Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <asm/cpu.h>
77 #include <asm/cpufeature.h>
78 #include <asm/cpu_ops.h>
79 #include <asm/fpsimd.h>
80 #include <asm/insn.h>
81 #include <asm/kvm_host.h>
82 #include <asm/mmu_context.h>
83 #include <asm/mte.h>
84 #include <asm/processor.h>
85 #include <asm/smp.h>
86 #include <asm/sysreg.h>
87 #include <asm/traps.h>
88 #include <asm/virt.h>
89
90 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
91 static unsigned long elf_hwcap __read_mostly;
92
93 #ifdef CONFIG_COMPAT
94 #define COMPAT_ELF_HWCAP_DEFAULT        \
95                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
96                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
97                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
98                                  COMPAT_HWCAP_LPAE)
99 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
100 unsigned int compat_elf_hwcap2 __read_mostly;
101 #endif
102
103 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
104 EXPORT_SYMBOL(cpu_hwcaps);
105 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
106
107 /* Need also bit for ARM64_CB_PATCH */
108 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
109
110 bool arm64_use_ng_mappings = false;
111 EXPORT_SYMBOL(arm64_use_ng_mappings);
112
113 /*
114  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
115  * support it?
116  */
117 static bool __read_mostly allow_mismatched_32bit_el0;
118
119 /*
120  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
121  * seen at least one CPU capable of 32-bit EL0.
122  */
123 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
124
125 /*
126  * Mask of CPUs supporting 32-bit EL0.
127  * Only valid if arm64_mismatched_32bit_el0 is enabled.
128  */
129 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
130
131 /*
132  * Flag to indicate if we have computed the system wide
133  * capabilities based on the boot time active CPUs. This
134  * will be used to determine if a new booting CPU should
135  * go through the verification process to make sure that it
136  * supports the system capabilities, without using a hotplug
137  * notifier. This is also used to decide if we could use
138  * the fast path for checking constant CPU caps.
139  */
140 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
141 EXPORT_SYMBOL(arm64_const_caps_ready);
142 static inline void finalize_system_capabilities(void)
143 {
144         static_branch_enable(&arm64_const_caps_ready);
145 }
146
147 void dump_cpu_features(void)
148 {
149         /* file-wide pr_fmt adds "CPU features: " prefix */
150         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
151 }
152
153 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
154 EXPORT_SYMBOL(cpu_hwcap_keys);
155
156 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
157         {                                               \
158                 .sign = SIGNED,                         \
159                 .visible = VISIBLE,                     \
160                 .strict = STRICT,                       \
161                 .type = TYPE,                           \
162                 .shift = SHIFT,                         \
163                 .width = WIDTH,                         \
164                 .safe_val = SAFE_VAL,                   \
165         }
166
167 /* Define a feature with unsigned values */
168 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
169         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
170
171 /* Define a feature with a signed value */
172 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
173         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
174
175 #define ARM64_FTR_END                                   \
176         {                                               \
177                 .width = 0,                             \
178         }
179
180 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
181
182 static bool __system_matches_cap(unsigned int n);
183
184 /*
185  * NOTE: Any changes to the visibility of features should be kept in
186  * sync with the documentation of the CPU feature register ABI.
187  */
188 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
203         ARM64_FTR_END,
204 };
205
206 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
207         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
208         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
214                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
215         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
216                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
217         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
221                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
222         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
223                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
225         ARM64_FTR_END,
226 };
227
228 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
229         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
231         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
235         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
236                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
237         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
239         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
240         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
244         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
245         ARM64_FTR_END,
246 };
247
248 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
249         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
252                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
253         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
254         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
255                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
256         ARM64_FTR_END,
257 };
258
259 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
260         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
261                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
263                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
264         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
265                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
266         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
267                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
268         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
269                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
270         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
271                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
272         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
273                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
274         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
275                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
276         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
277                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
278         ARM64_FTR_END,
279 };
280
281 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
285         /*
286          * Page size not being supported at Stage-2 is not fatal. You
287          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
288          * your favourite nesting hypervisor.
289          *
290          * There is a small corner case where the hypervisor explicitly
291          * advertises a given granule size at Stage-2 (value 2) on some
292          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
293          * vCPUs. Although this is not forbidden by the architecture, it
294          * indicates that the hypervisor is being silly (or buggy).
295          *
296          * We make no effort to cope with this and pretend that if these
297          * fields are inconsistent across vCPUs, then it isn't worth
298          * trying to bring KVM up.
299          */
300         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
301         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
302         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
303         /*
304          * We already refuse to boot CPUs that don't support our configured
305          * page size, so we can only detect mismatches for a page size other
306          * than the one we're currently using. Unfortunately, SoCs like this
307          * exist in the wild so, even though we don't like it, we'll have to go
308          * along with it and treat them as non-strict.
309          */
310         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
311         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
313
314         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
315         /* Linux shouldn't care about secure memory */
316         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
317         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
318         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
319         /*
320          * Differing PARange is fine as long as all peripherals and memory are mapped
321          * within the minimum PARange of all CPUs
322          */
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
324         ARM64_FTR_END,
325 };
326
327 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
328         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
329         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
330         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
331         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
332         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
333         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
334         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
335         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
336         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
337         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
338         ARM64_FTR_END,
339 };
340
341 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
342         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
343         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
344         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
345         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
346         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
347         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
348         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
349         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
350         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
351         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
352         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
354         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
355         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
356         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
357         ARM64_FTR_END,
358 };
359
360 static const struct arm64_ftr_bits ftr_ctr[] = {
361         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
362         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
363         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
364         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
365         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
366         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
367         /*
368          * Linux can handle differing I-cache policies. Userspace JITs will
369          * make use of *minLine.
370          * If we have differing I-cache policies, report it as the weakest - VIPT.
371          */
372         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
373         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
374         ARM64_FTR_END,
375 };
376
377 static struct arm64_ftr_override __ro_after_init no_override = { };
378
379 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
380         .name           = "SYS_CTR_EL0",
381         .ftr_bits       = ftr_ctr,
382         .override       = &no_override,
383 };
384
385 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
386         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
389         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
390         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
391         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
392         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
394         ARM64_FTR_END,
395 };
396
397 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
398         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
399         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
400         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
401         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
402         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
403         /*
404          * We can instantiate multiple PMU instances with different levels
405          * of support.
406          */
407         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
408         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
409         ARM64_FTR_END,
410 };
411
412 static const struct arm64_ftr_bits ftr_mvfr2[] = {
413         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
414         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
415         ARM64_FTR_END,
416 };
417
418 static const struct arm64_ftr_bits ftr_dczid[] = {
419         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
420         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
421         ARM64_FTR_END,
422 };
423
424 static const struct arm64_ftr_bits ftr_gmid[] = {
425         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
426         ARM64_FTR_END,
427 };
428
429 static const struct arm64_ftr_bits ftr_id_isar0[] = {
430         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
431         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
432         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
433         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
434         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
435         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
436         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
437         ARM64_FTR_END,
438 };
439
440 static const struct arm64_ftr_bits ftr_id_isar5[] = {
441         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
443         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
444         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
445         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
446         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
447         ARM64_FTR_END,
448 };
449
450 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
452         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
453         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
454         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
455         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
456         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
457         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
458
459         /*
460          * SpecSEI = 1 indicates that the PE might generate an SError on an
461          * external abort on speculative read. It is safe to assume that an
462          * SError might be generated than it will not be. Hence it has been
463          * classified as FTR_HIGHER_SAFE.
464          */
465         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
466         ARM64_FTR_END,
467 };
468
469 static const struct arm64_ftr_bits ftr_id_isar4[] = {
470         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
471         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
472         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
473         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
474         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
475         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
476         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
478         ARM64_FTR_END,
479 };
480
481 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
483         ARM64_FTR_END,
484 };
485
486 static const struct arm64_ftr_bits ftr_id_isar6[] = {
487         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
489         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
490         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
491         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
492         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
493         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
494         ARM64_FTR_END,
495 };
496
497 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
498         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
499         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
500         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
501         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
502         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
503         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
504         ARM64_FTR_END,
505 };
506
507 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
509         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
510         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
511         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
512         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
513         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
514         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
515         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
516         ARM64_FTR_END,
517 };
518
519 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
520         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
521         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
522         ARM64_FTR_END,
523 };
524
525 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
526         /* [31:28] TraceFilt */
527         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
532         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
533         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
534         ARM64_FTR_END,
535 };
536
537 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
538         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
539         ARM64_FTR_END,
540 };
541
542 static const struct arm64_ftr_bits ftr_zcr[] = {
543         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
544                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
545         ARM64_FTR_END,
546 };
547
548 /*
549  * Common ftr bits for a 32bit register with all hidden, strict
550  * attributes, with 4bit feature fields and a default safe value of
551  * 0. Covers the following 32bit registers:
552  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
553  */
554 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
555         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
556         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
557         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
558         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
559         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
560         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
561         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
562         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
563         ARM64_FTR_END,
564 };
565
566 /* Table for a single 32bit feature value */
567 static const struct arm64_ftr_bits ftr_single32[] = {
568         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
569         ARM64_FTR_END,
570 };
571
572 static const struct arm64_ftr_bits ftr_raz[] = {
573         ARM64_FTR_END,
574 };
575
576 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) {                \
577                 .sys_id = id,                                   \
578                 .reg =  &(struct arm64_ftr_reg){                \
579                         .name = #id,                            \
580                         .override = (ovr),                      \
581                         .ftr_bits = &((table)[0]),              \
582         }}
583
584 #define ARM64_FTR_REG(id, table) ARM64_FTR_REG_OVERRIDE(id, table, &no_override)
585
586 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
587 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
588 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
589
590 static const struct __ftr_reg_entry {
591         u32                     sys_id;
592         struct arm64_ftr_reg    *reg;
593 } arm64_ftr_regs[] = {
594
595         /* Op1 = 0, CRn = 0, CRm = 1 */
596         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
597         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
598         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
599         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
600         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
601         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
602         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
603
604         /* Op1 = 0, CRn = 0, CRm = 2 */
605         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
606         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
607         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
608         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
609         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
610         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
611         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
612         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
613
614         /* Op1 = 0, CRn = 0, CRm = 3 */
615         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
616         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
617         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
618         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
619         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
620         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
621
622         /* Op1 = 0, CRn = 0, CRm = 4 */
623         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
624         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
625                                &id_aa64pfr1_override),
626         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
627
628         /* Op1 = 0, CRn = 0, CRm = 5 */
629         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
630         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
631
632         /* Op1 = 0, CRn = 0, CRm = 6 */
633         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
634         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
635                                &id_aa64isar1_override),
636
637         /* Op1 = 0, CRn = 0, CRm = 7 */
638         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
639         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
640                                &id_aa64mmfr1_override),
641         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
642
643         /* Op1 = 0, CRn = 1, CRm = 2 */
644         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
645
646         /* Op1 = 1, CRn = 0, CRm = 0 */
647         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
648
649         /* Op1 = 3, CRn = 0, CRm = 0 */
650         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
651         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
652
653         /* Op1 = 3, CRn = 14, CRm = 0 */
654         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
655 };
656
657 static int search_cmp_ftr_reg(const void *id, const void *regp)
658 {
659         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
660 }
661
662 /*
663  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
664  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
665  * ascending order of sys_id, we use binary search to find a matching
666  * entry.
