arm64: dts: qcom: sm6375: fix USB wakeup interrupt types
[platform/kernel/linux-starfive.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT        \
100                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103                                  COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137 void dump_cpu_features(void)
138 {
139         /* file-wide pr_fmt adds "CPU features: " prefix */
140         pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142
143 #define ARM64_CPUID_FIELDS(reg, field, min_value)                       \
144                 .sys_reg = SYS_##reg,                                                   \
145                 .field_pos = reg##_##field##_SHIFT,                                             \
146                 .field_width = reg##_##field##_WIDTH,                                           \
147                 .sign = reg##_##field##_SIGNED,                                                 \
148                 .min_field_value = reg##_##field##_##min_value,
149
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151         {                                               \
152                 .sign = SIGNED,                         \
153                 .visible = VISIBLE,                     \
154                 .strict = STRICT,                       \
155                 .type = TYPE,                           \
156                 .shift = SHIFT,                         \
157                 .width = WIDTH,                         \
158                 .safe_val = SAFE_VAL,                   \
159         }
160
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
164
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
168
169 #define ARM64_FTR_END                                   \
170         {                                               \
171                 .width = 0,                             \
172         }
173
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
175
176 static bool __system_matches_cap(unsigned int n);
177
178 /*
179  * NOTE: Any changes to the visibility of features should be kept in
180  * sync with the documentation of the CPU feature register ABI.
181  */
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
197         ARM64_FTR_END,
198 };
199
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
231                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
234         ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
248         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
249         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
254         ARM64_FTR_END,
255 };
256
257 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
258         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
259                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
263                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
264         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
265         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
266                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
267         ARM64_FTR_END,
268 };
269
270 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
271         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
273         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
275         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
279         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
281         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
283         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
285         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
287         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
289         ARM64_FTR_END,
290 };
291
292 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
293         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
294                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
295         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
297         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
298                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
299         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
300                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
301         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
303         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
305         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
307         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
309         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
311         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
313         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
315         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
316                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
317         ARM64_FTR_END,
318 };
319
320 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
321         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
322         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
323         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
324         /*
325          * Page size not being supported at Stage-2 is not fatal. You
326          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
327          * your favourite nesting hypervisor.
328          *
329          * There is a small corner case where the hypervisor explicitly
330          * advertises a given granule size at Stage-2 (value 2) on some
331          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
332          * vCPUs. Although this is not forbidden by the architecture, it
333          * indicates that the hypervisor is being silly (or buggy).
334          *
335          * We make no effort to cope with this and pretend that if these
336          * fields are inconsistent across vCPUs, then it isn't worth
337          * trying to bring KVM up.
338          */
339         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
340         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
341         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
342         /*
343          * We already refuse to boot CPUs that don't support our configured
344          * page size, so we can only detect mismatches for a page size other
345          * than the one we're currently using. Unfortunately, SoCs like this
346          * exist in the wild so, even though we don't like it, we'll have to go
347          * along with it and treat them as non-strict.
348          */
349         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
350         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
351         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
352
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
354         /* Linux shouldn't care about secure memory */
355         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
356         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
357         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
358         /*
359          * Differing PARange is fine as long as all peripherals and memory are mapped
360          * within the minimum PARange of all CPUs
361          */
362         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
363         ARM64_FTR_END,
364 };
365
366 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
367         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
368         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
369         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
370         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
371         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
372         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
373         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
374         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
375         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
376         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
377         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
378         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
379         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
380         ARM64_FTR_END,
381 };
382
383 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
384         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
385         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
386         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
389         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
390         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
391         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
392         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
394         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
395         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
396         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
397         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
398         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
399         ARM64_FTR_END,
400 };
401
402 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
403         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
404         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
405         ARM64_FTR_END,
406 };
407
408 static const struct arm64_ftr_bits ftr_ctr[] = {
409         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
410         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
411         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
412         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
413         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
414         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
415         /*
416          * Linux can handle differing I-cache policies. Userspace JITs will
417          * make use of *minLine.
