WARN(cpucap_ptrs[caps->capability],
975 "Duplicate entry for capability %d\n",
978 cpucap_ptrs[caps->capability] = caps;
982 static void __init init_cpucap_indirect_list(void)
984 init_cpucap_indirect_list_from_array(arm64_features);
985 init_cpucap_indirect_list_from_array(arm64_errata);
988 static void __init setup_boot_cpu_capabilities(void);
990 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
992 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
993 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
994 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
995 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
996 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
997 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
998 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
999 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1000 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1001 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1002 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1003 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1004 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1005 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1006 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1007 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1008 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1009 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1010 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1011 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1012 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1015 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1017 /* Before we start using the tables, make sure it is sorted */
1020 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1021 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1022 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1023 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1024 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1025 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1026 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1027 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1028 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1029 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1030 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1031 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1032 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1033 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1034 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1035 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1037 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1038 init_32bit_cpu_features(&info->aarch32);
1040 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1041 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1042 info->reg_zcr = read_zcr_features();
1043 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1044 vec_init_vq_map(ARM64_VEC_SVE);
1047 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1048 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1049 info->reg_smcr = read_smcr_features();
1051 * We mask out SMPS since even if the hardware
1052 * supports priorities the kernel does not at present
1053 * and we block access to them.
1055 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1056 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1057 vec_init_vq_map(ARM64_VEC_SME);
1060 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1061 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1064 * Initialize the indirect array of CPU capabilities pointers before we
1065 * handle the boot CPU below.
1067 init_cpucap_indirect_list();
1070 * Detect and enable early CPU capabilities based on the boot CPU,
1071 * after we have initialised the CPU feature infrastructure.
1073 setup_boot_cpu_capabilities();
1076 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1078 const struct arm64_ftr_bits *ftrp;
1080 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1081 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1082 s64 ftr_new = arm64_ftr_value(ftrp, new);
1084 if (ftr_cur == ftr_new)
1086 /* Find a safe value */
1087 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1088 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1093 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1095 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1100 update_cpu_ftr_reg(regp, val);
1101 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1103 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1104 regp->name, boot, cpu, val);
1108 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1110 const struct arm64_ftr_bits *ftrp;
1111 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1116 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1117 if (ftrp->shift == field) {
1118 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1124 WARN_ON(!ftrp->width);
1127 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1128 struct cpuinfo_arm64 *boot)
1130 static bool boot_cpu_32bit_regs_overridden = false;
1132 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1135 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1138 boot->aarch32 = info->aarch32;
1139 init_32bit_cpu_features(&boot->aarch32);
1140 boot_cpu_32bit_regs_overridden = true;
1143 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1144 struct cpuinfo_32bit *boot)
1147 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1150 * If we don't have AArch32 at EL1, then relax the strictness of
1151 * EL1-dependent register fields to avoid spurious sanity check fails.
1153 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1154 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1155 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1156 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1157 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1158 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1159 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1162 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1163 info->reg_id_dfr0, boot->reg_id_dfr0);
1164 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1165 info->reg_id_dfr1, boot->reg_id_dfr1);
1166 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1167 info->reg_id_isar0, boot->reg_id_isar0);
1168 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1169 info->reg_id_isar1, boot->reg_id_isar1);
1170 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1171 info->reg_id_isar2, boot->reg_id_isar2);
1172 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1173 info->reg_id_isar3, boot->reg_id_isar3);
1174 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1175 info->reg_id_isar4, boot->reg_id_isar4);
1176 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1177 info->reg_id_isar5, boot->reg_id_isar5);
1178 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1179 info->reg_id_isar6, boot->reg_id_isar6);
1182 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1183 * ACTLR formats could differ across CPUs and therefore would have to
1184 * be trapped for virtualization anyway.
1186 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1187 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1188 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1189 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1190 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1191 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1192 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1193 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1194 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1195 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1196 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1197 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1198 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1199 info->reg_id_pfr0, boot->reg_id_pfr0);
1200 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1201 info->reg_id_pfr1, boot->reg_id_pfr1);
1202 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1203 info->reg_id_pfr2, boot->reg_id_pfr2);
1204 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1205 info->reg_mvfr0, boot->reg_mvfr0);
1206 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1207 info->reg_mvfr1, boot->reg_mvfr1);
1208 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1209 info->reg_mvfr2, boot->reg_mvfr2);
1215 * Update system wide CPU feature registers with the values from a
1216 * non-boot CPU. Also performs SANITY checks to make sure that there
1217 * aren't any insane variations from that of the boot CPU.
1219 void update_cpu_features(int cpu,
1220 struct cpuinfo_arm64 *info,
1221 struct cpuinfo_arm64 *boot)
1226 * The kernel can handle differing I-cache policies, but otherwise
1227 * caches should look identical. Userspace JITs will make use of
1230 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1231 info->reg_ctr, boot->reg_ctr);
1234 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1235 * could result in too much or too little memory being zeroed if a
1236 * process is preempted and migrated between CPUs.
1238 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1239 info->reg_dczid, boot->reg_dczid);
1241 /* If different, timekeeping will be broken (especially with KVM) */
1242 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1243 info->reg_cntfrq, boot->reg_cntfrq);
1246 * The kernel uses self-hosted debug features and expects CPUs to
1247 * support identical debug features. We presently need CTX_CMPs, WRPs,
1248 * and BRPs to be identical.
1249 * ID_AA64DFR1 is currently RES0.
1251 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1252 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1253 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1254 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1256 * Even in big.LITTLE, processors should be identical instruction-set
1259 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1260 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1261 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1262 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1263 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1264 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1267 * Differing PARange support is fine as long as all peripherals and
1268 * memory are mapped within the minimum PARange of all CPUs.
1269 * Linux should not care about secure memory.
1271 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1272 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1273 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1274 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1275 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1276 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1277 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1278 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1280 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1281 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1282 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1283 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1285 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1286 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1288 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1289 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1291 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1292 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1293 info->reg_zcr = read_zcr_features();
1294 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1295 info->reg_zcr, boot->reg_zcr);
1297 /* Probe vector lengths */
1298 if (!system_capabilities_finalized())
1299 vec_update_vq_map(ARM64_VEC_SVE);
1302 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1303 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1304 info->reg_smcr = read_smcr_features();
1306 * We mask out SMPS since even if the hardware
1307 * supports priorities the kernel does not at present
1308 * and we block access to them.
1310 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1311 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1312 info->reg_smcr, boot->reg_smcr);
1314 /* Probe vector lengths */
1315 if (!system_capabilities_finalized())
1316 vec_update_vq_map(ARM64_VEC_SME);
1320 * The kernel uses the LDGM/STGM instructions and the number of tags
1321 * they read/write depends on the GMID_EL1.BS field. Check that the
1322 * value is the same on all CPUs.