667  *
668  * returns - Upon success,  matching ftr_reg entry for id.
669  *         - NULL on failure. It is upto the caller to decide
670  *           the impact of a failure.
671  */
672 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
673 {
674         const struct __ftr_reg_entry *ret;
675
676         ret = bsearch((const void *)(unsigned long)sys_id,
677                         arm64_ftr_regs,
678                         ARRAY_SIZE(arm64_ftr_regs),
679                         sizeof(arm64_ftr_regs[0]),
680                         search_cmp_ftr_reg);
681         if (ret)
682                 return ret->reg;
683         return NULL;
684 }
685
686 /*
687  * get_arm64_ftr_reg - Looks up a feature register entry using
688  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
689  *
690  * returns - Upon success,  matching ftr_reg entry for id.
691  *         - NULL on failure but with an WARN_ON().
692  */
693 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
694 {
695         struct arm64_ftr_reg *reg;
696
697         reg = get_arm64_ftr_reg_nowarn(sys_id);
698
699         /*
700          * Requesting a non-existent register search is an error. Warn
701          * and let the caller handle it.
702          */
703         WARN_ON(!reg);
704         return reg;
705 }
706
707 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
708                                s64 ftr_val)
709 {
710         u64 mask = arm64_ftr_mask(ftrp);
711
712         reg &= ~mask;
713         reg |= (ftr_val << ftrp->shift) & mask;
714         return reg;
715 }
716
717 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
718                                 s64 cur)
719 {
720         s64 ret = 0;
721
722         switch (ftrp->type) {
723         case FTR_EXACT:
724                 ret = ftrp->safe_val;
725                 break;
726         case FTR_LOWER_SAFE:
727                 ret = min(new, cur);
728                 break;
729         case FTR_HIGHER_OR_ZERO_SAFE:
730                 if (!cur || !new)
731                         break;
732                 fallthrough;
733         case FTR_HIGHER_SAFE:
734                 ret = max(new, cur);
735                 break;
736         default:
737                 BUG();
738         }
739
740         return ret;
741 }
742
743 static void __init sort_ftr_regs(void)
744 {
745         unsigned int i;
746
747         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
748                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
749                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
750                 unsigned int j = 0;
751
752                 /*
753                  * Features here must be sorted in descending order with respect
754                  * to their shift values and should not overlap with each other.
755                  */
756                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
757                         unsigned int width = ftr_reg->ftr_bits[j].width;
758                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
759                         unsigned int prev_shift;
760
761                         WARN((shift  + width) > 64,
762                                 "%s has invalid feature at shift %d\n",
763                                 ftr_reg->name, shift);
764
765                         /*
766                          * Skip the first feature. There is nothing to
767                          * compare against for now.
768                          */
769                         if (j == 0)
770                                 continue;
771
772                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
773                         WARN((shift + width) > prev_shift,
774                                 "%s has feature overlap at shift %d\n",
775                                 ftr_reg->name, shift);
776                 }
777
778                 /*
779                  * Skip the first register. There is nothing to
780                  * compare against for now.
781                  */
782                 if (i == 0)
783                         continue;
784                 /*
785                  * Registers here must be sorted in ascending order with respect
786                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
787                  * to work correctly.
788                  */
789                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
790         }
791 }
792
793 /*
794  * Initialise the CPU feature register from Boot CPU values.
795  * Also initiliases the strict_mask for the register.
796  * Any bits that are not covered by an arm64_ftr_bits entry are considered
797  * RES0 for the system-wide value, and must strictly match.
798  */
799 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
800 {
801         u64 val = 0;
802         u64 strict_mask = ~0x0ULL;
803         u64 user_mask = 0;
804         u64 valid_mask = 0;
805
806         const struct arm64_ftr_bits *ftrp;
807         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
808
809         if (!reg)
810                 return;
811
812         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
813                 u64 ftr_mask = arm64_ftr_mask(ftrp);
814                 s64 ftr_new = arm64_ftr_value(ftrp, new);
815                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
816
817                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
818                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
819                         char *str = NULL;
820
821                         if (ftr_ovr != tmp) {
822                                 /* Unsafe, remove the override */
823                                 reg->override->mask &= ~ftr_mask;
824                                 reg->override->val &= ~ftr_mask;
825                                 tmp = ftr_ovr;
826                                 str = "ignoring override";
827                         } else if (ftr_new != tmp) {
828                                 /* Override was valid */
829                                 ftr_new = tmp;
830                                 str = "forced";
831                         } else if (ftr_ovr == tmp) {
832                                 /* Override was the safe value */
833                                 str = "already set";
834                         }
835
836                         if (str)
837                                 pr_warn("%s[%d:%d]: %s to %llx\n",
838                                         reg->name,
839                                         ftrp->shift + ftrp->width - 1,
840                                         ftrp->shift, str, tmp);
841                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
842                         reg->override->val &= ~ftr_mask;
843                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
844                                 reg->name,
845                                 ftrp->shift + ftrp->width - 1,
846                                 ftrp->shift);
847                 }
848
849                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
850
851                 valid_mask |= ftr_mask;
852                 if (!ftrp->strict)
853                         strict_mask &= ~ftr_mask;
854                 if (ftrp->visible)
855                         user_mask |= ftr_mask;
856                 else
857                         reg->user_val = arm64_ftr_set_value(ftrp,
858                                                             reg->user_val,
859                                                             ftrp->safe_val);
860         }
861
862         val &= valid_mask;
863
864         reg->sys_val = val;
865         reg->strict_mask = strict_mask;
866         reg->user_mask = user_mask;
867 }
868
869 extern const struct arm64_cpu_capabilities arm64_errata[];
870 static const struct arm64_cpu_capabilities arm64_features[];
871
872 static void __init
873 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
874 {
875         for (; caps->matches; caps++) {
876                 if (WARN(caps->capability >= ARM64_NCAPS,
877                         "Invalid capability %d\n", caps->capability))
878                         continue;
879                 if (WARN(cpu_hwcaps_ptrs[caps->capability],
880                         "Duplicate entry for capability %d\n",
881                         caps->capability))
882                         continue;
883                 cpu_hwcaps_ptrs[caps->capability] = caps;
884         }
885 }
886
887 static void __init init_cpu_hwcaps_indirect_list(void)
888 {
889         init_cpu_hwcaps_indirect_list_from_array(arm64_features);
890         init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
891 }
892
893 static void __init setup_boot_cpu_capabilities(void);
894
895 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
896 {
897         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
898         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
899         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
900         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
901         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
902         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
903         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
904         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
905         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
906         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
907         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
908         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
909         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
910         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
911         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
912         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
913         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
914         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
915         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
916         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
917         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
918 }
919
920 void __init init_cpu_features(struct cpuinfo_arm64 *info)
921 {
922         /* Before we start using the tables, make sure it is sorted */
923         sort_ftr_regs();
924
925         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
926         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
927         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
928         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
929         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
930         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
931         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
932         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
933         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
934         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
935         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
936         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
937         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
938
939         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
940                 init_32bit_cpu_features(&info->aarch32);
941
942         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
943                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
944                 sve_init_vq_map();
945         }
946
947         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
948                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
949
950         /*
951          * Initialize the indirect array of CPU hwcaps capabilities pointers
952          * before we handle the boot CPU below.
953          */
954         init_cpu_hwcaps_indirect_list();
955
956         /*
957          * Detect and enable early CPU capabilities based on the boot CPU,
958          * after we have initialised the CPU feature infrastructure.
959          */
960         setup_boot_cpu_capabilities();
961 }
962
963 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
964 {
965         const struct arm64_ftr_bits *ftrp;
966
967         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
968                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
969                 s64 ftr_new = arm64_ftr_value(ftrp, new);
970
971                 if (ftr_cur == ftr_new)
972                         continue;
973                 /* Find a safe value */
974                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
975                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
976         }
977
978 }
979
980 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
981 {
982         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
983
984         if (!regp)
985                 return 0;
986
987         update_cpu_ftr_reg(regp, val);
988         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
989                 return 0;
990         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
991                         regp->name, boot, cpu, val);
992         return 1;
993 }
994
995 static void relax_cpu_ftr_reg(u32 sys_id, int field)
996 {
997         const struct arm64_ftr_bits *ftrp;
998         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
999
1000         if (!regp)
1001                 return;
1002
1003         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1004                 if (ftrp->shift == field) {
1005                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1006                         break;
1007                 }
1008         }
1009
1010         /* Bogus field? */
1011         WARN_ON(!ftrp->width);
1012 }
1013
1014 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1015                                          struct cpuinfo_arm64 *boot)
1016 {
1017         static bool boot_cpu_32bit_regs_overridden = false;
1018
1019         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1020                 return;
1021
1022         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1023                 return;
1024
1025         boot->aarch32 = info->aarch32;
1026         init_32bit_cpu_features(&boot->aarch32);
1027         boot_cpu_32bit_regs_overridden = true;
1028 }
1029
1030 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1031                                      struct cpuinfo_32bit *boot)
1032 {
1033         int taint = 0;
1034         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1035
1036         /*
1037          * If we don't have AArch32 at EL1, then relax the strictness of
1038          * EL1-dependent register fields to avoid spurious sanity check fails.