418          * If we have differing I-cache policies, report it as the weakest - VIPT.
419          */
420         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),        /* L1Ip */
421         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
422         ARM64_FTR_END,
423 };
424
425 static struct arm64_ftr_override __ro_after_init no_override = { };
426
427 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
428         .name           = "SYS_CTR_EL0",
429         .ftr_bits       = ftr_ctr,
430         .override       = &no_override,
431 };
432
433 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
434         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
435         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
436         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
437         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
439         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
440         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
441         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
442         ARM64_FTR_END,
443 };
444
445 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
446         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
447         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
448         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
451         /*
452          * We can instantiate multiple PMU instances with different levels
453          * of support.
454          */
455         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
456         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
457         ARM64_FTR_END,
458 };
459
460 static const struct arm64_ftr_bits ftr_mvfr0[] = {
461         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
462         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
464         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
465         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
466         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
468         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
469         ARM64_FTR_END,
470 };
471
472 static const struct arm64_ftr_bits ftr_mvfr1[] = {
473         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
474         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
475         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
476         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
478         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
479         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
481         ARM64_FTR_END,
482 };
483
484 static const struct arm64_ftr_bits ftr_mvfr2[] = {
485         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
486         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
487         ARM64_FTR_END,
488 };
489
490 static const struct arm64_ftr_bits ftr_dczid[] = {
491         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
492         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
493         ARM64_FTR_END,
494 };
495
496 static const struct arm64_ftr_bits ftr_gmid[] = {
497         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
498         ARM64_FTR_END,
499 };
500
501 static const struct arm64_ftr_bits ftr_id_isar0[] = {
502         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
503         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
509         ARM64_FTR_END,
510 };
511
512 static const struct arm64_ftr_bits ftr_id_isar5[] = {
513         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
514         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
515         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
516         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
517         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
518         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
519         ARM64_FTR_END,
520 };
521
522 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
523         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
524         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
525         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
530
531         /*
532          * SpecSEI = 1 indicates that the PE might generate an SError on an
533          * external abort on speculative read. It is safe to assume that an
534          * SError might be generated than it will not be. Hence it has been
535          * classified as FTR_HIGHER_SAFE.
536          */
537         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
538         ARM64_FTR_END,
539 };
540
541 static const struct arm64_ftr_bits ftr_id_isar4[] = {
542         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
543         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
544         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
545         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
546         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
547         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
548         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
549         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
550         ARM64_FTR_END,
551 };
552
553 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
554         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
555         ARM64_FTR_END,
556 };
557
558 static const struct arm64_ftr_bits ftr_id_isar6[] = {
559         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
560         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
561         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
562         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
563         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
564         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
565         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
566         ARM64_FTR_END,
567 };
568
569 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
570         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
571         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
572         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
573         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
574         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
575         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
576         ARM64_FTR_END,
577 };
578
579 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
580         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
581         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
582         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
583         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
584         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
585         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
586         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
587         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
588         ARM64_FTR_END,
589 };
590
591 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
592         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
593         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
594         ARM64_FTR_END,
595 };
596
597 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
598         /* [31:28] TraceFilt */
599         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
600         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
601         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
602         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
603         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
604         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
605         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
606         ARM64_FTR_END,
607 };
608
609 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
610         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
611         ARM64_FTR_END,
612 };
613