1324 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1325 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1326 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1327 info->reg_gmid, boot->reg_gmid);
1331 * If we don't have AArch32 at all then skip the checks entirely
1332 * as the register values may be UNKNOWN and we're not going to be
1333 * using them for anything.
1335 * This relies on a sanitised view of the AArch64 ID registers
1336 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1338 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1339 lazy_init_32bit_cpu_features(info, boot);
1340 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1345 * Mismatched CPU features are a recipe for disaster. Don't even
1346 * pretend to support them.
1349 pr_warn_once("Unsupported CPU feature variation detected.\n");
1350 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1354 u64 read_sanitised_ftr_reg(u32 id)
1356 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1360 return regp->sys_val;
1362 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1364 #define read_sysreg_case(r) \
1365 case r: val = read_sysreg_s(r); break;
1368 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1369 * Read the system register on the current CPU
1371 u64 __read_sysreg_by_encoding(u32 sys_id)
1373 struct arm64_ftr_reg *regp;
1377 read_sysreg_case(SYS_ID_PFR0_EL1);
1378 read_sysreg_case(SYS_ID_PFR1_EL1);
1379 read_sysreg_case(SYS_ID_PFR2_EL1);
1380 read_sysreg_case(SYS_ID_DFR0_EL1);
1381 read_sysreg_case(SYS_ID_DFR1_EL1);
1382 read_sysreg_case(SYS_ID_MMFR0_EL1);
1383 read_sysreg_case(SYS_ID_MMFR1_EL1);
1384 read_sysreg_case(SYS_ID_MMFR2_EL1);
1385 read_sysreg_case(SYS_ID_MMFR3_EL1);
1386 read_sysreg_case(SYS_ID_MMFR4_EL1);
1387 read_sysreg_case(SYS_ID_MMFR5_EL1);
1388 read_sysreg_case(SYS_ID_ISAR0_EL1);
1389 read_sysreg_case(SYS_ID_ISAR1_EL1);
1390 read_sysreg_case(SYS_ID_ISAR2_EL1);
1391 read_sysreg_case(SYS_ID_ISAR3_EL1);
1392 read_sysreg_case(SYS_ID_ISAR4_EL1);
1393 read_sysreg_case(SYS_ID_ISAR5_EL1);
1394 read_sysreg_case(SYS_ID_ISAR6_EL1);
1395 read_sysreg_case(SYS_MVFR0_EL1);
1396 read_sysreg_case(SYS_MVFR1_EL1);
1397 read_sysreg_case(SYS_MVFR2_EL1);
1399 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1400 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1401 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1402 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1403 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1404 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1405 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1406 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1407 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1408 read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1409 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1410 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1411 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1413 read_sysreg_case(SYS_CNTFRQ_EL0);
1414 read_sysreg_case(SYS_CTR_EL0);
1415 read_sysreg_case(SYS_DCZID_EL0);
1422 regp = get_arm64_ftr_reg(sys_id);
1424 val &= ~regp->override->mask;
1425 val |= (regp->override->val & regp->override->mask);
1431 #include <linux/irqchip/arm-gic-v3.h>
1434 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1440 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1442 int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1446 return val >= entry->min_field_value;
1450 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1452 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1453 if (scope == SCOPE_SYSTEM)
1454 return read_sanitised_ftr_reg(entry->sys_reg);
1456 return __read_sysreg_by_encoding(entry->sys_reg);
1460 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1463 struct arm64_ftr_reg *regp;
1464 u64 val = read_scoped_sysreg(entry, scope);
1466 regp = get_arm64_ftr_reg(entry->sys_reg);
1470 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1472 entry->field_width);
1476 return feature_matches(val, entry);
1480 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1482 u64 val = read_scoped_sysreg(entry, scope);
1483 return feature_matches(val, entry);
1486 const struct cpumask *system_32bit_el0_cpumask(void)
1488 if (!system_supports_32bit_el0())
1489 return cpu_none_mask;
1491 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1492 return cpu_32bit_el0_mask;
1494 return cpu_possible_mask;
1497 static int __init parse_32bit_el0_param(char *str)
1499 allow_mismatched_32bit_el0 = true;
1502 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1504 static ssize_t aarch32_el0_show(struct device *dev,
1505 struct device_attribute *attr, char *buf)
1507 const struct cpumask *mask = system_32bit_el0_cpumask();
1509 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1511 static const DEVICE_ATTR_RO(aarch32_el0);
1513 static int __init aarch32_el0_sysfs_init(void)
1515 struct device *dev_root;
1518 if (!allow_mismatched_32bit_el0)
1521 dev_root = bus_get_dev_root(&cpu_subsys);
1523 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1524 put_device(dev_root);
1528 device_initcall(aarch32_el0_sysfs_init);
1530 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1532 if (!has_cpuid_feature(entry, scope))
1533 return allow_mismatched_32bit_el0;
1535 if (scope == SCOPE_SYSTEM)
1536 pr_info("detected: 32-bit EL0 Support\n");
1541 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1545 if (!has_cpuid_feature(entry, scope))
1548 has_sre = gic_enable_sre();
1550 pr_warn_once("%s present but disabled by higher exception level\n",
1556 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1558 u32 midr = read_cpuid_id();
1560 /* Cavium ThunderX pass 1.x and 2.x */
1561 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1562 MIDR_CPU_VAR_REV(0, 0),
1563 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1566 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1568 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1570 return cpuid_feature_extract_signed_field(pfr0,
1571 ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1574 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1579 if (scope == SCOPE_SYSTEM)
1580 ctr = arm64_ftr_reg_ctrel0.sys_val;
1582 ctr = read_cpuid_effective_cachetype();
1584 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1587 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1590 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1591 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1592 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1595 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1596 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1599 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1604 if (scope == SCOPE_SYSTEM)
1605 ctr = arm64_ftr_reg_ctrel0.sys_val;
1607 ctr = read_cpuid_cachetype();
1609 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1612 static bool __maybe_unused
1613 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1616 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1617 * may share TLB entries with a CPU stuck in the crashed
1620 if (is_kdump_kernel())
1623 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1626 return has_cpuid_feature(entry, scope);
1630 * This check is triggered during the early boot before the cpufeature
1631 * is initialised. Checking the status on the local CPU allows the boot
1632 * CPU to detect the need for non-global mappings and thus avoiding a
1633 * pagetable re-write after all the CPUs are booted. This check will be
1634 * anyway run on individual CPUs, allowing us to get the consistent
1635 * state once the SMP CPUs are up and thus make the switch to non-global
1636 * mappings if required.