1039          */
1040         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1041                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1042                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1043                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1044                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1045                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1046                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1047         }
1048
1049         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1050                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1051         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1052                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1053         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1054                                       info->reg_id_isar0, boot->reg_id_isar0);
1055         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1056                                       info->reg_id_isar1, boot->reg_id_isar1);
1057         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1058                                       info->reg_id_isar2, boot->reg_id_isar2);
1059         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1060                                       info->reg_id_isar3, boot->reg_id_isar3);
1061         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1062                                       info->reg_id_isar4, boot->reg_id_isar4);
1063         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1064                                       info->reg_id_isar5, boot->reg_id_isar5);
1065         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1066                                       info->reg_id_isar6, boot->reg_id_isar6);
1067
1068         /*
1069          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1070          * ACTLR formats could differ across CPUs and therefore would have to
1071          * be trapped for virtualization anyway.
1072          */
1073         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1074                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1075         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1076                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1077         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1078                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1079         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1080                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1081         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1082                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1083         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1084                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1085         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1086                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1087         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1088                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1089         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1090                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1091         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1092                                       info->reg_mvfr0, boot->reg_mvfr0);
1093         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1094                                       info->reg_mvfr1, boot->reg_mvfr1);
1095         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1096                                       info->reg_mvfr2, boot->reg_mvfr2);
1097
1098         return taint;
1099 }
1100
1101 /*
1102  * Update system wide CPU feature registers with the values from a
1103  * non-boot CPU. Also performs SANITY checks to make sure that there
1104  * aren't any insane variations from that of the boot CPU.
1105  */
1106 void update_cpu_features(int cpu,
1107                          struct cpuinfo_arm64 *info,
1108                          struct cpuinfo_arm64 *boot)
1109 {
1110         int taint = 0;
1111
1112         /*
1113          * The kernel can handle differing I-cache policies, but otherwise
1114          * caches should look identical. Userspace JITs will make use of
1115          * *minLine.
1116          */
1117         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1118                                       info->reg_ctr, boot->reg_ctr);
1119
1120         /*
1121          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1122          * could result in too much or too little memory being zeroed if a
1123          * process is preempted and migrated between CPUs.
1124          */
1125         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1126                                       info->reg_dczid, boot->reg_dczid);
1127
1128         /* If different, timekeeping will be broken (especially with KVM) */
1129         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1130                                       info->reg_cntfrq, boot->reg_cntfrq);
1131
1132         /*
1133          * The kernel uses self-hosted debug features and expects CPUs to
1134          * support identical debug features. We presently need CTX_CMPs, WRPs,
1135          * and BRPs to be identical.
1136          * ID_AA64DFR1 is currently RES0.
1137          */
1138         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1139                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1140         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1141                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1142         /*
1143          * Even in big.LITTLE, processors should be identical instruction-set
1144          * wise.
1145          */
1146         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1147                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1148         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1149                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1150
1151         /*
1152          * Differing PARange support is fine as long as all peripherals and
1153          * memory are mapped within the minimum PARange of all CPUs.
1154          * Linux should not care about secure memory.
1155          */
1156         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1157                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1158         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1159                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1160         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1161                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1162
1163         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1164                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1165         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1166                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1167
1168         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1169                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1170
1171         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1172                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1173                                         info->reg_zcr, boot->reg_zcr);
1174
1175                 /* Probe vector lengths, unless we already gave up on SVE */
1176                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1177                     !system_capabilities_finalized())
1178                         sve_update_vq_map();
1179         }
1180
1181         /*
1182          * The kernel uses the LDGM/STGM instructions and the number of tags
1183          * they read/write depends on the GMID_EL1.BS field. Check that the
1184          * value is the same on all CPUs.
1185          */
1186         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1187             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1188                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1189                                               info->reg_gmid, boot->reg_gmid);
1190         }
1191
1192         /*
1193          * If we don't have AArch32 at all then skip the checks entirely
1194          * as the register values may be UNKNOWN and we're not going to be
1195          * using them for anything.
1196          *
1197          * This relies on a sanitised view of the AArch64 ID registers
1198          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1199          */
1200         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1201                 lazy_init_32bit_cpu_features(info, boot);
1202                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1203                                                    &boot->aarch32);
1204         }
1205
1206         /*
1207          * Mismatched CPU features are a recipe for disaster. Don't even
1208          * pretend to support them.
1209          */
1210         if (taint) {
1211                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1212                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1213         }
1214 }
1215
1216 u64 read_sanitised_ftr_reg(u32 id)
1217 {
1218         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1219
1220         if (!regp)
1221                 return 0;
1222         return regp->sys_val;
1223 }
1224 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1225
1226 #define read_sysreg_case(r)     \
1227         case r:         val = read_sysreg_s(r); break;
1228
1229 /*
1230  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1231  * Read the system register on the current CPU
1232  */
1233 u64 __read_sysreg_by_encoding(u32 sys_id)
1234 {
1235         struct arm64_ftr_reg *regp;
1236         u64 val;
1237
1238         switch (sys_id) {
1239         read_sysreg_case(SYS_ID_PFR0_EL1);
1240         read_sysreg_case(SYS_ID_PFR1_EL1);
1241         read_sysreg_case(SYS_ID_PFR2_EL1);
1242         read_sysreg_case(SYS_ID_DFR0_EL1);
1243         read_sysreg_case(SYS_ID_DFR1_EL1);
1244         read_sysreg_case(SYS_ID_MMFR0_EL1);
1245         read_sysreg_case(SYS_ID_MMFR1_EL1);
1246         read_sysreg_case(SYS_ID_MMFR2_EL1);
1247         read_sysreg_case(SYS_ID_MMFR3_EL1);
1248         read_sysreg_case(SYS_ID_MMFR4_EL1);
1249         read_sysreg_case(SYS_ID_MMFR5_EL1);
1250         read_sysreg_case(SYS_ID_ISAR0_EL1);
1251         read_sysreg_case(SYS_ID_ISAR1_EL1);
1252         read_sysreg_case(SYS_ID_ISAR2_EL1);
1253         read_sysreg_case(SYS_ID_ISAR3_EL1);
1254         read_sysreg_case(SYS_ID_ISAR4_EL1);
1255         read_sysreg_case(SYS_ID_ISAR5_EL1);
1256         read_sysreg_case(SYS_ID_ISAR6_EL1);
1257         read_sysreg_case(SYS_MVFR0_EL1);
1258         read_sysreg_case(SYS_MVFR1_EL1);
1259         read_sysreg_case(SYS_MVFR2_EL1);
1260
1261         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1262         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1263         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1264         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1265         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1266         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1267         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1268         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1269         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1270         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1271
1272         read_sysreg_case(SYS_CNTFRQ_EL0);
1273         read_sysreg_case(SYS_CTR_EL0);
1274         read_sysreg_case(SYS_DCZID_EL0);
1275
1276         default:
1277                 BUG();
1278                 return 0;
1279         }
1280
1281         regp  = get_arm64_ftr_reg(sys_id);
1282         if (regp) {
1283                 val &= ~regp->override->mask;
1284                 val |= (regp->override->val & regp->override->mask);
1285         }
1286
1287         return val;
1288 }
1289
1290 #include <linux/irqchip/arm-gic-v3.h>
1291
1292 static bool
1293 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1294 {
1295         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1296
1297         return val >= entry->min_field_value;
1298 }
1299
1300 static bool
1301 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1302 {
1303         u64 val;
1304
1305         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1306         if (scope == SCOPE_SYSTEM)
1307                 val = read_sanitised_ftr_reg(entry->sys_reg);
1308         else
1309                 val = __read_sysreg_by_encoding(entry->sys_reg);
1310
1311         return feature_matches(val, entry);
1312 }
1313
1314 const struct cpumask *system_32bit_el0_cpumask(void)
1315 {
1316         if (!system_supports_32bit_el0())
1317                 return cpu_none_mask;
1318
1319         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1320                 return cpu_32bit_el0_mask;
1321
1322         return cpu_possible_mask;
1323 }
1324
1325 static int __init parse_32bit_el0_param(char *str)
1326 {
1327         allow_mismatched_32bit_el0 = true;
1328         return 0;
1329 }
1330 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1331
1332 static ssize_t aarch32_el0_show(struct device *dev,
1333                                 struct device_attribute *attr, char *buf)
1334 {
1335         const struct cpumask *mask = system_32bit_el0_cpumask();
1336
1337         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1338 }
1339 static const DEVICE_ATTR_RO(aarch32_el0);
1340
1341 static int __init aarch32_el0_sysfs_init(void)
1342 {
1343         if (!allow_mismatched_32bit_el0)
1344                 return 0;
1345
1346         return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1347 }
1348 device_initcall(aarch32_el0_sysfs_init);
1349
1350 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1351 {
1352         if (!has_cpuid_feature(entry, scope))
1353                 return allow_mismatched_32bit_el0;
1354
1355         if (scope == SCOPE_SYSTEM)
1356                 pr_info("detected: 32-bit EL0 Support\n");
1357
1358         return true;
1359 }
1360
1361 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1362 {
1363         bool has_sre;
1364
1365         if (!has_cpuid_feature(entry, scope))
1366                 return false;
1367
1368         has_sre = gic_enable_sre();
1369         if (!has_sre)
1370                 pr_warn_once("%s present but disabled by higher exception level\n",
1371                              entry->desc);
1372
1373         return has_sre;
1374 }
1375
1376 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1377 {
1378         u32 midr = read_cpuid_id();
1379
1380         /* Cavium ThunderX pass 1.x and 2.x */
1381         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1382                 MIDR_CPU_VAR_REV(0, 0),
1383                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1384 }
1385
1386 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1387 {
1388         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1389
1390         return cpuid_feature_extract_signed_field(pfr0,
1391                                         ID_AA64PFR0_FP_SHIFT) < 0;
1392 }
1393
1394 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1395                           int scope)
1396 {
1397         u64 ctr;
1398
1399         if (scope == SCOPE_SYSTEM)
1400                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1401         else
1402                 ctr = read_cpuid_effective_cachetype();
1403
1404         return ctr & BIT(CTR_IDC_SHIFT);
1405 }
1406
1407 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1408 {
1409         /*
1410          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1411          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1412          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1413          * value.
