1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
8 #define pr_fmt(fmt) "CPU features: " fmt
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
17 #include <linux/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
32 #define COMPAT_ELF_HWCAP_DEFAULT \
33 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
36 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
37 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
39 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
40 unsigned int compat_elf_hwcap2 __read_mostly;
43 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
44 EXPORT_SYMBOL(cpu_hwcaps);
45 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
47 /* Need also bit for ARM64_CB_PATCH */
48 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
51 * Flag to indicate if we have computed the system wide
52 * capabilities based on the boot time active CPUs. This
53 * will be used to determine if a new booting CPU should
54 * go through the verification process to make sure that it
55 * supports the system capabilities, without using a hotplug
58 static bool sys_caps_initialised;
60 static inline void set_sys_caps_initialised(void)
62 sys_caps_initialised = true;
65 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
67 /* file-wide pr_fmt adds "CPU features: " prefix */
68 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
72 static struct notifier_block cpu_hwcaps_notifier = {
73 .notifier_call = dump_cpu_hwcaps
76 static int __init register_cpu_hwcaps_dumper(void)
78 atomic_notifier_chain_register(&panic_notifier_list,
79 &cpu_hwcaps_notifier);
82 __initcall(register_cpu_hwcaps_dumper);
84 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
85 EXPORT_SYMBOL(cpu_hwcap_keys);
87 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
95 .safe_val = SAFE_VAL, \
98 /* Define a feature with unsigned values */
99 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
102 /* Define a feature with a signed value */
103 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
104 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 #define ARM64_FTR_END \
111 /* meta feature for alternatives */
112 static bool __maybe_unused
113 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
115 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
118 * NOTE: Any changes to the visibility of features should be kept in
119 * sync with the documentation of the CPU feature register ABI.
121 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
122 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
123 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
124 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
125 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
138 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
139 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
140 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
142 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
146 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
147 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
148 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
149 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
150 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
154 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
155 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
157 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
158 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
159 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
162 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
163 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
164 /* Linux doesn't care about the EL3 */
165 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
166 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
172 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
173 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
177 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
180 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
186 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
188 * We already refuse to boot CPUs that don't support our configured
189 * page size, so we can only detect mismatches for a page size other
190 * than the one we're currently using. Unfortunately, SoCs like this
191 * exist in the wild so, even though we don't like it, we'll have to go
192 * along with it and treat them as non-strict.
194 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
195 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
196 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
199 /* Linux shouldn't care about secure memory */
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
204 * Differing PARange is fine as long as all peripherals and memory are mapped
205 * within the minimum PARange of all CPUs
207 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
211 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
221 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
227 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
232 static const struct arm64_ftr_bits ftr_ctr[] = {
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
234 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
235 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
236 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
240 * Linux can handle differing I-cache policies. Userspace JITs will
241 * make use of *minLine.
242 * If we have differing I-cache policies, report it as the weakest - VIPT.
244 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
245 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
249 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
250 .name = "SYS_CTR_EL0",
254 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
255 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
257 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
260 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
266 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
273 * We can instantiate multiple PMU instances with different levels
276 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
282 static const struct arm64_ftr_bits ftr_mvfr2[] = {
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
288 static const struct arm64_ftr_bits ftr_dczid[] = {
289 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
290 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
295 static const struct arm64_ftr_bits ftr_id_isar5[] = {
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
299 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
305 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
310 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
318 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
320 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
325 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
330 static const struct arm64_ftr_bits ftr_zcr[] = {
331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
332 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
337 * Common ftr bits for a 32bit register with all hidden, strict
338 * attributes, with 4bit feature fields and a default safe value of
339 * 0. Covers the following 32bit registers:
340 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
342 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
343 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
344 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
345 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
346 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
347 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
348 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
349 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
350 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
354 /* Table for a single 32bit feature value */
355 static const struct arm64_ftr_bits ftr_single32[] = {
356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
360 static const struct arm64_ftr_bits ftr_raz[] = {
364 #define ARM64_FTR_REG(id, table) { \
366 .reg = &(struct arm64_ftr_reg){ \
368 .ftr_bits = &((table)[0]), \
371 static const struct __ftr_reg_entry {
373 struct arm64_ftr_reg *reg;
374 } arm64_ftr_regs[] = {
376 /* Op1 = 0, CRn = 0, CRm = 1 */
377 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
378 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
379 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
380 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
381 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
382 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
383 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
385 /* Op1 = 0, CRn = 0, CRm = 2 */
386 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
387 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
388 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
389 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
390 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
391 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
392 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
394 /* Op1 = 0, CRn = 0, CRm = 3 */
395 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
396 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
397 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
399 /* Op1 = 0, CRn = 0, CRm = 4 */
400 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
401 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
402 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
404 /* Op1 = 0, CRn = 0, CRm = 5 */
405 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
406 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
408 /* Op1 = 0, CRn = 0, CRm = 6 */
409 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
410 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
412 /* Op1 = 0, CRn = 0, CRm = 7 */
413 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
414 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
415 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
417 /* Op1 = 0, CRn = 1, CRm = 2 */
418 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
420 /* Op1 = 3, CRn = 0, CRm = 0 */
421 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
422 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
424 /* Op1 = 3, CRn = 14, CRm = 0 */
425 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
428 static int search_cmp_ftr_reg(const void *id, const void *regp)
430 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
434 * get_arm64_ftr_reg - Lookup a feature register entry using its
435 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
436 * ascending order of sys_id , we use binary search to find a matching
439 * returns - Upon success, matching ftr_reg entry for id.