1638 bool kaslr_requires_kpti(void)
1640 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1644 * E0PD does a similar job to KPTI so can be used instead
1647 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1648 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1649 if (cpuid_feature_extract_unsigned_field(mmfr2,
1650 ID_AA64MMFR2_EL1_E0PD_SHIFT))
1655 * Systems affected by Cavium erratum 24756 are incompatible
1658 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1659 extern const struct midr_range cavium_erratum_27456_cpus[];
1661 if (is_midr_in_range_list(read_cpuid_id(),
1662 cavium_erratum_27456_cpus))
1666 return kaslr_enabled();
1669 static bool __meltdown_safe = true;
1670 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1672 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1675 /* List of CPUs that are not vulnerable and don't need KPTI */
1676 static const struct midr_range kpti_safe_list[] = {
1677 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1678 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1679 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1680 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1681 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1682 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1683 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1684 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1685 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1686 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1687 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1688 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1689 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1690 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1691 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1694 char const *str = "kpti command line option";
1697 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1699 /* Defer to CPU feature registers */
1700 if (has_cpuid_feature(entry, scope))
1701 meltdown_safe = true;
1704 __meltdown_safe = false;
1707 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1708 * ThunderX leads to apparent I-cache corruption of kernel text, which
1709 * ends as well as you might imagine. Don't even try. We cannot rely
1710 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1711 * because cpucap detection order may change. However, since we know
1712 * affected CPUs are always in a homogeneous configuration, it is
1713 * safe to rely on this_cpu_has_cap() here.
1715 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1716 str = "ARM64_WORKAROUND_CAVIUM_27456";
1720 /* Useful for KASLR robustness */
1721 if (kaslr_requires_kpti()) {
1722 if (!__kpti_forced) {
1728 if (cpu_mitigations_off() && !__kpti_forced) {
1729 str = "mitigations=off";
1733 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1734 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1739 if (__kpti_forced) {
1740 pr_info_once("kernel page table isolation forced %s by %s\n",
1741 __kpti_forced > 0 ? "ON" : "OFF", str);
1742 return __kpti_forced > 0;
1745 return !meltdown_safe;
1748 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1749 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1752 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1753 phys_addr_t size, pgprot_t prot,
1754 phys_addr_t (*pgtable_alloc)(int), int flags);
1756 static phys_addr_t kpti_ng_temp_alloc;
1758 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1760 kpti_ng_temp_alloc -= PAGE_SIZE;
1761 return kpti_ng_temp_alloc;
1765 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1767 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1768 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1769 kpti_remap_fn *remap_fn;
1771 int cpu = smp_processor_id();
1772 int levels = CONFIG_PGTABLE_LEVELS;
1773 int order = order_base_2(levels);
1774 u64 kpti_ng_temp_pgd_pa = 0;
1775 pgd_t *kpti_ng_temp_pgd;
1778 if (__this_cpu_read(this_cpu_vector) == vectors) {
1779 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1781 __this_cpu_write(this_cpu_vector, v);
1785 * We don't need to rewrite the page-tables if either we've done
1786 * it already or we have KASLR enabled and therefore have not
1787 * created any global mappings at all.
1789 if (arm64_use_ng_mappings)
1792 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1795 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1796 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1797 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1800 // Create a minimal page table hierarchy that permits us to map
1801 // the swapper page tables temporarily as we traverse them.
1803 // The physical pages are laid out as follows:
1805 // +--------+-/-------+-/------ +-\\--------+
1806 // : PTE[] : | PMD[] : | PUD[] : || PGD[] :
1807 // +--------+-\-------+-\------ +-//--------+
1809 // The first page is mapped into this hierarchy at a PMD_SHIFT
1810 // aligned virtual address, so that we can manipulate the PTE
1811 // level entries while the mapping is active. The first entry
1812 // covers the PTE[] page itself, the remaining entries are free
1813 // to be used as a ad-hoc fixmap.
1815 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1816 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1817 kpti_ng_pgd_alloc, 0);
1820 cpu_install_idmap();
1821 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1822 cpu_uninstall_idmap();
1825 free_pages(alloc, order);
1826 arm64_use_ng_mappings = true;
1831 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1834 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1836 static int __init parse_kpti(char *str)
1839 int ret = kstrtobool(str, &enabled);
1844 __kpti_forced = enabled ? 1 : -1;
1847 early_param("kpti", parse_kpti);
1849 #ifdef CONFIG_ARM64_HW_AFDBM
1850 static inline void __cpu_enable_hw_dbm(void)
1852 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1854 write_sysreg(tcr, tcr_el1);
1856 local_flush_tlb_all();
1859 static bool cpu_has_broken_dbm(void)
1861 /* List of CPUs which have broken DBM support. */
1862 static const struct midr_range cpus[] = {
1863 #ifdef CONFIG_ARM64_ERRATUM_1024718
1864 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1865 /* Kryo4xx Silver (rdpe => r1p0) */
1866 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1868 #ifdef CONFIG_ARM64_ERRATUM_2051678
1869 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1874 return is_midr_in_range_list(read_cpuid_id(), cpus);
1877 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1879 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1880 !cpu_has_broken_dbm();
1883 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1885 if (cpu_can_use_dbm(cap))
1886 __cpu_enable_hw_dbm();
1889 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1892 static bool detected = false;
1894 * DBM is a non-conflicting feature. i.e, the kernel can safely
1895 * run a mix of CPUs with and without the feature. So, we
1896 * unconditionally enable the capability to allow any late CPU
1897 * to use the feature. We only enable the control bits on the
1898 * CPU, if it actually supports.
1900 * We have to make sure we print the "feature" detection only
1901 * when at least one CPU actually uses it. So check if this CPU
1902 * can actually use it and print the message exactly once.
1904 * This is safe as all CPUs (including secondary CPUs - due to the
1905 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1906 * goes through the "matches" check exactly once. Also if a CPU
1907 * matches the criteria, it is guaranteed that the CPU will turn
1908 * the DBM on, as the capability is unconditionally enabled.
1910 if (!detected && cpu_can_use_dbm(cap)) {
1912 pr_info("detected: Hardware dirty bit management\n");
1920 #ifdef CONFIG_ARM64_AMU_EXTN
1923 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1924 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1925 * information regarding all the events that it supports. When a CPU bit is
1926 * set in the cpumask, the user of this feature can only rely on the presence
1927 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1928 * counters are enabled or access to these counters is enabled by code
1929 * executed at higher exception levels (firmware).