1414          */
1415         if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1416                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1417 }
1418
1419 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1420                           int scope)
1421 {
1422         u64 ctr;
1423
1424         if (scope == SCOPE_SYSTEM)
1425                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1426         else
1427                 ctr = read_cpuid_cachetype();
1428
1429         return ctr & BIT(CTR_DIC_SHIFT);
1430 }
1431
1432 static bool __maybe_unused
1433 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1434 {
1435         /*
1436          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1437          * may share TLB entries with a CPU stuck in the crashed
1438          * kernel.
1439          */
1440         if (is_kdump_kernel())
1441                 return false;
1442
1443         if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1444                 return false;
1445
1446         return has_cpuid_feature(entry, scope);
1447 }
1448
1449 /*
1450  * This check is triggered during the early boot before the cpufeature
1451  * is initialised. Checking the status on the local CPU allows the boot
1452  * CPU to detect the need for non-global mappings and thus avoiding a
1453  * pagetable re-write after all the CPUs are booted. This check will be
1454  * anyway run on individual CPUs, allowing us to get the consistent
1455  * state once the SMP CPUs are up and thus make the switch to non-global
1456  * mappings if required.
1457  */
1458 bool kaslr_requires_kpti(void)
1459 {
1460         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1461                 return false;
1462
1463         /*
1464          * E0PD does a similar job to KPTI so can be used instead
1465          * where available.
1466          */
1467         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1468                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1469                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1470                                                 ID_AA64MMFR2_E0PD_SHIFT))
1471                         return false;
1472         }
1473
1474         /*
1475          * Systems affected by Cavium erratum 24756 are incompatible
1476          * with KPTI.
1477          */
1478         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1479                 extern const struct midr_range cavium_erratum_27456_cpus[];
1480
1481                 if (is_midr_in_range_list(read_cpuid_id(),
1482                                           cavium_erratum_27456_cpus))
1483                         return false;
1484         }
1485
1486         return kaslr_offset() > 0;
1487 }
1488
1489 static bool __meltdown_safe = true;
1490 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1491
1492 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1493                                 int scope)
1494 {
1495         /* List of CPUs that are not vulnerable and don't need KPTI */
1496         static const struct midr_range kpti_safe_list[] = {
1497                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1498                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1499                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1500                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1501                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1502                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1503                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1504                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1505                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1506                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1507                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1508                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1509                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1510                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1511                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1512                 { /* sentinel */ }
1513         };
1514         char const *str = "kpti command line option";
1515         bool meltdown_safe;
1516
1517         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1518
1519         /* Defer to CPU feature registers */
1520         if (has_cpuid_feature(entry, scope))
1521                 meltdown_safe = true;
1522
1523         if (!meltdown_safe)
1524                 __meltdown_safe = false;
1525
1526         /*
1527          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1528          * ThunderX leads to apparent I-cache corruption of kernel text, which
1529          * ends as well as you might imagine. Don't even try. We cannot rely
1530          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1531          * because cpucap detection order may change. However, since we know
1532          * affected CPUs are always in a homogeneous configuration, it is
1533          * safe to rely on this_cpu_has_cap() here.
1534          */
1535         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1536                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1537                 __kpti_forced = -1;
1538         }
1539
1540         /* Useful for KASLR robustness */
1541         if (kaslr_requires_kpti()) {
1542                 if (!__kpti_forced) {
1543                         str = "KASLR";
1544                         __kpti_forced = 1;
1545                 }
1546         }
1547
1548         if (cpu_mitigations_off() && !__kpti_forced) {
1549                 str = "mitigations=off";
1550                 __kpti_forced = -1;
1551         }
1552
1553         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1554                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1555                 return false;
1556         }
1557
1558         /* Forced? */
1559         if (__kpti_forced) {
1560                 pr_info_once("kernel page table isolation forced %s by %s\n",
1561                              __kpti_forced > 0 ? "ON" : "OFF", str);
1562                 return __kpti_forced > 0;
1563         }
1564
1565         return !meltdown_safe;
1566 }
1567
1568 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1569 static void __nocfi
1570 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1571 {
1572         typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1573         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1574         kpti_remap_fn *remap_fn;
1575
1576         int cpu = smp_processor_id();
1577
1578         /*
1579          * We don't need to rewrite the page-tables if either we've done
1580          * it already or we have KASLR enabled and therefore have not
1581          * created any global mappings at all.
1582          */
1583         if (arm64_use_ng_mappings)
1584                 return;
1585
1586         remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1587
1588         cpu_install_idmap();
1589         remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1590         cpu_uninstall_idmap();
1591
1592         if (!cpu)
1593                 arm64_use_ng_mappings = true;
1594 }
1595 #else
1596 static void
1597 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1598 {
1599 }
1600 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1601
1602 static int __init parse_kpti(char *str)
1603 {
1604         bool enabled;
1605         int ret = strtobool(str, &enabled);
1606
1607         if (ret)
1608                 return ret;
1609
1610         __kpti_forced = enabled ? 1 : -1;
1611         return 0;
1612 }
1613 early_param("kpti", parse_kpti);
1614
1615 #ifdef CONFIG_ARM64_HW_AFDBM
1616 static inline void __cpu_enable_hw_dbm(void)
1617 {
1618         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1619
1620         write_sysreg(tcr, tcr_el1);
1621         isb();
1622         local_flush_tlb_all();
1623 }
1624
1625 static bool cpu_has_broken_dbm(void)
1626 {
1627         /* List of CPUs which have broken DBM support. */
1628         static const struct midr_range cpus[] = {
1629 #ifdef CONFIG_ARM64_ERRATUM_1024718
1630                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1631                 /* Kryo4xx Silver (rdpe => r1p0) */
1632                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1633 #endif
1634                 {},
1635         };
1636
1637         return is_midr_in_range_list(read_cpuid_id(), cpus);
1638 }
1639
1640 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1641 {
1642         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1643                !cpu_has_broken_dbm();
1644 }
1645
1646 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1647 {
1648         if (cpu_can_use_dbm(cap))
1649                 __cpu_enable_hw_dbm();
1650 }
1651
1652 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1653                        int __unused)
1654 {
1655         static bool detected = false;
1656         /*
1657          * DBM is a non-conflicting feature. i.e, the kernel can safely
1658          * run a mix of CPUs with and without the feature. So, we
1659          * unconditionally enable the capability to allow any late CPU
1660          * to use the feature. We only enable the control bits on the
1661          * CPU, if it actually supports.
1662          *
1663          * We have to make sure we print the "feature" detection only
1664          * when at least one CPU actually uses it. So check if this CPU
1665          * can actually use it and print the message exactly once.
1666          *
1667          * This is safe as all CPUs (including secondary CPUs - due to the
1668          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1669          * goes through the "matches" check exactly once. Also if a CPU
1670          * matches the criteria, it is guaranteed that the CPU will turn
1671          * the DBM on, as the capability is unconditionally enabled.
1672          */
1673         if (!detected && cpu_can_use_dbm(cap)) {
1674                 detected = true;
1675                 pr_info("detected: Hardware dirty bit management\n");
1676         }
1677
1678         return true;
1679 }
1680
1681 #endif
1682
1683 #ifdef CONFIG_ARM64_AMU_EXTN
1684
1685 /*
1686  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1687  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1688  * information regarding all the events that it supports. When a CPU bit is
1689  * set in the cpumask, the user of this feature can only rely on the presence
1690  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1691  * counters are enabled or access to these counters is enabled by code
1692  * executed at higher exception levels (firmware).
1693  */
1694 static struct cpumask amu_cpus __read_mostly;
1695
1696 bool cpu_has_amu_feat(int cpu)
1697 {
1698         return cpumask_test_cpu(cpu, &amu_cpus);
1699 }
1700
1701 int get_cpu_with_amu_feat(void)
1702 {
1703         return cpumask_any(&amu_cpus);
1704 }
1705
1706 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1707 {
1708         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1709                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1710                         smp_processor_id());
1711                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1712                 update_freq_counters_refs();
1713         }
1714 }
1715
1716 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1717                     int __unused)
1718 {
1719         /*
1720          * The AMU extension is a non-conflicting feature: the kernel can
1721          * safely run a mix of CPUs with and without support for the
1722          * activity monitors extension. Therefore, unconditionally enable
1723          * the capability to allow any late CPU to use the feature.
1724          *
1725          * With this feature unconditionally enabled, the cpu_enable
1726          * function will be called for all CPUs that match the criteria,
1727          * including secondary and hotplugged, marking this feature as
1728          * present on that respective CPU. The enable function will also
1729          * print a detection message.
1730          */
1731
1732         return true;
1733 }
1734 #else
1735 int get_cpu_with_amu_feat(void)
1736 {
1737         return nr_cpu_ids;
1738 }
1739 #endif
1740
1741 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1742 {
1743         return is_kernel_in_hyp_mode();
1744 }
1745
1746 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1747 {
1748         /*
1749          * Copy register values that aren't redirected by hardware.