440 * - NULL on failure. It is upto the caller to decide
441 * the impact of a failure.
443 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
445 const struct __ftr_reg_entry *ret;
447 ret = bsearch((const void *)(unsigned long)sys_id,
449 ARRAY_SIZE(arm64_ftr_regs),
450 sizeof(arm64_ftr_regs[0]),
457 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
460 u64 mask = arm64_ftr_mask(ftrp);
463 reg |= (ftr_val << ftrp->shift) & mask;
467 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
472 switch (ftrp->type) {
474 ret = ftrp->safe_val;
477 ret = new < cur ? new : cur;
479 case FTR_HIGHER_OR_ZERO_SAFE:
483 case FTR_HIGHER_SAFE:
484 ret = new > cur ? new : cur;
493 static void __init sort_ftr_regs(void)
497 /* Check that the array is sorted so that we can do the binary search */
498 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
499 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
503 * Initialise the CPU feature register from Boot CPU values.
504 * Also initiliases the strict_mask for the register.
505 * Any bits that are not covered by an arm64_ftr_bits entry are considered
506 * RES0 for the system-wide value, and must strictly match.
508 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
511 u64 strict_mask = ~0x0ULL;
515 const struct arm64_ftr_bits *ftrp;
516 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
520 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
521 u64 ftr_mask = arm64_ftr_mask(ftrp);
522 s64 ftr_new = arm64_ftr_value(ftrp, new);
524 val = arm64_ftr_set_value(ftrp, val, ftr_new);
526 valid_mask |= ftr_mask;
528 strict_mask &= ~ftr_mask;
530 user_mask |= ftr_mask;
532 reg->user_val = arm64_ftr_set_value(ftrp,
540 reg->strict_mask = strict_mask;
541 reg->user_mask = user_mask;
544 extern const struct arm64_cpu_capabilities arm64_errata[];
545 static const struct arm64_cpu_capabilities arm64_features[];
548 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
550 for (; caps->matches; caps++) {
551 if (WARN(caps->capability >= ARM64_NCAPS,
552 "Invalid capability %d\n", caps->capability))
554 if (WARN(cpu_hwcaps_ptrs[caps->capability],
555 "Duplicate entry for capability %d\n",
558 cpu_hwcaps_ptrs[caps->capability] = caps;
562 static void __init init_cpu_hwcaps_indirect_list(void)
564 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
565 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
568 static void __init setup_boot_cpu_capabilities(void);
570 void __init init_cpu_features(struct cpuinfo_arm64 *info)
572 /* Before we start using the tables, make sure it is sorted */
575 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
576 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
577 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
578 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
579 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
580 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
581 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
582 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
583 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
584 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
585 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
586 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
587 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
589 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
590 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
591 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
592 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
593 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
594 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
595 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
596 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
597 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
598 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
599 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
600 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
601 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
602 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
603 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
604 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
605 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
608 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
609 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
614 * Initialize the indirect array of CPU hwcaps capabilities pointers
615 * before we handle the boot CPU below.
617 init_cpu_hwcaps_indirect_list();
620 * Detect and enable early CPU capabilities based on the boot CPU,
621 * after we have initialised the CPU feature infrastructure.
623 setup_boot_cpu_capabilities();
626 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
628 const struct arm64_ftr_bits *ftrp;
630 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
631 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
632 s64 ftr_new = arm64_ftr_value(ftrp, new);
634 if (ftr_cur == ftr_new)
636 /* Find a safe value */
637 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
638 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
643 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
645 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
648 update_cpu_ftr_reg(regp, val);
649 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
651 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
652 regp->name, boot, cpu, val);
657 * Update system wide CPU feature registers with the values from a
658 * non-boot CPU. Also performs SANITY checks to make sure that there
659 * aren't any insane variations from that of the boot CPU.
661 void update_cpu_features(int cpu,
662 struct cpuinfo_arm64 *info,
663 struct cpuinfo_arm64 *boot)
668 * The kernel can handle differing I-cache policies, but otherwise
669 * caches should look identical. Userspace JITs will make use of
672 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
673 info->reg_ctr, boot->reg_ctr);
676 * Userspace may perform DC ZVA instructions. Mismatched block sizes
677 * could result in too much or too little memory being zeroed if a
678 * process is preempted and migrated between CPUs.
680 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
681 info->reg_dczid, boot->reg_dczid);
683 /* If different, timekeeping will be broken (especially with KVM) */
684 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
685 info->reg_cntfrq, boot->reg_cntfrq);
688 * The kernel uses self-hosted debug features and expects CPUs to
689 * support identical debug features. We presently need CTX_CMPs, WRPs,
690 * and BRPs to be identical.
691 * ID_AA64DFR1 is currently RES0.
693 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
694 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
695 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
696 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
698 * Even in big.LITTLE, processors should be identical instruction-set
701 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
702 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
703 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
704 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
707 * Differing PARange support is fine as long as all peripherals and
708 * memory are mapped within the minimum PARange of all CPUs.
709 * Linux should not care about secure memory.
711 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
712 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
713 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
714 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
715 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
716 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
719 * EL3 is not our concern.
721 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
722 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
723 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
724 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
726 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
727 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
730 * If we have AArch32, we care about 32-bit features for compat.
731 * If the system doesn't support AArch32, don't update them.