614 static const struct arm64_ftr_bits ftr_zcr[] = {
615         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
616                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0),       /* LEN */
617         ARM64_FTR_END,
618 };
619
620 static const struct arm64_ftr_bits ftr_smcr[] = {
621         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
622                 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0),     /* LEN */
623         ARM64_FTR_END,
624 };
625
626 /*
627  * Common ftr bits for a 32bit register with all hidden, strict
628  * attributes, with 4bit feature fields and a default safe value of
629  * 0. Covers the following 32bit registers:
630  * id_isar[1-3], id_mmfr[1-3]
631  */
632 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
633         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
634         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
635         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
636         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
637         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
638         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
639         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
640         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
641         ARM64_FTR_END,
642 };
643
644 /* Table for a single 32bit feature value */
645 static const struct arm64_ftr_bits ftr_single32[] = {
646         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
647         ARM64_FTR_END,
648 };
649
650 static const struct arm64_ftr_bits ftr_raz[] = {
651         ARM64_FTR_END,
652 };
653
654 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {      \
655                 .sys_id = id,                                   \
656                 .reg =  &(struct arm64_ftr_reg){                \
657                         .name = id_str,                         \
658                         .override = (ovr),                      \
659                         .ftr_bits = &((table)[0]),              \
660         }}
661
662 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
663         __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
664
665 #define ARM64_FTR_REG(id, table)                \
666         __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
667
668 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
669 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
670 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
671 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
672 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
673 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
674 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
675
676 struct arm64_ftr_override arm64_sw_feature_override;
677
678 static const struct __ftr_reg_entry {
679         u32                     sys_id;
680         struct arm64_ftr_reg    *reg;
681 } arm64_ftr_regs[] = {
682
683         /* Op1 = 0, CRn = 0, CRm = 1 */
684         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
685         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
686         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
687         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
688         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
689         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
690         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
691
692         /* Op1 = 0, CRn = 0, CRm = 2 */
693         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
694         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
695         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
696         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
697         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
698         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
699         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
700         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
701
702         /* Op1 = 0, CRn = 0, CRm = 3 */
703         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
704         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
705         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
706         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
707         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
708         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
709
710         /* Op1 = 0, CRn = 0, CRm = 4 */
711         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
712                                &id_aa64pfr0_override),
713         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
714                                &id_aa64pfr1_override),
715         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
716                                &id_aa64zfr0_override),
717         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
718                                &id_aa64smfr0_override),
719
720         /* Op1 = 0, CRn = 0, CRm = 5 */
721         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
722         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
723
724         /* Op1 = 0, CRn = 0, CRm = 6 */
725         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
726         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
727                                &id_aa64isar1_override),
728         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
729                                &id_aa64isar2_override),
730
731         /* Op1 = 0, CRn = 0, CRm = 7 */
732         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
733         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
734                                &id_aa64mmfr1_override),
735         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
736         ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
737
738         /* Op1 = 0, CRn = 1, CRm = 2 */
739         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
740         ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
741
742         /* Op1 = 1, CRn = 0, CRm = 0 */
743         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
744
745         /* Op1 = 3, CRn = 0, CRm = 0 */
746         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
747         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
748
749         /* Op1 = 3, CRn = 14, CRm = 0 */
750         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
751 };
752
753 static int search_cmp_ftr_reg(const void *id, const void *regp)
754 {
755         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
756 }
757
758 /*
759  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
760  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
761  * ascending order of sys_id, we use binary search to find a matching
762  * entry.
763  *
764  * returns - Upon success,  matching ftr_reg entry for id.
765  *         - NULL on failure. It is upto the caller to decide
766  *           the impact of a failure.
767  */
768 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
769 {
770         const struct __ftr_reg_entry *ret;
771
772         ret = bsearch((const void *)(unsigned long)sys_id,
773                         arm64_ftr_regs,
774                         ARRAY_SIZE(arm64_ftr_regs),
775                         sizeof(arm64_ftr_regs[0]),
776                         search_cmp_ftr_reg);
777         if (ret)
778                 return ret->reg;
779         return NULL;
780 }
781
782 /*
783  * get_arm64_ftr_reg - Looks up a feature register entry using
784  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
785  *
786  * returns - Upon success,  matching ftr_reg entry for id.
787  *         - NULL on failure but with an WARN_ON().
788  */
789 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
790 {
791         struct arm64_ftr_reg *reg;
792
793         reg = get_arm64_ftr_reg_nowarn(sys_id);
794
795         /*
796          * Requesting a non-existent register search is an error. Warn
797          * and let the caller handle it.