1750          *
1751          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1752          * this value to tpidr_el2 before we patch the code. Once we've done
1753          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1754          * do anything here.
1755          */
1756         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1757                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1758 }
1759
1760 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1761 {
1762         u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1763
1764         /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1765         WARN_ON(CLIDR_LOUU(val) || CLIDR_LOUIS(val));
1766 }
1767
1768 #ifdef CONFIG_ARM64_PAN
1769 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1770 {
1771         /*
1772          * We modify PSTATE. This won't work from irq context as the PSTATE
1773          * is discarded once we return from the exception.
1774          */
1775         WARN_ON_ONCE(in_interrupt());
1776
1777         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1778         set_pstate_pan(1);
1779 }
1780 #endif /* CONFIG_ARM64_PAN */
1781
1782 #ifdef CONFIG_ARM64_RAS_EXTN
1783 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1784 {
1785         /* Firmware may have left a deferred SError in this register. */
1786         write_sysreg_s(0, SYS_DISR_EL1);
1787 }
1788 #endif /* CONFIG_ARM64_RAS_EXTN */
1789
1790 #ifdef CONFIG_ARM64_PTR_AUTH
1791 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1792 {
1793         int boot_val, sec_val;
1794
1795         /* We don't expect to be called with SCOPE_SYSTEM */
1796         WARN_ON(scope == SCOPE_SYSTEM);
1797         /*
1798          * The ptr-auth feature levels are not intercompatible with lower
1799          * levels. Hence we must match ptr-auth feature level of the secondary
1800          * CPUs with that of the boot CPU. The level of boot cpu is fetched
1801          * from the sanitised register whereas direct register read is done for
1802          * the secondary CPUs.
1803          * The sanitised feature state is guaranteed to match that of the
1804          * boot CPU as a mismatched secondary CPU is parked before it gets
1805          * a chance to update the state, with the capability.
1806          */
1807         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1808                                                entry->field_pos, entry->sign);
1809         if (scope & SCOPE_BOOT_CPU)
1810                 return boot_val >= entry->min_field_value;
1811         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1812         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1813                                               entry->field_pos, entry->sign);
1814         return sec_val == boot_val;
1815 }
1816
1817 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1818                                      int scope)
1819 {
1820         return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1821                has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1822 }
1823
1824 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1825                              int __unused)
1826 {
1827         return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1828                __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1829 }
1830 #endif /* CONFIG_ARM64_PTR_AUTH */
1831
1832 #ifdef CONFIG_ARM64_E0PD
1833 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1834 {
1835         if (this_cpu_has_cap(ARM64_HAS_E0PD))
1836                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1837 }
1838 #endif /* CONFIG_ARM64_E0PD */
1839
1840 #ifdef CONFIG_ARM64_PSEUDO_NMI
1841 static bool enable_pseudo_nmi;
1842
1843 static int __init early_enable_pseudo_nmi(char *p)
1844 {
1845         return strtobool(p, &enable_pseudo_nmi);
1846 }
1847 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1848
1849 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1850                                    int scope)
1851 {
1852         return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1853 }
1854 #endif
1855
1856 #ifdef CONFIG_ARM64_BTI
1857 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1858 {
1859         /*
1860          * Use of X16/X17 for tail-calls and trampolines that jump to
1861          * function entry points using BR is a requirement for
1862          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1863          * So, be strict and forbid other BRs using other registers to
1864          * jump onto a PACIxSP instruction:
1865          */
1866         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1867         isb();
1868 }
1869 #endif /* CONFIG_ARM64_BTI */
1870
1871 #ifdef CONFIG_ARM64_MTE
1872 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1873 {
1874         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
1875         isb();
1876
1877         /*
1878          * Clear the tags in the zero page. This needs to be done via the
1879          * linear map which has the Tagged attribute.
1880          */
1881         if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1882                 mte_clear_page_tags(lm_alias(empty_zero_page));
1883
1884         kasan_init_hw_tags_cpu();
1885 }
1886 #endif /* CONFIG_ARM64_MTE */
1887
1888 #ifdef CONFIG_KVM
1889 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1890 {
1891         if (kvm_get_mode() != KVM_MODE_PROTECTED)
1892                 return false;
1893
1894         if (is_kernel_in_hyp_mode()) {
1895                 pr_warn("Protected KVM not available with VHE\n");
1896                 return false;
1897         }
1898
1899         return true;
1900 }
1901 #endif /* CONFIG_KVM */
1902
1903 /* Internal helper functions to match cpu capability type */
1904 static bool
1905 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1906 {
1907         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1908 }
1909
1910 static bool
1911 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1912 {
1913         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1914 }
1915
1916 static bool
1917 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1918 {
1919         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1920 }
1921
1922 static const struct arm64_cpu_capabilities arm64_features[] = {
1923         {
1924                 .desc = "GIC system register CPU interface",
1925                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1926                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1927                 .matches = has_useable_gicv3_cpuif,
1928                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1929                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1930                 .sign = FTR_UNSIGNED,
1931                 .min_field_value = 1,
1932         },
1933 #ifdef CONFIG_ARM64_PAN
1934         {
1935                 .desc = "Privileged Access Never",
1936                 .capability = ARM64_HAS_PAN,
1937                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1938                 .matches = has_cpuid_feature,
1939                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1940                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1941                 .sign = FTR_UNSIGNED,
1942                 .min_field_value = 1,
1943                 .cpu_enable = cpu_enable_pan,
1944         },
1945 #endif /* CONFIG_ARM64_PAN */
1946 #ifdef CONFIG_ARM64_EPAN
1947         {
1948                 .desc = "Enhanced Privileged Access Never",
1949                 .capability = ARM64_HAS_EPAN,
1950                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1951                 .matches = has_cpuid_feature,
1952                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1953                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1954                 .sign = FTR_UNSIGNED,
1955                 .min_field_value = 3,
1956         },
1957 #endif /* CONFIG_ARM64_EPAN */
1958 #ifdef CONFIG_ARM64_LSE_ATOMICS
1959         {
1960                 .desc = "LSE atomic instructions",
1961                 .capability = ARM64_HAS_LSE_ATOMICS,
1962                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1963                 .matches = has_cpuid_feature,
1964                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1965                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1966                 .sign = FTR_UNSIGNED,
1967                 .min_field_value = 2,
1968         },
1969 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1970         {
1971                 .desc = "Software prefetching using PRFM",
1972                 .capability = ARM64_HAS_NO_HW_PREFETCH,
1973                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1974                 .matches = has_no_hw_prefetch,
1975         },
1976         {
1977                 .desc = "Virtualization Host Extensions",
1978                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1979                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1980                 .matches = runs_at_el2,
1981                 .cpu_enable = cpu_copy_el2regs,
1982         },
1983         {
1984                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
1985                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1986                 .matches = has_32bit_el0,
1987                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1988                 .sign = FTR_UNSIGNED,
1989                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1990                 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
1991         },
1992 #ifdef CONFIG_KVM
1993         {
1994                 .desc = "32-bit EL1 Support",
1995                 .capability = ARM64_HAS_32BIT_EL1,
1996                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1997                 .matches = has_cpuid_feature,
1998                 .sys_reg = SYS_ID_AA64PFR0_EL1,
1999                 .sign = FTR_UNSIGNED,
2000                 .field_pos = ID_AA64PFR0_EL1_SHIFT,
2001                 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2002         },
2003         {
2004                 .desc = "Protected KVM",
2005                 .capability = ARM64_KVM_PROTECTED_MODE,
2006                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2007                 .matches = is_kvm_protected_mode,
2008         },
2009 #endif
2010         {
2011                 .desc = "Kernel page table isolation (KPTI)",
2012                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2013                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2014                 /*
2015                  * The ID feature fields below are used to indicate that
2016                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2017                  * more details.
2018                  */
2019                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2020                 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
2021                 .min_field_value = 1,
2022                 .matches = unmap_kernel_at_el0,
2023                 .cpu_enable = kpti_install_ng_mappings,
2024         },
2025         {
2026                 /* FP/SIMD is not implemented */
2027                 .capability = ARM64_HAS_NO_FPSIMD,
2028                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2029                 .min_field_value = 0,
2030                 .matches = has_no_fpsimd,
2031         },
2032 #ifdef CONFIG_ARM64_PMEM
2033         {
2034                 .desc = "Data cache clean to Point of Persistence",
2035                 .capability = ARM64_HAS_DCPOP,
2036                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2037                 .matches = has_cpuid_feature,
2038                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2039                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2040                 .min_field_value = 1,
2041         },
2042         {
2043                 .desc = "Data cache clean to Point of Deep Persistence",
2044                 .capability = ARM64_HAS_DCPODP,
2045                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2046                 .matches = has_cpuid_feature,
2047                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2048                 .sign = FTR_UNSIGNED,
2049                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2050                 .min_field_value = 2,
2051         },
2052 #endif
2053 #ifdef CONFIG_ARM64_SVE
2054         {
2055                 .desc = "Scalable Vector Extension",
2056                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2057                 .capability = ARM64_SVE,
2058                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2059                 .sign = FTR_UNSIGNED,
2060                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
2061                 .min_field_value = ID_AA64PFR0_SVE,
2062                 .matches = has_cpuid_feature,
2063                 .cpu_enable = sve_kernel_enable,
2064         },
2065 #endif /* CONFIG_ARM64_SVE */
2066 #ifdef CONFIG_ARM64_RAS_EXTN
2067         {
2068                 .desc = "RAS Extension Support",
2069                 .capability = ARM64_HAS_RAS_EXTN,
2070                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2071                 .matches = has_cpuid_feature,
2072                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2073                 .sign = FTR_UNSIGNED,
2074                 .field_pos = ID_AA64PFR0_RAS_SHIFT,
2075                 .min_field_value = ID_AA64PFR0_RAS_V1,
2076                 .cpu_enable = cpu_clear_disr,
2077         },
2078 #endif /* CONFIG_ARM64_RAS_EXTN */
2079 #ifdef CONFIG_ARM64_AMU_EXTN
2080         {
2081                 /*
2082                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2083                  * Therefore, don't provide .desc as we don't want the detection
2084                  * message to be shown until at least one CPU is detected to
2085                  * support the feature.