733 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
734 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
736 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
737 info->reg_id_dfr0, boot->reg_id_dfr0);
738 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
739 info->reg_id_isar0, boot->reg_id_isar0);
740 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
741 info->reg_id_isar1, boot->reg_id_isar1);
742 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
743 info->reg_id_isar2, boot->reg_id_isar2);
744 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
745 info->reg_id_isar3, boot->reg_id_isar3);
746 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
747 info->reg_id_isar4, boot->reg_id_isar4);
748 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
749 info->reg_id_isar5, boot->reg_id_isar5);
752 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
753 * ACTLR formats could differ across CPUs and therefore would have to
754 * be trapped for virtualization anyway.
756 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
757 info->reg_id_mmfr0, boot->reg_id_mmfr0);
758 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
759 info->reg_id_mmfr1, boot->reg_id_mmfr1);
760 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
761 info->reg_id_mmfr2, boot->reg_id_mmfr2);
762 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
763 info->reg_id_mmfr3, boot->reg_id_mmfr3);
764 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
765 info->reg_id_pfr0, boot->reg_id_pfr0);
766 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
767 info->reg_id_pfr1, boot->reg_id_pfr1);
768 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
769 info->reg_mvfr0, boot->reg_mvfr0);
770 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
771 info->reg_mvfr1, boot->reg_mvfr1);
772 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
773 info->reg_mvfr2, boot->reg_mvfr2);
776 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
777 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
778 info->reg_zcr, boot->reg_zcr);
780 /* Probe vector lengths, unless we already gave up on SVE */
781 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
782 !sys_caps_initialised)
787 * Mismatched CPU features are a recipe for disaster. Don't even
788 * pretend to support them.
791 pr_warn_once("Unsupported CPU feature variation detected.\n");
792 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
796 u64 read_sanitised_ftr_reg(u32 id)
798 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
800 /* We shouldn't get a request for an unsupported register */
802 return regp->sys_val;
805 #define read_sysreg_case(r) \
806 case r: return read_sysreg_s(r)
809 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
810 * Read the system register on the current CPU
812 static u64 __read_sysreg_by_encoding(u32 sys_id)
815 read_sysreg_case(SYS_ID_PFR0_EL1);
816 read_sysreg_case(SYS_ID_PFR1_EL1);
817 read_sysreg_case(SYS_ID_DFR0_EL1);
818 read_sysreg_case(SYS_ID_MMFR0_EL1);
819 read_sysreg_case(SYS_ID_MMFR1_EL1);
820 read_sysreg_case(SYS_ID_MMFR2_EL1);
821 read_sysreg_case(SYS_ID_MMFR3_EL1);
822 read_sysreg_case(SYS_ID_ISAR0_EL1);
823 read_sysreg_case(SYS_ID_ISAR1_EL1);
824 read_sysreg_case(SYS_ID_ISAR2_EL1);
825 read_sysreg_case(SYS_ID_ISAR3_EL1);
826 read_sysreg_case(SYS_ID_ISAR4_EL1);
827 read_sysreg_case(SYS_ID_ISAR5_EL1);
828 read_sysreg_case(SYS_MVFR0_EL1);
829 read_sysreg_case(SYS_MVFR1_EL1);
830 read_sysreg_case(SYS_MVFR2_EL1);
832 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
833 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
834 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
835 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
836 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
837 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
838 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
839 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
840 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
841 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
843 read_sysreg_case(SYS_CNTFRQ_EL0);
844 read_sysreg_case(SYS_CTR_EL0);
845 read_sysreg_case(SYS_DCZID_EL0);
853 #include <linux/irqchip/arm-gic-v3.h>
856 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
858 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
860 return val >= entry->min_field_value;
864 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
868 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
869 if (scope == SCOPE_SYSTEM)
870 val = read_sanitised_ftr_reg(entry->sys_reg);
872 val = __read_sysreg_by_encoding(entry->sys_reg);
874 return feature_matches(val, entry);
877 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
881 if (!has_cpuid_feature(entry, scope))
884 has_sre = gic_enable_sre();
886 pr_warn_once("%s present but disabled by higher exception level\n",
892 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
894 u32 midr = read_cpuid_id();
896 /* Cavium ThunderX pass 1.x and 2.x */
897 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
898 MIDR_CPU_VAR_REV(0, 0),
899 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
902 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
904 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
906 return cpuid_feature_extract_signed_field(pfr0,
907 ID_AA64PFR0_FP_SHIFT) < 0;
910 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
915 if (scope == SCOPE_SYSTEM)
916 ctr = arm64_ftr_reg_ctrel0.sys_val;
918 ctr = read_cpuid_effective_cachetype();
920 return ctr & BIT(CTR_IDC_SHIFT);
923 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
926 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
927 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
928 * to the CTR_EL0 on this CPU and emulate it with the real/safe
931 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
932 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
935 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
940 if (scope == SCOPE_SYSTEM)
941 ctr = arm64_ftr_reg_ctrel0.sys_val;
943 ctr = read_cpuid_cachetype();
945 return ctr & BIT(CTR_DIC_SHIFT);
948 static bool __maybe_unused
949 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
952 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
953 * may share TLB entries with a CPU stuck in the crashed
956 if (is_kdump_kernel())
959 return has_cpuid_feature(entry, scope);
962 static bool __meltdown_safe = true;
963 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
965 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
968 /* List of CPUs that are not vulnerable and don't need KPTI */
969 static const struct midr_range kpti_safe_list[] = {
970 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
971 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
972 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
973 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
974 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
975 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
976 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
977 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
978 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
981 char const *str = "kpti command line option";
984 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
986 /* Defer to CPU feature registers */
987 if (has_cpuid_feature(entry, scope))
988 meltdown_safe = true;
991 __meltdown_safe = false;
994 * For reasons that aren't entirely clear, enabling KPTI on Cavium
995 * ThunderX leads to apparent I-cache corruption of kernel text, which
996 * ends as well as you might imagine. Don't even try.