798          */
799         WARN_ON(!reg);
800         return reg;
801 }
802
803 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
804                                s64 ftr_val)
805 {
806         u64 mask = arm64_ftr_mask(ftrp);
807
808         reg &= ~mask;
809         reg |= (ftr_val << ftrp->shift) & mask;
810         return reg;
811 }
812
813 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
814                                 s64 cur)
815 {
816         s64 ret = 0;
817
818         switch (ftrp->type) {
819         case FTR_EXACT:
820                 ret = ftrp->safe_val;
821                 break;
822         case FTR_LOWER_SAFE:
823                 ret = min(new, cur);
824                 break;
825         case FTR_HIGHER_OR_ZERO_SAFE:
826                 if (!cur || !new)
827                         break;
828                 fallthrough;
829         case FTR_HIGHER_SAFE:
830                 ret = max(new, cur);
831                 break;
832         default:
833                 BUG();
834         }
835
836         return ret;
837 }
838
839 static void __init sort_ftr_regs(void)
840 {
841         unsigned int i;
842
843         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
844                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
845                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
846                 unsigned int j = 0;
847
848                 /*
849                  * Features here must be sorted in descending order with respect
850                  * to their shift values and should not overlap with each other.
851                  */
852                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
853                         unsigned int width = ftr_reg->ftr_bits[j].width;
854                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
855                         unsigned int prev_shift;
856
857                         WARN((shift  + width) > 64,
858                                 "%s has invalid feature at shift %d\n",
859                                 ftr_reg->name, shift);
860
861                         /*
862                          * Skip the first feature. There is nothing to
863                          * compare against for now.
864                          */
865                         if (j == 0)
866                                 continue;
867
868                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
869                         WARN((shift + width) > prev_shift,
870                                 "%s has feature overlap at shift %d\n",
871                                 ftr_reg->name, shift);
872                 }
873
874                 /*
875                  * Skip the first register. There is nothing to
876                  * compare against for now.
877                  */
878                 if (i == 0)
879                         continue;
880                 /*
881                  * Registers here must be sorted in ascending order with respect
882                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
883                  * to work correctly.
884                  */
885                 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
886         }
887 }
888
889 /*
890  * Initialise the CPU feature register from Boot CPU values.
891  * Also initiliases the strict_mask for the register.
892  * Any bits that are not covered by an arm64_ftr_bits entry are considered
893  * RES0 for the system-wide value, and must strictly match.
894  */
895 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
896 {
897         u64 val = 0;
898         u64 strict_mask = ~0x0ULL;
899         u64 user_mask = 0;
900         u64 valid_mask = 0;
901
902         const struct arm64_ftr_bits *ftrp;
903         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
904
905         if (!reg)
906                 return;
907
908         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
909                 u64 ftr_mask = arm64_ftr_mask(ftrp);
910                 s64 ftr_new = arm64_ftr_value(ftrp, new);
911                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
912
913                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
914                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
915                         char *str = NULL;
916
917                         if (ftr_ovr != tmp) {
918                                 /* Unsafe, remove the override */
919                                 reg->override->mask &= ~ftr_mask;
920                                 reg->override->val &= ~ftr_mask;
921                                 tmp = ftr_ovr;
922                                 str = "ignoring override";
923                         } else if (ftr_new != tmp) {
924                                 /* Override was valid */
925                                 ftr_new = tmp;
926                                 str = "forced";
927                         } else if (ftr_ovr == tmp) {
928                                 /* Override was the safe value */
929                                 str = "already set";
930                         }
931
932                         if (str)
933                                 pr_warn("%s[%d:%d]: %s to %llx\n",
934                                         reg->name,
935                                         ftrp->shift + ftrp->width - 1,
936                                         ftrp->shift, str, tmp);
937                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
938                         reg->override->val &= ~ftr_mask;
939                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
940                                 reg->name,
941                                 ftrp->shift + ftrp->width - 1,
942                                 ftrp->shift);
943                 }
944
945                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
946
947                 valid_mask |= ftr_mask;
948                 if (!ftrp->strict)
949                         strict_mask &= ~ftr_mask;
950                 if (ftrp->visible)
951                         user_mask |= ftr_mask;
952                 else
953                         reg->user_val = arm64_ftr_set_value(ftrp,
954                                                             reg->user_val,
955                                                             ftrp->safe_val);
956         }
957
958         val &= valid_mask;
959
960         reg->sys_val = val;
961         reg->strict_mask = strict_mask;
962         reg->user_mask = user_mask;
963 }
964
965 extern const struct arm64_cpu_capabilities arm64_errata[];
966 static const struct arm64_cpu_capabilities arm64_features[];
967
968 static void __init
969 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
970 {
971         for (; caps->matches; caps++) {
972                 if (WARN(caps->capability >= ARM64_NCAPS,
973                         "Invalid capability %d\n", caps->capability))
974                         continue;
975                 if (WARN(cpucap_ptrs[caps->capability],
976                         "Duplicate entry for capability %d\n",
977                         caps->capability))
978                         continue;
979                 cpucap_ptrs[caps->capability] = caps;
980         }
981 }
982