2086                  */
2087                 .capability = ARM64_HAS_AMU_EXTN,
2088                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2089                 .matches = has_amu,
2090                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2091                 .sign = FTR_UNSIGNED,
2092                 .field_pos = ID_AA64PFR0_AMU_SHIFT,
2093                 .min_field_value = ID_AA64PFR0_AMU,
2094                 .cpu_enable = cpu_amu_enable,
2095         },
2096 #endif /* CONFIG_ARM64_AMU_EXTN */
2097         {
2098                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2099                 .capability = ARM64_HAS_CACHE_IDC,
2100                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2101                 .matches = has_cache_idc,
2102                 .cpu_enable = cpu_emulate_effective_ctr,
2103         },
2104         {
2105                 .desc = "Instruction cache invalidation not required for I/D coherence",
2106                 .capability = ARM64_HAS_CACHE_DIC,
2107                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2108                 .matches = has_cache_dic,
2109         },
2110         {
2111                 .desc = "Stage-2 Force Write-Back",
2112                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2113                 .capability = ARM64_HAS_STAGE2_FWB,
2114                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2115                 .sign = FTR_UNSIGNED,
2116                 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2117                 .min_field_value = 1,
2118                 .matches = has_cpuid_feature,
2119                 .cpu_enable = cpu_has_fwb,
2120         },
2121         {
2122                 .desc = "ARMv8.4 Translation Table Level",
2123                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2124                 .capability = ARM64_HAS_ARMv8_4_TTL,
2125                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2126                 .sign = FTR_UNSIGNED,
2127                 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2128                 .min_field_value = 1,
2129                 .matches = has_cpuid_feature,
2130         },
2131         {
2132                 .desc = "TLB range maintenance instructions",
2133                 .capability = ARM64_HAS_TLB_RANGE,
2134                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2135                 .matches = has_cpuid_feature,
2136                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2137                 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
2138                 .sign = FTR_UNSIGNED,
2139                 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
2140         },
2141 #ifdef CONFIG_ARM64_HW_AFDBM
2142         {
2143                 /*
2144                  * Since we turn this on always, we don't want the user to
2145                  * think that the feature is available when it may not be.
2146                  * So hide the description.
2147                  *
2148                  * .desc = "Hardware pagetable Dirty Bit Management",
2149                  *
2150                  */
2151                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2152                 .capability = ARM64_HW_DBM,
2153                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2154                 .sign = FTR_UNSIGNED,
2155                 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2156                 .min_field_value = 2,
2157                 .matches = has_hw_dbm,
2158                 .cpu_enable = cpu_enable_hw_dbm,
2159         },
2160 #endif
2161         {
2162                 .desc = "CRC32 instructions",
2163                 .capability = ARM64_HAS_CRC32,
2164                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2165                 .matches = has_cpuid_feature,
2166                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2167                 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2168                 .min_field_value = 1,
2169         },
2170         {
2171                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2172                 .capability = ARM64_SSBS,
2173                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2174                 .matches = has_cpuid_feature,
2175                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2176                 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2177                 .sign = FTR_UNSIGNED,
2178                 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2179         },
2180 #ifdef CONFIG_ARM64_CNP
2181         {
2182                 .desc = "Common not Private translations",
2183                 .capability = ARM64_HAS_CNP,
2184                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2185                 .matches = has_useable_cnp,
2186                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2187                 .sign = FTR_UNSIGNED,
2188                 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2189                 .min_field_value = 1,
2190                 .cpu_enable = cpu_enable_cnp,
2191         },
2192 #endif
2193         {
2194                 .desc = "Speculation barrier (SB)",
2195                 .capability = ARM64_HAS_SB,
2196                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2197                 .matches = has_cpuid_feature,
2198                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2199                 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2200                 .sign = FTR_UNSIGNED,
2201                 .min_field_value = 1,
2202         },
2203 #ifdef CONFIG_ARM64_PTR_AUTH
2204         {
2205                 .desc = "Address authentication (architected algorithm)",
2206                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2207                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2208                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2209                 .sign = FTR_UNSIGNED,
2210                 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2211                 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2212                 .matches = has_address_auth_cpucap,
2213         },
2214         {
2215                 .desc = "Address authentication (IMP DEF algorithm)",
2216                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2217                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2218                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2219                 .sign = FTR_UNSIGNED,
2220                 .field_pos = ID_AA64ISAR1_API_SHIFT,
2221                 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2222                 .matches = has_address_auth_cpucap,
2223         },
2224         {
2225                 .capability = ARM64_HAS_ADDRESS_AUTH,
2226                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2227                 .matches = has_address_auth_metacap,
2228         },
2229         {
2230                 .desc = "Generic authentication (architected algorithm)",
2231                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2232                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2233                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2234                 .sign = FTR_UNSIGNED,
2235                 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2236                 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2237                 .matches = has_cpuid_feature,
2238         },
2239         {
2240                 .desc = "Generic authentication (IMP DEF algorithm)",
2241                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2242                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2243                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2244                 .sign = FTR_UNSIGNED,
2245                 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2246                 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2247                 .matches = has_cpuid_feature,
2248         },
2249         {
2250                 .capability = ARM64_HAS_GENERIC_AUTH,
2251                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2252                 .matches = has_generic_auth,
2253         },
2254 #endif /* CONFIG_ARM64_PTR_AUTH */
2255 #ifdef CONFIG_ARM64_PSEUDO_NMI
2256         {
2257                 /*
2258                  * Depends on having GICv3
2259                  */
2260                 .desc = "IRQ priority masking",
2261                 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2262                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2263                 .matches = can_use_gic_priorities,
2264                 .sys_reg = SYS_ID_AA64PFR0_EL1,
2265                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2266                 .sign = FTR_UNSIGNED,
2267                 .min_field_value = 1,
2268         },
2269 #endif
2270 #ifdef CONFIG_ARM64_E0PD
2271         {
2272                 .desc = "E0PD",
2273                 .capability = ARM64_HAS_E0PD,
2274                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2275                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2276                 .sign = FTR_UNSIGNED,
2277                 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2278                 .matches = has_cpuid_feature,
2279                 .min_field_value = 1,
2280                 .cpu_enable = cpu_enable_e0pd,
2281         },
2282 #endif
2283 #ifdef CONFIG_ARCH_RANDOM
2284         {
2285                 .desc = "Random Number Generator",
2286                 .capability = ARM64_HAS_RNG,
2287                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2288                 .matches = has_cpuid_feature,
2289                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2290                 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2291                 .sign = FTR_UNSIGNED,
2292                 .min_field_value = 1,
2293         },
2294 #endif
2295 #ifdef CONFIG_ARM64_BTI
2296         {
2297                 .desc = "Branch Target Identification",
2298                 .capability = ARM64_BTI,
2299 #ifdef CONFIG_ARM64_BTI_KERNEL
2300                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2301 #else
2302                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2303 #endif
2304                 .matches = has_cpuid_feature,
2305                 .cpu_enable = bti_enable,
2306                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2307                 .field_pos = ID_AA64PFR1_BT_SHIFT,
2308                 .min_field_value = ID_AA64PFR1_BT_BTI,
2309                 .sign = FTR_UNSIGNED,
2310         },
2311 #endif
2312 #ifdef CONFIG_ARM64_MTE
2313         {
2314                 .desc = "Memory Tagging Extension",
2315                 .capability = ARM64_MTE,
2316                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2317                 .matches = has_cpuid_feature,
2318                 .sys_reg = SYS_ID_AA64PFR1_EL1,
2319                 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2320                 .min_field_value = ID_AA64PFR1_MTE,
2321                 .sign = FTR_UNSIGNED,
2322                 .cpu_enable = cpu_enable_mte,
2323         },
2324 #endif /* CONFIG_ARM64_MTE */
2325         {
2326                 .desc = "RCpc load-acquire (LDAPR)",
2327                 .capability = ARM64_HAS_LDAPR,
2328                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2329                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2330                 .sign = FTR_UNSIGNED,
2331                 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2332                 .matches = has_cpuid_feature,
2333                 .min_field_value = 1,
2334         },
2335         {},
2336 };
2337
2338 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2339                 .matches = has_cpuid_feature,                                   \
2340                 .sys_reg = reg,                                                 \
2341                 .field_pos = field,                                             \
2342                 .sign = s,                                                      \
2343                 .min_field_value = min_value,
2344
2345 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2346                 .desc = name,                                                   \
2347                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2348                 .hwcap_type = cap_type,                                         \
2349                 .hwcap = cap,                                                   \
2350
2351 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2352         {                                                                       \
2353                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2354                 HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2355         }
2356
2357 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2358         {                                                                       \
2359                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2360                 .matches = cpucap_multi_entry_cap_matches,                      \
2361                 .match_list = list,                                             \
2362         }
2363
2364 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2365         {                                                                       \
2366                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2367                 .matches = match,                                               \
2368         }
2369
2370 #ifdef CONFIG_ARM64_PTR_AUTH
2371 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2372         {
2373                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2374                                   FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2375         },
2376         {
2377                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2378                                   FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2379         },
2380         {},
2381 };
2382
2383 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2384         {
2385                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2386                                   FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2387         },
2388         {
2389                 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2390                                   FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2391         },
2392         {},
2393 };
2394 #endif
2395
2396 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2397         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2398         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2399         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2400         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2401         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2402         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2403         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2404         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2405         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2406         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2407         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2408         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2409         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2410         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2411         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2412         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2413         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2414         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2415         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2416         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2417         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2418         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2419         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2420         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2421         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2422         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2423         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2424         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2425         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2426         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2427         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2428         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2429         HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2430 #ifdef CONFIG_ARM64_SVE
2431         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2432         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2433         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2434         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2435         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2436         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2437         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2438         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2439         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2440         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2441         HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2442 #endif
2443         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2444 #ifdef CONFIG_ARM64_BTI
2445         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2446 #endif
2447 #ifdef CONFIG_ARM64_PTR_AUTH
2448         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2449         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2450 #endif
2451 #ifdef CONFIG_ARM64_MTE
2452         HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2453 #endif /* CONFIG_ARM64_MTE */
2454         {},
2455 };
2456
2457 #ifdef CONFIG_COMPAT
2458 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2459 {
2460         /*
2461          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2462          * in line with that of arm32 as in vfp_init(). We make sure that the
2463          * check is future proof, by making sure value is non-zero.