998 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
999 str = "ARM64_WORKAROUND_CAVIUM_27456";
1003 /* Useful for KASLR robustness */
1004 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
1005 if (!__kpti_forced) {
1011 if (cpu_mitigations_off() && !__kpti_forced) {
1012 str = "mitigations=off";
1016 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1017 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1022 if (__kpti_forced) {
1023 pr_info_once("kernel page table isolation forced %s by %s\n",
1024 __kpti_forced > 0 ? "ON" : "OFF", str);
1025 return __kpti_forced > 0;
1028 return !meltdown_safe;
1031 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1033 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1035 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1036 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1037 kpti_remap_fn *remap_fn;
1039 static bool kpti_applied = false;
1040 int cpu = smp_processor_id();
1043 * We don't need to rewrite the page-tables if either we've done
1044 * it already or we have KASLR enabled and therefore have not
1045 * created any global mappings at all.
1047 if (kpti_applied || kaslr_offset() > 0)
1050 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1052 cpu_install_idmap();
1053 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1054 cpu_uninstall_idmap();
1057 kpti_applied = true;
1063 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1066 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1068 static int __init parse_kpti(char *str)
1071 int ret = strtobool(str, &enabled);
1076 __kpti_forced = enabled ? 1 : -1;
1079 early_param("kpti", parse_kpti);
1081 #ifdef CONFIG_ARM64_HW_AFDBM
1082 static inline void __cpu_enable_hw_dbm(void)
1084 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1086 write_sysreg(tcr, tcr_el1);
1090 static bool cpu_has_broken_dbm(void)
1092 /* List of CPUs which have broken DBM support. */
1093 static const struct midr_range cpus[] = {
1094 #ifdef CONFIG_ARM64_ERRATUM_1024718
1095 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
1100 return is_midr_in_range_list(read_cpuid_id(), cpus);
1103 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1105 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1106 !cpu_has_broken_dbm();
1109 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1111 if (cpu_can_use_dbm(cap))
1112 __cpu_enable_hw_dbm();
1115 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1118 static bool detected = false;
1120 * DBM is a non-conflicting feature. i.e, the kernel can safely
1121 * run a mix of CPUs with and without the feature. So, we
1122 * unconditionally enable the capability to allow any late CPU
1123 * to use the feature. We only enable the control bits on the
1124 * CPU, if it actually supports.
1126 * We have to make sure we print the "feature" detection only
1127 * when at least one CPU actually uses it. So check if this CPU
1128 * can actually use it and print the message exactly once.
1130 * This is safe as all CPUs (including secondary CPUs - due to the
1131 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1132 * goes through the "matches" check exactly once. Also if a CPU
1133 * matches the criteria, it is guaranteed that the CPU will turn
1134 * the DBM on, as the capability is unconditionally enabled.
1136 if (!detected && cpu_can_use_dbm(cap)) {
1138 pr_info("detected: Hardware dirty bit management\n");
1146 #ifdef CONFIG_ARM64_VHE
1147 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1149 return is_kernel_in_hyp_mode();
1152 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1155 * Copy register values that aren't redirected by hardware.
1157 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1158 * this value to tpidr_el2 before we patch the code. Once we've done
1159 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1162 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1163 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1167 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1169 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1171 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1172 WARN_ON(val & (7 << 27 | 7 << 21));
1175 #ifdef CONFIG_ARM64_SSBD
1176 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1178 if (user_mode(regs))
1181 if (instr & BIT(PSTATE_Imm_shift))
1182 regs->pstate |= PSR_SSBS_BIT;
1184 regs->pstate &= ~PSR_SSBS_BIT;
1186 arm64_skip_faulting_instruction(regs, 4);
1190 static struct undef_hook ssbs_emulation_hook = {
1191 .instr_mask = ~(1U << PSTATE_Imm_shift),
1192 .instr_val = 0xd500401f | PSTATE_SSBS,
1193 .fn = ssbs_emulation_handler,
1196 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1198 static bool undef_hook_registered = false;
1199 static DEFINE_RAW_SPINLOCK(hook_lock);
1201 raw_spin_lock(&hook_lock);
1202 if (!undef_hook_registered) {
1203 register_undef_hook(&ssbs_emulation_hook);
1204 undef_hook_registered = true;
1206 raw_spin_unlock(&hook_lock);
1208 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1209 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1210 arm64_set_ssbd_mitigation(false);
1212 arm64_set_ssbd_mitigation(true);
1215 #endif /* CONFIG_ARM64_SSBD */
1217 #ifdef CONFIG_ARM64_PAN
1218 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1221 * We modify PSTATE. This won't work from irq context as the PSTATE
1222 * is discarded once we return from the exception.