1931 static struct cpumask amu_cpus __read_mostly;
1933 bool cpu_has_amu_feat(int cpu)
1935 return cpumask_test_cpu(cpu, &amu_cpus);
1938 int get_cpu_with_amu_feat(void)
1940 return cpumask_any(&amu_cpus);
1943 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1945 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1946 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1947 smp_processor_id());
1948 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1950 /* 0 reference values signal broken/disabled counters */
1951 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1952 update_freq_counters_refs();
1956 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1960 * The AMU extension is a non-conflicting feature: the kernel can
1961 * safely run a mix of CPUs with and without support for the
1962 * activity monitors extension. Therefore, unconditionally enable
1963 * the capability to allow any late CPU to use the feature.
1965 * With this feature unconditionally enabled, the cpu_enable
1966 * function will be called for all CPUs that match the criteria,
1967 * including secondary and hotplugged, marking this feature as
1968 * present on that respective CPU. The enable function will also
1969 * print a detection message.
1975 int get_cpu_with_amu_feat(void)
1981 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1983 return is_kernel_in_hyp_mode();
1986 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1989 * Copy register values that aren't redirected by hardware.
1991 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1992 * this value to tpidr_el2 before we patch the code. Once we've done
1993 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1996 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1997 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2000 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2003 if (kvm_get_mode() != KVM_MODE_NV)
2006 if (!has_cpuid_feature(cap, scope)) {
2007 pr_warn("unavailable: %s\n", cap->desc);
2014 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2019 val = read_sysreg(id_aa64mmfr1_el1);
2020 if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
2023 val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
2024 return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
2027 #ifdef CONFIG_ARM64_PAN
2028 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2031 * We modify PSTATE. This won't work from irq context as the PSTATE
2032 * is discarded once we return from the exception.
2034 WARN_ON_ONCE(in_interrupt());
2036 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2039 #endif /* CONFIG_ARM64_PAN */
2041 #ifdef CONFIG_ARM64_RAS_EXTN
2042 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2044 /* Firmware may have left a deferred SError in this register. */
2045 write_sysreg_s(0, SYS_DISR_EL1);
2047 #endif /* CONFIG_ARM64_RAS_EXTN */
2049 #ifdef CONFIG_ARM64_PTR_AUTH
2050 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2052 int boot_val, sec_val;
2054 /* We don't expect to be called with SCOPE_SYSTEM */
2055 WARN_ON(scope == SCOPE_SYSTEM);
2057 * The ptr-auth feature levels are not intercompatible with lower
2058 * levels. Hence we must match ptr-auth feature level of the secondary
2059 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2060 * from the sanitised register whereas direct register read is done for
2061 * the secondary CPUs.
2062 * The sanitised feature state is guaranteed to match that of the
2063 * boot CPU as a mismatched secondary CPU is parked before it gets
2064 * a chance to update the state, with the capability.
2066 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2067 entry->field_pos, entry->sign);
2068 if (scope & SCOPE_BOOT_CPU)
2069 return boot_val >= entry->min_field_value;
2070 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2071 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2072 entry->field_pos, entry->sign);
2073 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2076 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2079 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2080 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2081 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2083 return apa || apa3 || api;
2086 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2089 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2090 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2091 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2093 return gpa || gpa3 || gpi;
2095 #endif /* CONFIG_ARM64_PTR_AUTH */
2097 #ifdef CONFIG_ARM64_E0PD
2098 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2100 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2101 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2103 #endif /* CONFIG_ARM64_E0PD */
2105 #ifdef CONFIG_ARM64_PSEUDO_NMI
2106 static bool enable_pseudo_nmi;
2108 static int __init early_enable_pseudo_nmi(char *p)
2110 return kstrtobool(p, &enable_pseudo_nmi);
2112 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2114 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2118 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2119 * feature, so will be detected earlier.
2121 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2122 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2125 return enable_pseudo_nmi;
2128 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2132 * If we're not using priority masking then we won't be poking PMR_EL1,
2133 * and there's no need to relax synchronization of writes to it, and
2134 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2137 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2138 * feature, so will be detected earlier.
2140 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2141 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2145 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2146 * hint for interrupt distribution, a DSB is not necessary when
2147 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2149 * Linux itself doesn't use 1:N distribution, so has no need to
2150 * set PMHE. The only reason to have it set is if EL3 requires it
2151 * (and we can't change it).
2153 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2157 #ifdef CONFIG_ARM64_BTI
2158 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2161 * Use of X16/X17 for tail-calls and trampolines that jump to
2162 * function entry points using BR is a requirement for
2163 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2164 * So, be strict and forbid other BRs using other registers to
2165 * jump onto a PACIxSP instruction:
2167 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2170 #endif /* CONFIG_ARM64_BTI */
2172 #ifdef CONFIG_ARM64_MTE
2173 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2175 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2180 * Clear the tags in the zero page. This needs to be done via the
2181 * linear map which has the Tagged attribute.