2464          */
2465         u32 mvfr1;
2466
2467         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2468         if (scope == SCOPE_SYSTEM)
2469                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2470         else
2471                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2472
2473         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2474                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2475                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2476 }
2477 #endif
2478
2479 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2480 #ifdef CONFIG_COMPAT
2481         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2482         HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2483         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2484         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2485         HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2486         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2487         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2488         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2489         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2490         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2491 #endif
2492         {},
2493 };
2494
2495 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2496 {
2497         switch (cap->hwcap_type) {
2498         case CAP_HWCAP:
2499                 cpu_set_feature(cap->hwcap);
2500                 break;
2501 #ifdef CONFIG_COMPAT
2502         case CAP_COMPAT_HWCAP:
2503                 compat_elf_hwcap |= (u32)cap->hwcap;
2504                 break;
2505         case CAP_COMPAT_HWCAP2:
2506                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2507                 break;
2508 #endif
2509         default:
2510                 WARN_ON(1);
2511                 break;
2512         }
2513 }
2514
2515 /* Check if we have a particular HWCAP enabled */
2516 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2517 {
2518         bool rc;
2519
2520         switch (cap->hwcap_type) {
2521         case CAP_HWCAP:
2522                 rc = cpu_have_feature(cap->hwcap);
2523                 break;
2524 #ifdef CONFIG_COMPAT
2525         case CAP_COMPAT_HWCAP:
2526                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2527                 break;
2528         case CAP_COMPAT_HWCAP2:
2529                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2530                 break;
2531 #endif
2532         default:
2533                 WARN_ON(1);
2534                 rc = false;
2535         }
2536
2537         return rc;
2538 }
2539
2540 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2541 {
2542         /* We support emulation of accesses to CPU ID feature registers */
2543         cpu_set_named_feature(CPUID);
2544         for (; hwcaps->matches; hwcaps++)
2545                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2546                         cap_set_elf_hwcap(hwcaps);
2547 }
2548
2549 static void update_cpu_capabilities(u16 scope_mask)
2550 {
2551         int i;
2552         const struct arm64_cpu_capabilities *caps;
2553
2554         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2555         for (i = 0; i < ARM64_NCAPS; i++) {
2556                 caps = cpu_hwcaps_ptrs[i];
2557                 if (!caps || !(caps->type & scope_mask) ||
2558                     cpus_have_cap(caps->capability) ||
2559                     !caps->matches(caps, cpucap_default_scope(caps)))
2560                         continue;
2561
2562                 if (caps->desc)
2563                         pr_info("detected: %s\n", caps->desc);
2564                 cpus_set_cap(caps->capability);
2565
2566                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2567                         set_bit(caps->capability, boot_capabilities);
2568         }
2569 }
2570
2571 /*
2572  * Enable all the available capabilities on this CPU. The capabilities
2573  * with BOOT_CPU scope are handled separately and hence skipped here.
2574  */
2575 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2576 {
2577         int i;
2578         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2579
2580         for_each_available_cap(i) {
2581                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2582
2583                 if (WARN_ON(!cap))
2584                         continue;
2585
2586                 if (!(cap->type & non_boot_scope))
2587                         continue;
2588
2589                 if (cap->cpu_enable)
2590                         cap->cpu_enable(cap);
2591         }
2592         return 0;
2593 }
2594
2595 /*
2596  * Run through the enabled capabilities and enable() it on all active
2597  * CPUs
2598  */
2599 static void __init enable_cpu_capabilities(u16 scope_mask)
2600 {
2601         int i;
2602         const struct arm64_cpu_capabilities *caps;
2603         bool boot_scope;
2604
2605         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2606         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2607
2608         for (i = 0; i < ARM64_NCAPS; i++) {
2609                 unsigned int num;
2610
2611                 caps = cpu_hwcaps_ptrs[i];
2612                 if (!caps || !(caps->type & scope_mask))
2613                         continue;
2614                 num = caps->capability;
2615                 if (!cpus_have_cap(num))
2616                         continue;
2617
2618                 /* Ensure cpus_have_const_cap(num) works */
2619                 static_branch_enable(&cpu_hwcap_keys[num]);
2620
2621                 if (boot_scope && caps->cpu_enable)
2622                         /*
2623                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
2624                          * before any secondary CPU boots. Thus, each secondary
2625                          * will enable the capability as appropriate via
2626                          * check_local_cpu_capabilities(). The only exception is
2627                          * the boot CPU, for which the capability must be
2628                          * enabled here. This approach avoids costly
2629                          * stop_machine() calls for this case.
2630                          */
2631                         caps->cpu_enable(caps);
2632         }
2633
2634         /*
2635          * For all non-boot scope capabilities, use stop_machine()
2636          * as it schedules the work allowing us to modify PSTATE,
2637          * instead of on_each_cpu() which uses an IPI, giving us a
2638          * PSTATE that disappears when we return.
2639          */
2640         if (!boot_scope)
2641                 stop_machine(cpu_enable_non_boot_scope_capabilities,
2642                              NULL, cpu_online_mask);
2643 }
2644
2645 /*
2646  * Run through the list of capabilities to check for conflicts.
2647  * If the system has already detected a capability, take necessary
2648  * action on this CPU.
2649  */
2650 static void verify_local_cpu_caps(u16 scope_mask)
2651 {
2652         int i;
2653         bool cpu_has_cap, system_has_cap;
2654         const struct arm64_cpu_capabilities *caps;
2655
2656         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2657
2658         for (i = 0; i < ARM64_NCAPS; i++) {
2659                 caps = cpu_hwcaps_ptrs[i];
2660                 if (!caps || !(caps->type & scope_mask))
2661                         continue;
2662
2663                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2664                 system_has_cap = cpus_have_cap(caps->capability);
2665
2666                 if (system_has_cap) {
2667                         /*
2668                          * Check if the new CPU misses an advertised feature,
2669                          * which is not safe to miss.
2670                          */
2671                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2672                                 break;
2673                         /*
2674                          * We have to issue cpu_enable() irrespective of
2675                          * whether the CPU has it or not, as it is enabeld
2676                          * system wide. It is upto the call back to take
2677                          * appropriate action on this CPU.
2678                          */
2679                         if (caps->cpu_enable)
2680                                 caps->cpu_enable(caps);
2681                 } else {
2682                         /*
2683                          * Check if the CPU has this capability if it isn't
2684                          * safe to have when the system doesn't.
2685                          */
2686                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2687                                 break;
2688                 }
2689         }
2690
2691         if (i < ARM64_NCAPS) {
2692                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2693                         smp_processor_id(), caps->capability,
2694                         caps->desc, system_has_cap, cpu_has_cap);
2695
2696                 if (cpucap_panic_on_conflict(caps))
2697                         cpu_panic_kernel();
2698                 else
2699                         cpu_die_early();
2700         }
2701 }
2702
2703 /*
2704  * Check for CPU features that are used in early boot
2705  * based on the Boot CPU value.
2706  */
2707 static void check_early_cpu_features(void)
2708 {
2709         verify_cpu_asid_bits();
2710
2711         verify_local_cpu_caps(SCOPE_BOOT_CPU);
2712 }
2713
2714 static void
2715 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2716 {
2717
2718         for (; caps->matches; caps++)
2719                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2720                         pr_crit("CPU%d: missing HWCAP: %s\n",
2721                                         smp_processor_id(), caps->desc);
2722                         cpu_die_early();
2723                 }
2724 }
2725
2726 static void verify_local_elf_hwcaps(void)
2727 {
2728         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
2729
2730         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
2731                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
2732 }
2733
2734 static void verify_sve_features(void)
2735 {
2736         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2737         u64 zcr = read_zcr_features();
2738
2739         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2740         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2741
2742         if (len < safe_len || sve_verify_vq_map()) {
2743                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2744                         smp_processor_id());
2745                 cpu_die_early();
2746         }
2747
2748         /* Add checks on other ZCR bits here if necessary */
2749 }
2750
2751 static void verify_hyp_capabilities(void)
2752 {
2753         u64 safe_mmfr1, mmfr0, mmfr1;
2754         int parange, ipa_max;
2755         unsigned int safe_vmid_bits, vmid_bits;
2756
2757         if (!IS_ENABLED(CONFIG_KVM))
2758                 return;
2759
2760         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2761         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2762         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2763
2764         /* Verify VMID bits */
2765         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2766         vmid_bits = get_vmid_bits(mmfr1);
2767         if (vmid_bits < safe_vmid_bits) {
2768                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2769                 cpu_die_early();
2770         }
2771
2772         /* Verify IPA range */
2773         parange = cpuid_feature_extract_unsigned_field(mmfr0,
2774                                 ID_AA64MMFR0_PARANGE_SHIFT);
2775         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2776         if (ipa_max < get_kvm_ipa_limit()) {
2777                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2778                 cpu_die_early();
2779         }
2780 }
2781
2782 /*
2783  * Run through the enabled system capabilities and enable() it on this CPU.