1224 WARN_ON_ONCE(in_interrupt());
1226 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1227 asm(SET_PSTATE_PAN(1));
1229 #endif /* CONFIG_ARM64_PAN */
1231 #ifdef CONFIG_ARM64_RAS_EXTN
1232 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1234 /* Firmware may have left a deferred SError in this register. */
1235 write_sysreg_s(0, SYS_DISR_EL1);
1237 #endif /* CONFIG_ARM64_RAS_EXTN */
1239 #ifdef CONFIG_ARM64_PTR_AUTH
1240 static void cpu_enable_address_auth(struct arm64_cpu_capabilities const *cap)
1242 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ENIA | SCTLR_ELx_ENIB |
1243 SCTLR_ELx_ENDA | SCTLR_ELx_ENDB);
1245 #endif /* CONFIG_ARM64_PTR_AUTH */
1247 #ifdef CONFIG_ARM64_PSEUDO_NMI
1248 static bool enable_pseudo_nmi;
1250 static int __init early_enable_pseudo_nmi(char *p)
1252 return strtobool(p, &enable_pseudo_nmi);
1254 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1256 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1259 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1263 static const struct arm64_cpu_capabilities arm64_features[] = {
1265 .desc = "GIC system register CPU interface",
1266 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1267 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1268 .matches = has_useable_gicv3_cpuif,
1269 .sys_reg = SYS_ID_AA64PFR0_EL1,
1270 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1271 .sign = FTR_UNSIGNED,
1272 .min_field_value = 1,
1274 #ifdef CONFIG_ARM64_PAN
1276 .desc = "Privileged Access Never",
1277 .capability = ARM64_HAS_PAN,
1278 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1279 .matches = has_cpuid_feature,
1280 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1281 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1282 .sign = FTR_UNSIGNED,
1283 .min_field_value = 1,
1284 .cpu_enable = cpu_enable_pan,
1286 #endif /* CONFIG_ARM64_PAN */
1287 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1289 .desc = "LSE atomic instructions",
1290 .capability = ARM64_HAS_LSE_ATOMICS,
1291 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1292 .matches = has_cpuid_feature,
1293 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1294 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1295 .sign = FTR_UNSIGNED,
1296 .min_field_value = 2,
1298 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1300 .desc = "Software prefetching using PRFM",
1301 .capability = ARM64_HAS_NO_HW_PREFETCH,
1302 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1303 .matches = has_no_hw_prefetch,
1305 #ifdef CONFIG_ARM64_UAO
1307 .desc = "User Access Override",
1308 .capability = ARM64_HAS_UAO,
1309 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1310 .matches = has_cpuid_feature,
1311 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1312 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1313 .min_field_value = 1,
1315 * We rely on stop_machine() calling uao_thread_switch() to set
1316 * UAO immediately after patching.
1319 #endif /* CONFIG_ARM64_UAO */
1320 #ifdef CONFIG_ARM64_PAN
1322 .capability = ARM64_ALT_PAN_NOT_UAO,
1323 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1324 .matches = cpufeature_pan_not_uao,
1326 #endif /* CONFIG_ARM64_PAN */
1327 #ifdef CONFIG_ARM64_VHE
1329 .desc = "Virtualization Host Extensions",
1330 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1331 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1332 .matches = runs_at_el2,
1333 .cpu_enable = cpu_copy_el2regs,
1335 #endif /* CONFIG_ARM64_VHE */
1337 .desc = "32-bit EL0 Support",
1338 .capability = ARM64_HAS_32BIT_EL0,
1339 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1340 .matches = has_cpuid_feature,
1341 .sys_reg = SYS_ID_AA64PFR0_EL1,
1342 .sign = FTR_UNSIGNED,
1343 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1344 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1347 .desc = "Kernel page table isolation (KPTI)",
1348 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1349 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1351 * The ID feature fields below are used to indicate that
1352 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1355 .sys_reg = SYS_ID_AA64PFR0_EL1,
1356 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1357 .min_field_value = 1,
1358 .matches = unmap_kernel_at_el0,
1359 .cpu_enable = kpti_install_ng_mappings,
1362 /* FP/SIMD is not implemented */
1363 .capability = ARM64_HAS_NO_FPSIMD,
1364 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1365 .min_field_value = 0,
1366 .matches = has_no_fpsimd,
1368 #ifdef CONFIG_ARM64_PMEM
1370 .desc = "Data cache clean to Point of Persistence",
1371 .capability = ARM64_HAS_DCPOP,
1372 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1373 .matches = has_cpuid_feature,
1374 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1375 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1376 .min_field_value = 1,
1379 .desc = "Data cache clean to Point of Deep Persistence",
1380 .capability = ARM64_HAS_DCPODP,
1381 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1382 .matches = has_cpuid_feature,
1383 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1384 .sign = FTR_UNSIGNED,
1385 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1386 .min_field_value = 2,
1389 #ifdef CONFIG_ARM64_SVE
1391 .desc = "Scalable Vector Extension",
1392 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1393 .capability = ARM64_SVE,
1394 .sys_reg = SYS_ID_AA64PFR0_EL1,
1395 .sign = FTR_UNSIGNED,
1396 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1397 .min_field_value = ID_AA64PFR0_SVE,
1398 .matches = has_cpuid_feature,
1399 .cpu_enable = sve_kernel_enable,
1401 #endif /* CONFIG_ARM64_SVE */
1402 #ifdef CONFIG_ARM64_RAS_EXTN
1404 .desc = "RAS Extension Support",
1405 .capability = ARM64_HAS_RAS_EXTN,
1406 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1407 .matches = has_cpuid_feature,
1408 .sys_reg = SYS_ID_AA64PFR0_EL1,
1409 .sign = FTR_UNSIGNED,
1410 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1411 .min_field_value = ID_AA64PFR0_RAS_V1,
1412 .cpu_enable = cpu_clear_disr,
1414 #endif /* CONFIG_ARM64_RAS_EXTN */
1416 .desc = "Data cache clean to the PoU not required for I/D coherence",
1417 .capability = ARM64_HAS_CACHE_IDC,
1418 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1419 .matches = has_cache_idc,
1420 .cpu_enable = cpu_emulate_effective_ctr,
1423 .desc = "Instruction cache invalidation not required for I/D coherence",
1424 .capability = ARM64_HAS_CACHE_DIC,
1425 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1426 .matches = has_cache_dic,
1429 .desc = "Stage-2 Force Write-Back",
1430 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1431 .capability = ARM64_HAS_STAGE2_FWB,
1432 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1433 .sign = FTR_UNSIGNED,
1434 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1435 .min_field_value = 1,
1436 .matches = has_cpuid_feature,
1437 .cpu_enable = cpu_has_fwb,
1439 #ifdef CONFIG_ARM64_HW_AFDBM
1442 * Since we turn this on always, we don't want the user to
1443 * think that the feature is available when it may not be.