983 static void __init init_cpucap_indirect_list(void)
984 {
985         init_cpucap_indirect_list_from_array(arm64_features);
986         init_cpucap_indirect_list_from_array(arm64_errata);
987 }
988
989 static void __init setup_boot_cpu_capabilities(void);
990
991 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
992 {
993         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
994         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
995         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
996         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
997         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
998         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
999         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1000         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1001         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1002         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1003         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1004         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1005         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1006         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1007         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1008         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1009         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1010         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1011         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1012         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1013         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1014 }
1015
1016 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1017 {
1018         /* Before we start using the tables, make sure it is sorted */
1019         sort_ftr_regs();
1020
1021         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1022         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1023         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1024         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1025         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1026         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1027         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1028         init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1029         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1030         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1031         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1032         init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1033         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1034         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1035         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1036         init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1037
1038         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1039                 init_32bit_cpu_features(&info->aarch32);
1040
1041         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1042             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1043                 info->reg_zcr = read_zcr_features();
1044                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1045                 vec_init_vq_map(ARM64_VEC_SVE);
1046         }
1047
1048         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1049             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1050                 info->reg_smcr = read_smcr_features();
1051                 /*
1052                  * We mask out SMPS since even if the hardware
1053                  * supports priorities the kernel does not at present
1054                  * and we block access to them.
1055                  */
1056                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1057                 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1058                 vec_init_vq_map(ARM64_VEC_SME);
1059         }
1060
1061         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1062                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1063
1064         /*
1065          * Initialize the indirect array of CPU capabilities pointers before we
1066          * handle the boot CPU below.
1067          */
1068         init_cpucap_indirect_list();
1069
1070         /*
1071          * Detect and enable early CPU capabilities based on the boot CPU,
1072          * after we have initialised the CPU feature infrastructure.
1073          */
1074         setup_boot_cpu_capabilities();
1075 }
1076
1077 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1078 {
1079         const struct arm64_ftr_bits *ftrp;
1080
1081         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1082                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1083                 s64 ftr_new = arm64_ftr_value(ftrp, new);
1084
1085                 if (ftr_cur == ftr_new)
1086                         continue;
1087                 /* Find a safe value */
1088                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1089                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1090         }
1091
1092 }
1093
1094 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1095 {
1096         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1097
1098         if (!regp)
1099                 return 0;
1100
1101         update_cpu_ftr_reg(regp, val);
1102         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1103                 return 0;
1104         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1105                         regp->name, boot, cpu, val);
1106         return 1;
1107 }
1108
1109 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1110 {
1111         const struct arm64_ftr_bits *ftrp;
1112         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1113
1114         if (!regp)
1115                 return;
1116
1117         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1118                 if (ftrp->shift == field) {
1119                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1120                         break;
1121                 }
1122         }
1123
1124         /* Bogus field? */
1125         WARN_ON(!ftrp->width);
1126 }
1127
1128 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1129                                          struct cpuinfo_arm64 *boot)
1130 {
1131         static bool boot_cpu_32bit_regs_overridden = false;
1132
1133         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1134                 return;
1135
1136         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1137                 return;
1138
1139         boot->aarch32 = info->aarch32;
1140         init_32bit_cpu_features(&boot->aarch32);
1141         boot_cpu_32bit_regs_overridden = true;
1142 }
1143
1144 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1145                                      struct cpuinfo_32bit *boot)
1146 {
1147         int taint = 0;
1148         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1149
1150         /*
1151          * If we don't have AArch32 at EL1, then relax the strictness of
1152          * EL1-dependent register fields to avoid spurious sanity check fails.