2784  * The capabilities were decided based on the available CPUs at the boot time.
2785  * Any new CPU should match the system wide status of the capability. If the
2786  * new CPU doesn't have a capability which the system now has enabled, we
2787  * cannot do anything to fix it up and could cause unexpected failures. So
2788  * we park the CPU.
2789  */
2790 static void verify_local_cpu_capabilities(void)
2791 {
2792         /*
2793          * The capabilities with SCOPE_BOOT_CPU are checked from
2794          * check_early_cpu_features(), as they need to be verified
2795          * on all secondary CPUs.
2796          */
2797         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2798         verify_local_elf_hwcaps();
2799
2800         if (system_supports_sve())
2801                 verify_sve_features();
2802
2803         if (is_hyp_mode_available())
2804                 verify_hyp_capabilities();
2805 }
2806
2807 void check_local_cpu_capabilities(void)
2808 {
2809         /*
2810          * All secondary CPUs should conform to the early CPU features
2811          * in use by the kernel based on boot CPU.
2812          */
2813         check_early_cpu_features();
2814
2815         /*
2816          * If we haven't finalised the system capabilities, this CPU gets
2817          * a chance to update the errata work arounds and local features.
2818          * Otherwise, this CPU should verify that it has all the system
2819          * advertised capabilities.
2820          */
2821         if (!system_capabilities_finalized())
2822                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2823         else
2824                 verify_local_cpu_capabilities();
2825 }
2826
2827 static void __init setup_boot_cpu_capabilities(void)
2828 {
2829         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2830         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2831         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2832         enable_cpu_capabilities(SCOPE_BOOT_CPU);
2833 }
2834
2835 bool this_cpu_has_cap(unsigned int n)
2836 {
2837         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2838                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2839
2840                 if (cap)
2841                         return cap->matches(cap, SCOPE_LOCAL_CPU);
2842         }
2843
2844         return false;
2845 }
2846
2847 /*
2848  * This helper function is used in a narrow window when,
2849  * - The system wide safe registers are set with all the SMP CPUs and,
2850  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2851  * In all other cases cpus_have_{const_}cap() should be used.
2852  */
2853 static bool __maybe_unused __system_matches_cap(unsigned int n)
2854 {
2855         if (n < ARM64_NCAPS) {
2856                 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2857
2858                 if (cap)
2859                         return cap->matches(cap, SCOPE_SYSTEM);
2860         }
2861         return false;
2862 }
2863
2864 void cpu_set_feature(unsigned int num)
2865 {
2866         WARN_ON(num >= MAX_CPU_FEATURES);
2867         elf_hwcap |= BIT(num);
2868 }
2869 EXPORT_SYMBOL_GPL(cpu_set_feature);
2870
2871 bool cpu_have_feature(unsigned int num)
2872 {
2873         WARN_ON(num >= MAX_CPU_FEATURES);
2874         return elf_hwcap & BIT(num);
2875 }
2876 EXPORT_SYMBOL_GPL(cpu_have_feature);
2877
2878 unsigned long cpu_get_elf_hwcap(void)
2879 {
2880         /*
2881          * We currently only populate the first 32 bits of AT_HWCAP. Please
2882          * note that for userspace compatibility we guarantee that bits 62
2883          * and 63 will always be returned as 0.
2884          */
2885         return lower_32_bits(elf_hwcap);
2886 }
2887
2888 unsigned long cpu_get_elf_hwcap2(void)
2889 {
2890         return upper_32_bits(elf_hwcap);
2891 }
2892
2893 static void __init setup_system_capabilities(void)
2894 {
2895         /*
2896          * We have finalised the system-wide safe feature
2897          * registers, finalise the capabilities that depend
2898          * on it. Also enable all the available capabilities,
2899          * that are not enabled already.
2900          */
2901         update_cpu_capabilities(SCOPE_SYSTEM);
2902         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2903 }
2904
2905 void __init setup_cpu_features(void)
2906 {
2907         u32 cwg;
2908
2909         setup_system_capabilities();
2910         setup_elf_hwcaps(arm64_elf_hwcaps);
2911
2912         if (system_supports_32bit_el0())
2913                 setup_elf_hwcaps(compat_elf_hwcaps);
2914
2915         if (system_uses_ttbr0_pan())
2916                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2917
2918         sve_setup();
2919         minsigstksz_setup();
2920
2921         /* Advertise that we have computed the system capabilities */
2922         finalize_system_capabilities();
2923
2924         /*
2925          * Check for sane CTR_EL0.CWG value.
2926          */
2927         cwg = cache_type_cwg();
2928         if (!cwg)
2929                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2930                         ARCH_DMA_MINALIGN);
2931 }
2932
2933 static int enable_mismatched_32bit_el0(unsigned int cpu)
2934 {
2935         /*
2936          * The first 32-bit-capable CPU we detected and so can no longer
2937          * be offlined by userspace. -1 indicates we haven't yet onlined
2938          * a 32-bit-capable CPU.
2939          */
2940         static int lucky_winner = -1;
2941
2942         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
2943         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
2944
2945         if (cpu_32bit) {
2946                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
2947                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
2948         }
2949
2950         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
2951                 return 0;
2952
2953         if (lucky_winner >= 0)
2954                 return 0;
2955
2956         /*
2957          * We've detected a mismatch. We need to keep one of our CPUs with
2958          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
2959          * every CPU in the system for a 32-bit task.
2960          */
2961         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
2962                                                          cpu_active_mask);
2963         get_cpu_device(lucky_winner)->offline_disabled = true;
2964         setup_elf_hwcaps(compat_elf_hwcaps);
2965         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
2966                 cpu, lucky_winner);
2967         return 0;
2968 }
2969
2970 static int __init init_32bit_el0_mask(void)
2971 {
2972         if (!allow_mismatched_32bit_el0)
2973                 return 0;
2974
2975         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
2976                 return -ENOMEM;
2977
2978         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
2979                                  "arm64/mismatched_32bit_el0:online",
2980                                  enable_mismatched_32bit_el0, NULL);
2981 }
2982 subsys_initcall_sync(init_32bit_el0_mask);
2983
2984 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2985 {
2986         cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2987 }
2988
2989 /*
2990  * We emulate only the following system register space.
2991  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2992  * See Table C5-6 System instruction encodings for System register accesses,
2993  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2994  */
2995 static inline bool __attribute_const__ is_emulated(u32 id)
2996 {
2997         return (sys_reg_Op0(id) == 0x3 &&
2998                 sys_reg_CRn(id) == 0x0 &&
2999                 sys_reg_Op1(id) == 0x0 &&
3000                 (sys_reg_CRm(id) == 0 ||
3001                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3002 }
3003
3004 /*
3005  * With CRm == 0, reg should be one of :
3006  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3007  */
3008 static inline int emulate_id_reg(u32 id, u64 *valp)
3009 {
3010         switch (id) {
3011         case SYS_MIDR_EL1:
3012                 *valp = read_cpuid_id();
3013                 break;
3014         case SYS_MPIDR_EL1:
3015                 *valp = SYS_MPIDR_SAFE_VAL;
3016                 break;
3017         case SYS_REVIDR_EL1:
3018                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3019                 *valp = 0;
3020                 break;
3021         default:
3022                 return -EINVAL;
3023         }
3024
3025         return 0;
3026 }
3027
3028 static int emulate_sys_reg(u32 id, u64 *valp)
3029 {
3030         struct arm64_ftr_reg *regp;
3031
3032         if (!is_emulated(id))
3033                 return -EINVAL;
3034
3035         if (sys_reg_CRm(id) == 0)
3036                 return emulate_id_reg(id, valp);
3037
3038         regp = get_arm64_ftr_reg_nowarn(id);
3039         if (regp)
3040                 *valp = arm64_ftr_reg_user_value(regp);
3041         else
3042                 /*
3043                  * The untracked registers are either IMPLEMENTATION DEFINED
3044                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3045                  */
3046                 *valp = 0;
3047         return 0;
3048 }
3049
3050 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3051 {
3052         int rc;
3053         u64 val;
3054
3055         rc = emulate_sys_reg(sys_reg, &val);
3056         if (!rc) {
3057                 pt_regs_write_reg(regs, rt, val);
3058                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3059         }
3060         return rc;
3061 }
3062
3063 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3064 {
3065         u32 sys_reg, rt;
3066
3067         /*
3068          * sys_reg values are defined as used in mrs/msr instruction.
3069          * shift the imm value to get the encoding.
3070          */
3071         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3072         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3073         return do_emulate_mrs(regs, sys_reg, rt);
3074 }
3075
3076 static struct undef_hook mrs_hook = {
3077         .instr_mask = 0xffff0000,
3078         .instr_val  = 0xd5380000,
3079         .pstate_mask = PSR_AA32_MODE_MASK,
3080         .pstate_val = PSR_MODE_EL0t,
3081         .fn = emulate_mrs,
3082 };
3083
3084 static int __init enable_mrs_emulation(void)
3085 {
3086         register_undef_hook(&mrs_hook);
3087         return 0;
3088 }
3089
3090 core_initcall(enable_mrs_emulation);
3091
3092 enum mitigation_state arm64_get_meltdown_state(void)
3093 {
3094         if (__meltdown_safe)
3095                 return SPECTRE_UNAFFECTED;
3096
3097         if (arm64_kernel_unmapped_at_el0())
3098                 return SPECTRE_MITIGATED;
3099
3100         return SPECTRE_VULNERABLE;
3101 }
3102
3103 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3104                           char *buf)
3105 {
3106         switch (arm64_get_meltdown_state()) {
3107         case SPECTRE_UNAFFECTED:
3108                 return sprintf(buf, "Not affected\n");
3109
3110         case SPECTRE_MITIGATED:
3111                 return sprintf(buf, "Mitigation: PTI\n");
3112
3113         default:
3114                 return sprintf(buf, "Vulnerable\n");
3115         }
3116 }