1444 * So hide the description.
1446 * .desc = "Hardware pagetable Dirty Bit Management",
1449 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1450 .capability = ARM64_HW_DBM,
1451 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1452 .sign = FTR_UNSIGNED,
1453 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1454 .min_field_value = 2,
1455 .matches = has_hw_dbm,
1456 .cpu_enable = cpu_enable_hw_dbm,
1460 .desc = "CRC32 instructions",
1461 .capability = ARM64_HAS_CRC32,
1462 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1463 .matches = has_cpuid_feature,
1464 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1465 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1466 .min_field_value = 1,
1468 #ifdef CONFIG_ARM64_SSBD
1470 .desc = "Speculative Store Bypassing Safe (SSBS)",
1471 .capability = ARM64_SSBS,
1472 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1473 .matches = has_cpuid_feature,
1474 .sys_reg = SYS_ID_AA64PFR1_EL1,
1475 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1476 .sign = FTR_UNSIGNED,
1477 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1478 .cpu_enable = cpu_enable_ssbs,
1481 #ifdef CONFIG_ARM64_CNP
1483 .desc = "Common not Private translations",
1484 .capability = ARM64_HAS_CNP,
1485 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1486 .matches = has_useable_cnp,
1487 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1488 .sign = FTR_UNSIGNED,
1489 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1490 .min_field_value = 1,
1491 .cpu_enable = cpu_enable_cnp,
1495 .desc = "Speculation barrier (SB)",
1496 .capability = ARM64_HAS_SB,
1497 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1498 .matches = has_cpuid_feature,
1499 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1500 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1501 .sign = FTR_UNSIGNED,
1502 .min_field_value = 1,
1504 #ifdef CONFIG_ARM64_PTR_AUTH
1506 .desc = "Address authentication (architected algorithm)",
1507 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1508 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1509 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1510 .sign = FTR_UNSIGNED,
1511 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1512 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1513 .matches = has_cpuid_feature,
1514 .cpu_enable = cpu_enable_address_auth,
1517 .desc = "Address authentication (IMP DEF algorithm)",
1518 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1519 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1520 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1521 .sign = FTR_UNSIGNED,
1522 .field_pos = ID_AA64ISAR1_API_SHIFT,
1523 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1524 .matches = has_cpuid_feature,
1525 .cpu_enable = cpu_enable_address_auth,
1528 .desc = "Generic authentication (architected algorithm)",
1529 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1530 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1531 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1532 .sign = FTR_UNSIGNED,
1533 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1534 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1535 .matches = has_cpuid_feature,
1538 .desc = "Generic authentication (IMP DEF algorithm)",
1539 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1540 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1541 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1542 .sign = FTR_UNSIGNED,
1543 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1544 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1545 .matches = has_cpuid_feature,
1547 #endif /* CONFIG_ARM64_PTR_AUTH */
1548 #ifdef CONFIG_ARM64_PSEUDO_NMI
1551 * Depends on having GICv3
1553 .desc = "IRQ priority masking",
1554 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
1555 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1556 .matches = can_use_gic_priorities,
1557 .sys_reg = SYS_ID_AA64PFR0_EL1,
1558 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1559 .sign = FTR_UNSIGNED,
1560 .min_field_value = 1,
1566 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1567 .matches = has_cpuid_feature, \
1569 .field_pos = field, \
1571 .min_field_value = min_value,
1573 #define __HWCAP_CAP(name, cap_type, cap) \
1575 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1576 .hwcap_type = cap_type, \
1579 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1581 __HWCAP_CAP(#cap, cap_type, cap) \
1582 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1585 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
1587 __HWCAP_CAP(#cap, cap_type, cap) \
1588 .matches = cpucap_multi_entry_cap_matches, \
1589 .match_list = list, \
1592 #ifdef CONFIG_ARM64_PTR_AUTH
1593 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1595 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1596 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1599 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1600 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1605 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1607 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1608 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1611 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1612 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1618 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1619 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1620 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1621 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1622 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1623 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1624 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1625 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1626 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1627 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1628 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1629 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1630 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1631 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1632 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1633 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1634 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1635 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1636 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1637 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1638 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1639 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1640 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1641 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1642 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1643 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1644 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1645 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1646 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1647 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1648 #ifdef CONFIG_ARM64_SVE
1649 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1650 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1651 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1652 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1653 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1654 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1655 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1657 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1658 #ifdef CONFIG_ARM64_PTR_AUTH
1659 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1660 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1665 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1666 #ifdef CONFIG_COMPAT
1667 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1668 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1669 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1670 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1671 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1676 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1678 switch (cap->hwcap_type) {
1680 cpu_set_feature(cap->hwcap);
1682 #ifdef CONFIG_COMPAT
1683 case CAP_COMPAT_HWCAP:
1684 compat_elf_hwcap |= (u32)cap->hwcap;
1686 case CAP_COMPAT_HWCAP2:
1687 compat_elf_hwcap2 |= (u32)cap->hwcap;
1696 /* Check if we have a particular HWCAP enabled */
1697 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1701 switch (cap->hwcap_type) {
1703 rc = cpu_have_feature(cap->hwcap);
1705 #ifdef CONFIG_COMPAT
1706 case CAP_COMPAT_HWCAP:
1707 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1709 case CAP_COMPAT_HWCAP2:
1710 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1721 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1723 /* We support emulation of accesses to CPU ID feature registers */
1724 cpu_set_named_feature(CPUID);
1725 for (; hwcaps->matches; hwcaps++)
1726 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1727 cap_set_elf_hwcap(hwcaps);
1730 static void update_cpu_capabilities(u16 scope_mask)
1733 const struct arm64_cpu_capabilities *caps;
1735 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1736 for (i = 0; i < ARM64_NCAPS; i++) {
1737 caps = cpu_hwcaps_ptrs[i];
1738 if (!caps || !(caps->type & scope_mask) ||
1739 cpus_have_cap(caps->capability) ||
1740 !caps->matches(caps, cpucap_default_scope(caps)))
1744 pr_info("detected: %s\n", caps->desc);
1745 cpus_set_cap(caps->capability);
1747 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
1748 set_bit(caps->capability, boot_capabilities);
1753 * Enable all the available capabilities on this CPU. The capabilities
1754 * with BOOT_CPU scope are handled separately and hence skipped here.