2183 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2184 mte_clear_page_tags(lm_alias(empty_zero_page));
2185 set_page_mte_tagged(ZERO_PAGE(0));
2188 kasan_init_hw_tags_cpu();
2190 #endif /* CONFIG_ARM64_MTE */
2192 static void elf_hwcap_fixup(void)
2194 #ifdef CONFIG_ARM64_ERRATUM_1742098
2195 if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2196 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2197 #endif /* ARM64_ERRATUM_1742098 */
2201 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2203 return kvm_get_mode() == KVM_MODE_PROTECTED;
2205 #endif /* CONFIG_KVM */
2207 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2209 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2212 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2217 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2219 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2222 /* Internal helper functions to match cpu capability type */
2224 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2226 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2230 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2232 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2236 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2238 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2241 static const struct arm64_cpu_capabilities arm64_features[] = {
2243 .capability = ARM64_ALWAYS_BOOT,
2244 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2245 .matches = has_always,
2248 .capability = ARM64_ALWAYS_SYSTEM,
2249 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2250 .matches = has_always,
2253 .desc = "GIC system register CPU interface",
2254 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2255 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2256 .matches = has_useable_gicv3_cpuif,
2257 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2260 .desc = "Enhanced Counter Virtualization",
2261 .capability = ARM64_HAS_ECV,
2262 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2263 .matches = has_cpuid_feature,
2264 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2267 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2268 .capability = ARM64_HAS_ECV_CNTPOFF,
2269 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2270 .matches = has_cpuid_feature,
2271 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2273 #ifdef CONFIG_ARM64_PAN
2275 .desc = "Privileged Access Never",
2276 .capability = ARM64_HAS_PAN,
2277 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2278 .matches = has_cpuid_feature,
2279 .cpu_enable = cpu_enable_pan,
2280 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2282 #endif /* CONFIG_ARM64_PAN */
2283 #ifdef CONFIG_ARM64_EPAN
2285 .desc = "Enhanced Privileged Access Never",
2286 .capability = ARM64_HAS_EPAN,
2287 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2288 .matches = has_cpuid_feature,
2289 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2291 #endif /* CONFIG_ARM64_EPAN */
2292 #ifdef CONFIG_ARM64_LSE_ATOMICS
2294 .desc = "LSE atomic instructions",
2295 .capability = ARM64_HAS_LSE_ATOMICS,
2296 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2297 .matches = has_cpuid_feature,
2298 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2300 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2302 .desc = "Software prefetching using PRFM",
2303 .capability = ARM64_HAS_NO_HW_PREFETCH,
2304 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2305 .matches = has_no_hw_prefetch,
2308 .desc = "Virtualization Host Extensions",
2309 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2310 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2311 .matches = runs_at_el2,
2312 .cpu_enable = cpu_copy_el2regs,
2315 .desc = "Nested Virtualization Support",
2316 .capability = ARM64_HAS_NESTED_VIRT,
2317 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2318 .matches = has_nested_virt_support,
2319 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, IMP)
2322 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2323 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2324 .matches = has_32bit_el0,
2325 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2329 .desc = "32-bit EL1 Support",
2330 .capability = ARM64_HAS_32BIT_EL1,
2331 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2332 .matches = has_cpuid_feature,
2333 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2336 .desc = "Protected KVM",
2337 .capability = ARM64_KVM_PROTECTED_MODE,
2338 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2339 .matches = is_kvm_protected_mode,
2342 .desc = "HCRX_EL2 register",
2343 .capability = ARM64_HAS_HCX,
2344 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2345 .matches = has_cpuid_feature,
2346 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2350 .desc = "Kernel page table isolation (KPTI)",
2351 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2352 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2353 .cpu_enable = kpti_install_ng_mappings,
2354 .matches = unmap_kernel_at_el0,
2356 * The ID feature fields below are used to indicate that
2357 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2360 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2363 /* FP/SIMD is not implemented */
2364 .capability = ARM64_HAS_NO_FPSIMD,
2365 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2366 .min_field_value = 0,
2367 .matches = has_no_fpsimd,
2369 #ifdef CONFIG_ARM64_PMEM
2371 .desc = "Data cache clean to Point of Persistence",
2372 .capability = ARM64_HAS_DCPOP,
2373 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2374 .matches = has_cpuid_feature,
2375 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2378 .desc = "Data cache clean to Point of Deep Persistence",
2379 .capability = ARM64_HAS_DCPODP,
2380 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2381 .matches = has_cpuid_feature,
2382 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2385 #ifdef CONFIG_ARM64_SVE
2387 .desc = "Scalable Vector Extension",
2388 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2389 .capability = ARM64_SVE,
2390 .cpu_enable = sve_kernel_enable,
2391 .matches = has_cpuid_feature,
2392 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2394 #endif /* CONFIG_ARM64_SVE */
2395 #ifdef CONFIG_ARM64_RAS_EXTN
2397 .desc = "RAS Extension Support",
2398 .capability = ARM64_HAS_RAS_EXTN,
2399 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2400 .matches = has_cpuid_feature,
2401 .cpu_enable = cpu_clear_disr,
2402 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2404 #endif /* CONFIG_ARM64_RAS_EXTN */
2405 #ifdef CONFIG_ARM64_AMU_EXTN
2408 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2409 * Therefore, don't provide .desc as we don't want the detection
2410 * message to be shown until at least one CPU is detected to
2411 * support the feature.
2413 .capability = ARM64_HAS_AMU_EXTN,
2414 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2416 .cpu_enable = cpu_amu_enable,
2417 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2419 #endif /* CONFIG_ARM64_AMU_EXTN */
2421 .desc = "Data cache clean to the PoU not required for I/D coherence",
2422 .capability = ARM64_HAS_CACHE_IDC,
2423 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2424 .matches = has_cache_idc,
2425 .cpu_enable = cpu_emulate_effective_ctr,
2428 .desc = "Instruction cache invalidation not required for I/D coherence",
2429 .capability = ARM64_HAS_CACHE_DIC,
2430 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2431 .matches = has_cache_dic,
2434 .desc = "Stage-2 Force Write-Back",
2435 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2436 .capability = ARM64_HAS_STAGE2_FWB,
2437 .matches = has_cpuid_feature,
2438 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2441 .desc = "ARMv8.4 Translation Table Level",
2442 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2443 .capability = ARM64_HAS_ARMv8_4_TTL,
2444 .matches = has_cpuid_feature,
2445 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2448 .desc = "TLB range maintenance instructions",
2449 .capability = ARM64_HAS_TLB_RANGE,
2450 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2451 .matches = has_cpuid_feature,
2452 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2454 #ifdef CONFIG_ARM64_HW_AFDBM
2457 * Since we turn this on always, we don't want the user to
2458 * think that the feature is available when it may not be.
2459 * So hide the description.