1153          */
1154         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1155                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1156                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1157                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1158                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1159                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1160                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1161         }
1162
1163         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1164                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1165         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1166                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1167         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1168                                       info->reg_id_isar0, boot->reg_id_isar0);
1169         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1170                                       info->reg_id_isar1, boot->reg_id_isar1);
1171         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1172                                       info->reg_id_isar2, boot->reg_id_isar2);
1173         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1174                                       info->reg_id_isar3, boot->reg_id_isar3);
1175         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1176                                       info->reg_id_isar4, boot->reg_id_isar4);
1177         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1178                                       info->reg_id_isar5, boot->reg_id_isar5);
1179         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1180                                       info->reg_id_isar6, boot->reg_id_isar6);
1181
1182         /*
1183          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1184          * ACTLR formats could differ across CPUs and therefore would have to
1185          * be trapped for virtualization anyway.
1186          */
1187         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1188                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1189         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1190                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1191         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1192                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1193         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1194                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1195         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1196                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1197         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1198                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1199         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1200                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1201         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1202                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1203         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1204                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1205         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1206                                       info->reg_mvfr0, boot->reg_mvfr0);
1207         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1208                                       info->reg_mvfr1, boot->reg_mvfr1);
1209         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1210                                       info->reg_mvfr2, boot->reg_mvfr2);
1211
1212         return taint;
1213 }
1214
1215 /*
1216  * Update system wide CPU feature registers with the values from a
1217  * non-boot CPU. Also performs SANITY checks to make sure that there
1218  * aren't any insane variations from that of the boot CPU.
1219  */
1220 void update_cpu_features(int cpu,
1221                          struct cpuinfo_arm64 *info,
1222                          struct cpuinfo_arm64 *boot)
1223 {
1224         int taint = 0;
1225
1226         /*
1227          * The kernel can handle differing I-cache policies, but otherwise
1228          * caches should look identical. Userspace JITs will make use of
1229          * *minLine.
1230          */
1231         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1232                                       info->reg_ctr, boot->reg_ctr);
1233
1234         /*
1235          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1236          * could result in too much or too little memory being zeroed if a
1237          * process is preempted and migrated between CPUs.
1238          */
1239         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1240                                       info->reg_dczid, boot->reg_dczid);
1241
1242         /* If different, timekeeping will be broken (especially with KVM) */
1243         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1244                                       info->reg_cntfrq, boot->reg_cntfrq);
1245
1246         /*
1247          * The kernel uses self-hosted debug features and expects CPUs to
1248          * support identical debug features. We presently need CTX_CMPs, WRPs,
1249          * and BRPs to be identical.
1250          * ID_AA64DFR1 is currently RES0.
1251          */
1252         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1253                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1254         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1255                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1256         /*
1257          * Even in big.LITTLE, processors should be identical instruction-set
1258          * wise.
1259          */
1260         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1261                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1262         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1263                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1264         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1265                                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1266
1267         /*
1268          * Differing PARange support is fine as long as all peripherals and
1269          * memory are mapped within the minimum PARange of all CPUs.
1270          * Linux should not care about secure memory.