1756 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
1759 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
1761 for_each_available_cap(i) {
1762 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
1767 if (!(cap->type & non_boot_scope))
1770 if (cap->cpu_enable)
1771 cap->cpu_enable(cap);
1777 * Run through the enabled capabilities and enable() it on all active
1780 static void __init enable_cpu_capabilities(u16 scope_mask)
1783 const struct arm64_cpu_capabilities *caps;
1786 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1787 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
1789 for (i = 0; i < ARM64_NCAPS; i++) {
1792 caps = cpu_hwcaps_ptrs[i];
1793 if (!caps || !(caps->type & scope_mask))
1795 num = caps->capability;
1796 if (!cpus_have_cap(num))
1799 /* Ensure cpus_have_const_cap(num) works */
1800 static_branch_enable(&cpu_hwcap_keys[num]);
1802 if (boot_scope && caps->cpu_enable)
1804 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1805 * before any secondary CPU boots. Thus, each secondary
1806 * will enable the capability as appropriate via
1807 * check_local_cpu_capabilities(). The only exception is
1808 * the boot CPU, for which the capability must be
1809 * enabled here. This approach avoids costly
1810 * stop_machine() calls for this case.
1812 caps->cpu_enable(caps);
1816 * For all non-boot scope capabilities, use stop_machine()
1817 * as it schedules the work allowing us to modify PSTATE,
1818 * instead of on_each_cpu() which uses an IPI, giving us a
1819 * PSTATE that disappears when we return.
1822 stop_machine(cpu_enable_non_boot_scope_capabilities,
1823 NULL, cpu_online_mask);
1827 * Run through the list of capabilities to check for conflicts.
1828 * If the system has already detected a capability, take necessary
1829 * action on this CPU.
1831 * Returns "false" on conflicts.
1833 static bool verify_local_cpu_caps(u16 scope_mask)
1836 bool cpu_has_cap, system_has_cap;
1837 const struct arm64_cpu_capabilities *caps;
1839 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1841 for (i = 0; i < ARM64_NCAPS; i++) {
1842 caps = cpu_hwcaps_ptrs[i];
1843 if (!caps || !(caps->type & scope_mask))
1846 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1847 system_has_cap = cpus_have_cap(caps->capability);
1849 if (system_has_cap) {
1851 * Check if the new CPU misses an advertised feature,
1852 * which is not safe to miss.
1854 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1857 * We have to issue cpu_enable() irrespective of
1858 * whether the CPU has it or not, as it is enabeld
1859 * system wide. It is upto the call back to take
1860 * appropriate action on this CPU.
1862 if (caps->cpu_enable)
1863 caps->cpu_enable(caps);
1866 * Check if the CPU has this capability if it isn't
1867 * safe to have when the system doesn't.
1869 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1874 if (i < ARM64_NCAPS) {
1875 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1876 smp_processor_id(), caps->capability,
1877 caps->desc, system_has_cap, cpu_has_cap);
1885 * Check for CPU features that are used in early boot
1886 * based on the Boot CPU value.
1888 static void check_early_cpu_features(void)
1890 verify_cpu_asid_bits();
1892 * Early features are used by the kernel already. If there
1893 * is a conflict, we cannot proceed further.
1895 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1900 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1903 for (; caps->matches; caps++)
1904 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1905 pr_crit("CPU%d: missing HWCAP: %s\n",
1906 smp_processor_id(), caps->desc);
1911 static void verify_sve_features(void)
1913 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1914 u64 zcr = read_zcr_features();
1916 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1917 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1919 if (len < safe_len || sve_verify_vq_map()) {
1920 pr_crit("CPU%d: SVE: vector length support mismatch\n",
1921 smp_processor_id());
1925 /* Add checks on other ZCR bits here if necessary */
1930 * Run through the enabled system capabilities and enable() it on this CPU.
1931 * The capabilities were decided based on the available CPUs at the boot time.
1932 * Any new CPU should match the system wide status of the capability. If the
1933 * new CPU doesn't have a capability which the system now has enabled, we
1934 * cannot do anything to fix it up and could cause unexpected failures. So
1937 static void verify_local_cpu_capabilities(void)
1940 * The capabilities with SCOPE_BOOT_CPU are checked from
1941 * check_early_cpu_features(), as they need to be verified
1942 * on all secondary CPUs.