2461 * .desc = "Hardware pagetable Dirty Bit Management",
2464 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2465 .capability = ARM64_HW_DBM,
2466 .matches = has_hw_dbm,
2467 .cpu_enable = cpu_enable_hw_dbm,
2468 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2472 .desc = "CRC32 instructions",
2473 .capability = ARM64_HAS_CRC32,
2474 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2475 .matches = has_cpuid_feature,
2476 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2479 .desc = "Speculative Store Bypassing Safe (SSBS)",
2480 .capability = ARM64_SSBS,
2481 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2482 .matches = has_cpuid_feature,
2483 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2485 #ifdef CONFIG_ARM64_CNP
2487 .desc = "Common not Private translations",
2488 .capability = ARM64_HAS_CNP,
2489 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2490 .matches = has_useable_cnp,
2491 .cpu_enable = cpu_enable_cnp,
2492 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2496 .desc = "Speculation barrier (SB)",
2497 .capability = ARM64_HAS_SB,
2498 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2499 .matches = has_cpuid_feature,
2500 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2502 #ifdef CONFIG_ARM64_PTR_AUTH
2504 .desc = "Address authentication (architected QARMA5 algorithm)",
2505 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2506 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2507 .matches = has_address_auth_cpucap,
2508 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2511 .desc = "Address authentication (architected QARMA3 algorithm)",
2512 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2513 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2514 .matches = has_address_auth_cpucap,
2515 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2518 .desc = "Address authentication (IMP DEF algorithm)",
2519 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2520 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2521 .matches = has_address_auth_cpucap,
2522 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2525 .capability = ARM64_HAS_ADDRESS_AUTH,
2526 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2527 .matches = has_address_auth_metacap,
2530 .desc = "Generic authentication (architected QARMA5 algorithm)",
2531 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2532 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2533 .matches = has_cpuid_feature,
2534 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2537 .desc = "Generic authentication (architected QARMA3 algorithm)",
2538 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2539 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2540 .matches = has_cpuid_feature,
2541 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2544 .desc = "Generic authentication (IMP DEF algorithm)",
2545 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2546 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2547 .matches = has_cpuid_feature,
2548 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2551 .capability = ARM64_HAS_GENERIC_AUTH,
2552 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2553 .matches = has_generic_auth,
2555 #endif /* CONFIG_ARM64_PTR_AUTH */
2556 #ifdef CONFIG_ARM64_PSEUDO_NMI
2559 * Depends on having GICv3
2561 .desc = "IRQ priority masking",
2562 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2563 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2564 .matches = can_use_gic_priorities,
2568 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2570 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2571 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2572 .matches = has_gic_prio_relaxed_sync,
2575 #ifdef CONFIG_ARM64_E0PD
2578 .capability = ARM64_HAS_E0PD,
2579 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2580 .cpu_enable = cpu_enable_e0pd,
2581 .matches = has_cpuid_feature,
2582 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2586 .desc = "Random Number Generator",
2587 .capability = ARM64_HAS_RNG,
2588 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2589 .matches = has_cpuid_feature,
2590 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2592 #ifdef CONFIG_ARM64_BTI
2594 .desc = "Branch Target Identification",
2595 .capability = ARM64_BTI,
2596 #ifdef CONFIG_ARM64_BTI_KERNEL
2597 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2599 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2601 .matches = has_cpuid_feature,
2602 .cpu_enable = bti_enable,
2603 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2606 #ifdef CONFIG_ARM64_MTE
2608 .desc = "Memory Tagging Extension",
2609 .capability = ARM64_MTE,
2610 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2611 .matches = has_cpuid_feature,
2612 .cpu_enable = cpu_enable_mte,
2613 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2616 .desc = "Asymmetric MTE Tag Check Fault",
2617 .capability = ARM64_MTE_ASYMM,
2618 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2619 .matches = has_cpuid_feature,
2620 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2622 #endif /* CONFIG_ARM64_MTE */
2624 .desc = "RCpc load-acquire (LDAPR)",
2625 .capability = ARM64_HAS_LDAPR,
2626 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2627 .matches = has_cpuid_feature,
2628 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2631 .desc = "Fine Grained Traps",
2632 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2633 .capability = ARM64_HAS_FGT,
2634 .matches = has_cpuid_feature,
2635 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2637 #ifdef CONFIG_ARM64_SME
2639 .desc = "Scalable Matrix Extension",
2640 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2641 .capability = ARM64_SME,
2642 .matches = has_cpuid_feature,
2643 .cpu_enable = sme_kernel_enable,
2644 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2646 /* FA64 should be sorted after the base SME capability */
2649 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2650 .capability = ARM64_SME_FA64,
2651 .matches = has_cpuid_feature,
2652 .cpu_enable = fa64_kernel_enable,
2653 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2657 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2658 .capability = ARM64_SME2,
2659 .matches = has_cpuid_feature,
2660 .cpu_enable = sme2_kernel_enable,
2661 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2663 #endif /* CONFIG_ARM64_SME */
2665 .desc = "WFx with timeout",
2666 .capability = ARM64_HAS_WFXT,
2667 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2668 .matches = has_cpuid_feature,
2669 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2672 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2673 .capability = ARM64_HAS_TIDCP1,
2674 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2675 .matches = has_cpuid_feature,
2676 .cpu_enable = cpu_trap_el0_impdef,
2677 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2680 .desc = "Data independent timing control (DIT)",
2681 .capability = ARM64_HAS_DIT,
2682 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2683 .matches = has_cpuid_feature,
2684 .cpu_enable = cpu_enable_dit,
2685 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2688 .desc = "Memory Copy and Memory Set instructions",
2689 .capability = ARM64_HAS_MOPS,
2690 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2691 .matches = has_cpuid_feature,
2692 .cpu_enable = cpu_enable_mops,
2693 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2696 .capability = ARM64_HAS_TCR2,
2697 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2698 .matches = has_cpuid_feature,
2699 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2702 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2703 .capability = ARM64_HAS_S1PIE,
2704 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2705 .matches = has_cpuid_feature,
2706 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2709 .desc = "VHE for hypervisor only",
2710 .capability = ARM64_KVM_HVHE,
2711 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2712 .matches = hvhe_possible,
2715 .desc = "Enhanced Virtualization Traps",
2716 .capability = ARM64_HAS_EVT,
2717 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2718 .matches = has_cpuid_feature,
2719 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2724 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
2725 .matches = has_user_cpuid_feature, \
2726 ARM64_CPUID_FIELDS(reg, field, min_value)
2728 #define __HWCAP_CAP(name, cap_type, cap) \
2730 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2731 .hwcap_type = cap_type, \
2734 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
2736 __HWCAP_CAP(#cap, cap_type, cap) \
2737 HWCAP_CPUID_MATCH(reg, field, min_value) \
2740 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2742 __HWCAP_CAP(#cap, cap_type, cap) \
2743 .matches = cpucap_multi_entry_cap_matches, \
2744 .match_list = list, \
2747 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2749 __HWCAP_CAP(#cap, cap_type, cap) \
2753 #ifdef CONFIG_ARM64_PTR_AUTH
2754 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2756 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2759 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2762 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2767 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2769 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2772 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2775 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2781 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2782 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2783 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2784 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2785 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2786 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2787 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2788 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2789 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2790 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2791 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2792 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2793 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2794 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2795 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2796 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2797 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2798 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2799 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2800 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2801 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2802 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2803 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2804 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2805 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2806 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2807 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2808 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2809 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2810 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2811 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2812 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2813 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2814 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2815 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2816 #ifdef CONFIG_ARM64_SVE
2817 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2818 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2819 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2820 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2821 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2822 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2823 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2824 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2825 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2826 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2827 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2828 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2829 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2831 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2832 #ifdef CONFIG_ARM64_BTI
2833 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2835 #ifdef CONFIG_ARM64_PTR_AUTH
2836 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2837 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2839 #ifdef CONFIG_ARM64_MTE
2840 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2841 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2842 #endif /* CONFIG_ARM64_MTE */
2843 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2844 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2845 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2846 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2847 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2848 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2849 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2850 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
2851 #ifdef CONFIG_ARM64_SME
2852 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2853 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2854 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2855 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2856 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2857 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2858 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2859 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2860 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2861 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2862 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2863 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2864 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2865 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2866 #endif /* CONFIG_ARM64_SME */
2870 #ifdef CONFIG_COMPAT
2871 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2874 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2875 * in line with that of arm32 as in vfp_init(). We make sure that the
2876 * check is future proof, by making sure value is non-zero.