1271          */
1272         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1273                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1274         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1275                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1276         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1277                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1278         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1279                                       info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1280
1281         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1282                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1283         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1284                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1285
1286         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1287                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1288
1289         taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1290                                       info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1291
1292         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1293             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1294                 info->reg_zcr = read_zcr_features();
1295                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1296                                         info->reg_zcr, boot->reg_zcr);
1297
1298                 /* Probe vector lengths */
1299                 if (!system_capabilities_finalized())
1300                         vec_update_vq_map(ARM64_VEC_SVE);
1301         }
1302
1303         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1304             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1305                 info->reg_smcr = read_smcr_features();
1306                 /*
1307                  * We mask out SMPS since even if the hardware
1308                  * supports priorities the kernel does not at present
1309                  * and we block access to them.
1310                  */
1311                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1312                 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1313                                         info->reg_smcr, boot->reg_smcr);
1314
1315                 /* Probe vector lengths */
1316                 if (!system_capabilities_finalized())
1317                         vec_update_vq_map(ARM64_VEC_SME);
1318         }
1319
1320         /*
1321          * The kernel uses the LDGM/STGM instructions and the number of tags
1322          * they read/write depends on the GMID_EL1.BS field. Check that the
1323          * value is the same on all CPUs.
1324          */
1325         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1326             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1327                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1328                                               info->reg_gmid, boot->reg_gmid);
1329         }
1330
1331         /*
1332          * If we don't have AArch32 at all then skip the checks entirely
1333          * as the register values may be UNKNOWN and we're not going to be
1334          * using them for anything.
1335          *
1336          * This relies on a sanitised view of the AArch64 ID registers
1337          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1338          */
1339         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1340                 lazy_init_32bit_cpu_features(info, boot);
1341                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1342                                                    &boot->aarch32);
1343         }
1344
1345         /*
1346          * Mismatched CPU features are a recipe for disaster. Don't even
1347          * pretend to support them.
1348          */
1349         if (taint) {
1350                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1351                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1352         }
1353 }
1354
1355 u64 read_sanitised_ftr_reg(u32 id)
1356 {
1357         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1358
1359         if (!regp)
1360                 return 0;
1361         return regp->sys_val;
1362 }
1363 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1364
1365 #define read_sysreg_case(r)     \
1366         case r:         val = read_sysreg_s(r); break;
1367
1368 /*
1369  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1370  * Read the system register on the current CPU
1371  */
1372 u64 __read_sysreg_by_encoding(u32 sys_id)
1373 {
1374         struct arm64_ftr_reg *regp;
1375         u64 val;
1376
1377         switch (sys_id) {
1378         read_sysreg_case(SYS_ID_PFR0_EL1);
1379         read_sysreg_case(SYS_ID_PFR1_EL1);
1380         read_sysreg_case(SYS_ID_PFR2_EL1);
1381         read_sysreg_case(SYS_ID_DFR0_EL1);
1382         read_sysreg_case(SYS_ID_DFR1_EL1);
1383         read_sysreg_case(SYS_ID_MMFR0_EL1);
1384         read_sysreg_case(SYS_ID_MMFR1_EL1);
1385         read_sysreg_case(SYS_ID_MMFR2_EL1);
1386         read_sysreg_case(SYS_ID_MMFR3_EL1);
1387         read_sysreg_case(SYS_ID_MMFR4_EL1);
1388         read_sysreg_case(SYS_ID_MMFR5_EL1);
1389         read_sysreg_case(SYS_ID_ISAR0_EL1);
1390         read_sysreg_case(SYS_ID_ISAR1_EL1);
1391         read_sysreg_case(SYS_ID_ISAR2_EL1);
1392         read_sysreg_case(SYS_ID_ISAR3_EL1);