1944 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1947 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1949 if (system_supports_32bit_el0())
1950 verify_local_elf_hwcaps(compat_elf_hwcaps);
1952 if (system_supports_sve())
1953 verify_sve_features();
1956 void check_local_cpu_capabilities(void)
1959 * All secondary CPUs should conform to the early CPU features
1960 * in use by the kernel based on boot CPU.
1962 check_early_cpu_features();
1965 * If we haven't finalised the system capabilities, this CPU gets
1966 * a chance to update the errata work arounds and local features.
1967 * Otherwise, this CPU should verify that it has all the system
1968 * advertised capabilities.
1970 if (!sys_caps_initialised)
1971 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1973 verify_local_cpu_capabilities();
1976 static void __init setup_boot_cpu_capabilities(void)
1978 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1979 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1980 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1981 enable_cpu_capabilities(SCOPE_BOOT_CPU);
1984 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1985 EXPORT_SYMBOL(arm64_const_caps_ready);
1987 static void __init mark_const_caps_ready(void)
1989 static_branch_enable(&arm64_const_caps_ready);
1992 bool this_cpu_has_cap(unsigned int n)
1994 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
1995 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
1998 return cap->matches(cap, SCOPE_LOCAL_CPU);
2004 void cpu_set_feature(unsigned int num)
2006 WARN_ON(num >= MAX_CPU_FEATURES);
2007 elf_hwcap |= BIT(num);
2009 EXPORT_SYMBOL_GPL(cpu_set_feature);
2011 bool cpu_have_feature(unsigned int num)
2013 WARN_ON(num >= MAX_CPU_FEATURES);
2014 return elf_hwcap & BIT(num);
2016 EXPORT_SYMBOL_GPL(cpu_have_feature);
2018 unsigned long cpu_get_elf_hwcap(void)
2021 * We currently only populate the first 32 bits of AT_HWCAP. Please
2022 * note that for userspace compatibility we guarantee that bits 62
2023 * and 63 will always be returned as 0.
2025 return lower_32_bits(elf_hwcap);
2028 unsigned long cpu_get_elf_hwcap2(void)
2030 return upper_32_bits(elf_hwcap);
2033 static void __init setup_system_capabilities(void)
2036 * We have finalised the system-wide safe feature
2037 * registers, finalise the capabilities that depend
2038 * on it. Also enable all the available capabilities,
2039 * that are not enabled already.
2041 update_cpu_capabilities(SCOPE_SYSTEM);
2042 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2045 void __init setup_cpu_features(void)
2049 setup_system_capabilities();
2050 mark_const_caps_ready();
2051 setup_elf_hwcaps(arm64_elf_hwcaps);
2053 if (system_supports_32bit_el0())
2054 setup_elf_hwcaps(compat_elf_hwcaps);
2056 if (system_uses_ttbr0_pan())
2057 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2060 minsigstksz_setup();
2062 /* Advertise that we have computed the system capabilities */
2063 set_sys_caps_initialised();
2066 * Check for sane CTR_EL0.CWG value.
2068 cwg = cache_type_cwg();
2070 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2074 static bool __maybe_unused
2075 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2077 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
2080 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2082 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2086 * We emulate only the following system register space.
2087 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2088 * See Table C5-6 System instruction encodings for System register accesses,
2089 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2091 static inline bool __attribute_const__ is_emulated(u32 id)
2093 return (sys_reg_Op0(id) == 0x3 &&
2094 sys_reg_CRn(id) == 0x0 &&
2095 sys_reg_Op1(id) == 0x0 &&
2096 (sys_reg_CRm(id) == 0 ||
2097 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2101 * With CRm == 0, reg should be one of :
2102 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2104 static inline int emulate_id_reg(u32 id, u64 *valp)
2108 *valp = read_cpuid_id();
2111 *valp = SYS_MPIDR_SAFE_VAL;
2113 case SYS_REVIDR_EL1:
2114 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2124 static int emulate_sys_reg(u32 id, u64 *valp)
2126 struct arm64_ftr_reg *regp;
2128 if (!is_emulated(id))
2131 if (sys_reg_CRm(id) == 0)
2132 return emulate_id_reg(id, valp);
2134 regp = get_arm64_ftr_reg(id);
2136 *valp = arm64_ftr_reg_user_value(regp);
2139 * The untracked registers are either IMPLEMENTATION DEFINED
2140 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2146 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2151 rc = emulate_sys_reg(sys_reg, &val);
2153 pt_regs_write_reg(regs, rt, val);
2154 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2159 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2164 * sys_reg values are defined as used in mrs/msr instruction.
2165 * shift the imm value to get the encoding.
2167 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2168 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2169 return do_emulate_mrs(regs, sys_reg, rt);
2172 static struct undef_hook mrs_hook = {
2173 .instr_mask = 0xfff00000,
2174 .instr_val = 0xd5300000,
2175 .pstate_mask = PSR_AA32_MODE_MASK,
2176 .pstate_val = PSR_MODE_EL0t,
2180 static int __init enable_mrs_emulation(void)
2182 register_undef_hook(&mrs_hook);
2186 core_initcall(enable_mrs_emulation);
2188 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2191 if (__meltdown_safe)
2192 return sprintf(buf, "Not affected\n");
2194 if (arm64_kernel_unmapped_at_el0())
2195 return sprintf(buf, "Mitigation: PTI\n");
2197 return sprintf(buf, "Vulnerable\n");