2880 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2881 if (scope == SCOPE_SYSTEM)
2882 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2884 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2886 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2887 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2888 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2892 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2893 #ifdef CONFIG_COMPAT
2894 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2895 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2896 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2897 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2898 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2899 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2900 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2901 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2902 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2903 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2904 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2905 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2906 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2907 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2908 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2909 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2910 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2911 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2916 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2918 switch (cap->hwcap_type) {
2920 cpu_set_feature(cap->hwcap);
2922 #ifdef CONFIG_COMPAT
2923 case CAP_COMPAT_HWCAP:
2924 compat_elf_hwcap |= (u32)cap->hwcap;
2926 case CAP_COMPAT_HWCAP2:
2927 compat_elf_hwcap2 |= (u32)cap->hwcap;
2936 /* Check if we have a particular HWCAP enabled */
2937 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2941 switch (cap->hwcap_type) {
2943 rc = cpu_have_feature(cap->hwcap);
2945 #ifdef CONFIG_COMPAT
2946 case CAP_COMPAT_HWCAP:
2947 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2949 case CAP_COMPAT_HWCAP2:
2950 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2961 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2963 /* We support emulation of accesses to CPU ID feature registers */
2964 cpu_set_named_feature(CPUID);
2965 for (; hwcaps->matches; hwcaps++)
2966 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2967 cap_set_elf_hwcap(hwcaps);
2970 static void update_cpu_capabilities(u16 scope_mask)
2973 const struct arm64_cpu_capabilities *caps;
2975 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2976 for (i = 0; i < ARM64_NCAPS; i++) {
2977 caps = cpucap_ptrs[i];
2978 if (!caps || !(caps->type & scope_mask) ||
2979 cpus_have_cap(caps->capability) ||
2980 !caps->matches(caps, cpucap_default_scope(caps)))
2984 pr_info("detected: %s\n", caps->desc);
2986 __set_bit(caps->capability, system_cpucaps);
2988 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2989 set_bit(caps->capability, boot_cpucaps);
2994 * Enable all the available capabilities on this CPU. The capabilities
2995 * with BOOT_CPU scope are handled separately and hence skipped here.
2997 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3000 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3002 for_each_available_cap(i) {
3003 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3008 if (!(cap->type & non_boot_scope))
3011 if (cap->cpu_enable)
3012 cap->cpu_enable(cap);
3018 * Run through the enabled capabilities and enable() it on all active
3021 static void __init enable_cpu_capabilities(u16 scope_mask)
3024 const struct arm64_cpu_capabilities *caps;
3027 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3028 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3030 for (i = 0; i < ARM64_NCAPS; i++) {
3033 caps = cpucap_ptrs[i];
3034 if (!caps || !(caps->type & scope_mask))
3036 num = caps->capability;
3037 if (!cpus_have_cap(num))
3040 if (boot_scope && caps->cpu_enable)
3042 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3043 * before any secondary CPU boots. Thus, each secondary
3044 * will enable the capability as appropriate via
3045 * check_local_cpu_capabilities(). The only exception is
3046 * the boot CPU, for which the capability must be
3047 * enabled here. This approach avoids costly
3048 * stop_machine() calls for this case.
3050 caps->cpu_enable(caps);
3054 * For all non-boot scope capabilities, use stop_machine()
3055 * as it schedules the work allowing us to modify PSTATE,
3056 * instead of on_each_cpu() which uses an IPI, giving us a
3057 * PSTATE that disappears when we return.
3060 stop_machine(cpu_enable_non_boot_scope_capabilities,
3061 NULL, cpu_online_mask);
3065 * Run through the list of capabilities to check for conflicts.
3066 * If the system has already detected a capability, take necessary
3067 * action on this CPU.
3069 static void verify_local_cpu_caps(u16 scope_mask)
3072 bool cpu_has_cap, system_has_cap;
3073 const struct arm64_cpu_capabilities *caps;
3075 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3077 for (i = 0; i < ARM64_NCAPS; i++) {
3078 caps = cpucap_ptrs[i];
3079 if (!caps || !(caps->type & scope_mask))
3082 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3083 system_has_cap = cpus_have_cap(caps->capability);
3085 if (system_has_cap) {
3087 * Check if the new CPU misses an advertised feature,
3088 * which is not safe to miss.
3090 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3093 * We have to issue cpu_enable() irrespective of
3094 * whether the CPU has it or not, as it is enabeld
3095 * system wide. It is upto the call back to take
3096 * appropriate action on this CPU.
3098 if (caps->cpu_enable)
3099 caps->cpu_enable(caps);
3102 * Check if the CPU has this capability if it isn't
3103 * safe to have when the system doesn't.
3105 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3110 if (i < ARM64_NCAPS) {
3111 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3112 smp_processor_id(), caps->capability,
3113 caps->desc, system_has_cap, cpu_has_cap);
3115 if (cpucap_panic_on_conflict(caps))
3123 * Check for CPU features that are used in early boot
3124 * based on the Boot CPU value.
3126 static void check_early_cpu_features(void)
3128 verify_cpu_asid_bits();
3130 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3134 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3137 for (; caps->matches; caps++)
3138 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3139 pr_crit("CPU%d: missing HWCAP: %s\n",
3140 smp_processor_id(), caps->desc);
3145 static void verify_local_elf_hwcaps(void)
3147 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3149 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3150 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3153 static void verify_sve_features(void)
3155 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3156 u64 zcr = read_zcr_features();
3158 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3159 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3161 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3162 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3163 smp_processor_id());
3167 /* Add checks on other ZCR bits here if necessary */
3170 static void verify_sme_features(void)
3172 u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3173 u64 smcr = read_smcr_features();
3175 unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3176 unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3178 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3179 pr_crit("CPU%d: SME: vector length support mismatch\n",
3180 smp_processor_id());
3184 /* Add checks on other SMCR bits here if necessary */
3187 static void verify_hyp_capabilities(void)
3189 u64 safe_mmfr1, mmfr0, mmfr1;
3190 int parange, ipa_max;
3191 unsigned int safe_vmid_bits, vmid_bits;
3193 if (!IS_ENABLED(CONFIG_KVM))
3196 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3197 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3198 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3200 /* Verify VMID bits */
3201 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3202 vmid_bits = get_vmid_bits(mmfr1);
3203 if (vmid_bits < safe_vmid_bits) {
3204 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3208 /* Verify IPA range */
3209 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3210 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3211 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3212 if (ipa_max < get_kvm_ipa_limit()) {
3213 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3219 * Run through the enabled system capabilities and enable() it on this CPU.
3220 * The capabilities were decided based on the available CPUs at the boot time.
3221 * Any new CPU should match the system wide status of the capability. If the
3222 * new CPU doesn't have a capability which the system now has enabled, we
3223 * cannot do anything to fix it up and could cause unexpected failures. So
3226 static void verify_local_cpu_capabilities(void)
3229 * The capabilities with SCOPE_BOOT_CPU are checked from
3230 * check_early_cpu_features(), as they need to be verified
3231 * on all secondary CPUs.
3233 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3234 verify_local_elf_hwcaps();
3236 if (system_supports_sve())
3237 verify_sve_features();
3239 if (system_supports_sme())
3240 verify_sme_features();
3242 if (is_hyp_mode_available())
3243 verify_hyp_capabilities();
3246 void check_local_cpu_capabilities(void)
3249 * All secondary CPUs should conform to the early CPU features
3250 * in use by the kernel based on boot CPU.
3252 check_early_cpu_features();
3255 * If we haven't finalised the system capabilities, this CPU gets
3256 * a chance to update the errata work arounds and local features.
3257 * Otherwise, this CPU should verify that it has all the system
3258 * advertised capabilities.
3260 if (!system_capabilities_finalized())
3261 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3263 verify_local_cpu_capabilities();
3266 static void __init setup_boot_cpu_capabilities(void)
3268 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3269 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3270 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3271 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3274 bool this_cpu_has_cap(unsigned int n)
3276 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3277 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3280 return cap->matches(cap, SCOPE_LOCAL_CPU);
3285 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3288 * This helper function is used in a narrow window when,
3289 * - The system wide safe registers are set with all the SMP CPUs and,
3290 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3291 * In all other cases cpus_have_{const_}cap() should be used.
3293 static bool __maybe_unused __system_matches_cap(unsigned int n)
3295 if (n < ARM64_NCAPS) {
3296 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3299 return cap->matches(cap, SCOPE_SYSTEM);
3304 void cpu_set_feature(unsigned int num)
3306 set_bit(num, elf_hwcap);
3309 bool cpu_have_feature(unsigned int num)
3311 return test_bit(num, elf_hwcap);
3313 EXPORT_SYMBOL_GPL(cpu_have_feature);
3315 unsigned long cpu_get_elf_hwcap(void)
3318 * We currently only populate the first 32 bits of AT_HWCAP. Please
3319 * note that for userspace compatibility we guarantee that bits 62
3320 * and 63 will always be returned as 0.
3322 return elf_hwcap[0];
3325 unsigned long cpu_get_elf_hwcap2(void)
3327 return elf_hwcap[1];
3330 static void __init setup_system_capabilities(void)
3333 * We have finalised the system-wide safe feature
3334 * registers, finalise the capabilities that depend
3335 * on it. Also enable all the available capabilities,
3336 * that are not enabled already.
3338 update_cpu_capabilities(SCOPE_SYSTEM);
3339 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3342 void __init setup_cpu_features(void)
3346 setup_system_capabilities();
3347 setup_elf_hwcaps(arm64_elf_hwcaps);
3349 if (system_supports_32bit_el0()) {
3350 setup_elf_hwcaps(compat_elf_hwcaps);
3354 if (system_uses_ttbr0_pan())
3355 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3359 minsigstksz_setup();
3362 * Check for sane CTR_EL0.CWG value.
3364 cwg = cache_type_cwg();
3366 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3370 static int enable_mismatched_32bit_el0(unsigned int cpu)
3373 * The first 32-bit-capable CPU we detected and so can no longer
3374 * be offlined by userspace. -1 indicates we haven't yet onlined
3375 * a 32-bit-capable CPU.
3377 static int lucky_winner = -1;
3379 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3380 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3383 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3384 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3387 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3390 if (lucky_winner >= 0)
3394 * We've detected a mismatch. We need to keep one of our CPUs with
3395 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3396 * every CPU in the system for a 32-bit task.
3398 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3400 get_cpu_device(lucky_winner)->offline_disabled = true;
3401 setup_elf_hwcaps(compat_elf_hwcaps);
3403 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3408 static int __init init_32bit_el0_mask(void)
3410 if (!allow_mismatched_32bit_el0)
3413 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3416 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3417 "arm64/mismatched_32bit_el0:online",
3418 enable_mismatched_32bit_el0, NULL);
3420 subsys_initcall_sync(init_32bit_el0_mask);
3422 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3424 cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3428 * We emulate only the following system register space.
3429 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3430 * See Table C5-6 System instruction encodings for System register accesses,
3431 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3433 static inline bool __attribute_const__ is_emulated(u32 id)
3435 return (sys_reg_Op0(id) == 0x3 &&
3436 sys_reg_CRn(id) == 0x0 &&
3437 sys_reg_Op1(id) == 0x0 &&
3438 (sys_reg_CRm(id) == 0 ||
3439 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3443 * With CRm == 0, reg should be one of :
3444 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3446 static inline int emulate_id_reg(u32 id, u64 *valp)
3450 *valp = read_cpuid_id();
3453 *valp = SYS_MPIDR_SAFE_VAL;
3455 case SYS_REVIDR_EL1:
3456 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3466 static int emulate_sys_reg(u32 id, u64 *valp)
3468 struct arm64_ftr_reg *regp;
3470 if (!is_emulated(id))
3473 if (sys_reg_CRm(id) == 0)
3474 return emulate_id_reg(id, valp);
3476 regp = get_arm64_ftr_reg_nowarn(id);
3478 *valp = arm64_ftr_reg_user_value(regp);
3481 * The untracked registers are either IMPLEMENTATION DEFINED
3482 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3488 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3493 rc = emulate_sys_reg(sys_reg, &val);
3495 pt_regs_write_reg(regs, rt, val);
3496 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3501 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3505 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3509 * sys_reg values are defined as used in mrs/msr instruction.
3510 * shift the imm value to get the encoding.
3512 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3513 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3514 return do_emulate_mrs(regs, sys_reg, rt) == 0;
3517 enum mitigation_state arm64_get_meltdown_state(void)
3519 if (__meltdown_safe)
3520 return SPECTRE_UNAFFECTED;
3522 if (arm64_kernel_unmapped_at_el0())
3523 return SPECTRE_MITIGATED;
3525 return SPECTRE_VULNERABLE;
3528 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3531 switch (arm64_get_meltdown_state()) {
3532 case SPECTRE_UNAFFECTED:
3533 return sprintf(buf, "Not affected\n");
3535 case SPECTRE_MITIGATED:
3536 return sprintf(buf, "Mitigation: PTI\n");
3539 return sprintf(buf, "Vulnerable\n");