1393         read_sysreg_case(SYS_ID_ISAR4_EL1);
1394         read_sysreg_case(SYS_ID_ISAR5_EL1);
1395         read_sysreg_case(SYS_ID_ISAR6_EL1);
1396         read_sysreg_case(SYS_MVFR0_EL1);
1397         read_sysreg_case(SYS_MVFR1_EL1);
1398         read_sysreg_case(SYS_MVFR2_EL1);
1399
1400         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1401         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1402         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1403         read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1404         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1405         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1406         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1407         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1408         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1409         read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1410         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1411         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1412         read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1413
1414         read_sysreg_case(SYS_CNTFRQ_EL0);
1415         read_sysreg_case(SYS_CTR_EL0);
1416         read_sysreg_case(SYS_DCZID_EL0);
1417
1418         default:
1419                 BUG();
1420                 return 0;
1421         }
1422
1423         regp  = get_arm64_ftr_reg(sys_id);
1424         if (regp) {
1425                 val &= ~regp->override->mask;
1426                 val |= (regp->override->val & regp->override->mask);
1427         }
1428
1429         return val;
1430 }
1431
1432 #include <linux/irqchip/arm-gic-v3.h>
1433
1434 static bool
1435 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1436 {
1437         return true;
1438 }
1439
1440 static bool
1441 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1442 {
1443         int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1444                                                     entry->field_width,
1445                                                     entry->sign);
1446
1447         return val >= entry->min_field_value;
1448 }
1449
1450 static u64
1451 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1452 {
1453         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1454         if (scope == SCOPE_SYSTEM)
1455                 return read_sanitised_ftr_reg(entry->sys_reg);
1456         else
1457                 return __read_sysreg_by_encoding(entry->sys_reg);
1458 }
1459
1460 static bool
1461 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1462 {
1463         int mask;
1464         struct arm64_ftr_reg *regp;
1465         u64 val = read_scoped_sysreg(entry, scope);
1466
1467         regp = get_arm64_ftr_reg(entry->sys_reg);
1468         if (!regp)
1469                 return false;
1470
1471         mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1472                                                           entry->field_pos,
1473                                                           entry->field_width);
1474         if (!mask)
1475                 return false;
1476
1477         return feature_matches(val, entry);
1478 }
1479
1480 static bool
1481 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1482 {
1483         u64 val = read_scoped_sysreg(entry, scope);
1484         return feature_matches(val, entry);
1485 }
1486
1487 const struct cpumask *system_32bit_el0_cpumask(void)
1488 {
1489         if (!system_supports_32bit_el0())
1490                 return cpu_none_mask;
1491
1492         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1493                 return cpu_32bit_el0_mask;
1494
1495         return cpu_possible_mask;
1496 }
1497
1498 static int __init parse_32bit_el0_param(char *str)
1499 {
1500         allow_mismatched_32bit_el0 = true;
1501         return 0;
1502 }
1503 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1504
1505 static ssize_t aarch32_el0_show(struct device *dev,
1506                                 struct device_attribute *attr, char *buf)
1507 {
1508         const struct cpumask *mask = system_32bit_el0_cpumask();
1509
1510         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1511 }
1512 static const DEVICE_ATTR_RO(aarch32_el0);
1513
1514 static int __init aarch32_el0_sysfs_init(void)
1515 {
1516         struct device *dev_root;
1517         int ret = 0;
1518
1519         if (!allow_mismatched_32bit_el0)
1520                 return 0;
1521
1522         dev_root = bus_get_dev_root(&cpu_subsys);
1523         if (dev_root) {
1524                 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1525                 put_device(dev_root);
1526         }
1527         return ret;
1528 }
1529 device_initcall(aarch32_el0_sysfs_init);
1530
1531 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1532 {
1533         if (!has_cpuid_feature(entry, scope))
1534                 return allow_mismatched_32bit_el0;
1535
1536         if (scope == SCOPE_SYSTEM)
1537                 pr_info("detected: 32-bit EL0 Support\n");
1538
1539         return true;
1540 }
1541
1542 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1543 {
1544         bool has_sre;
1545
1546         if (!has_cpuid_feature(entry, scope))
1547                 return false;
1548
1549         has_sre = gic_enable_sre();
1550         if (!has_sre)
1551                 pr_warn_once("%s present but disabled by higher exception level\n",
1552                              entry->desc);
1553
1554         return has_sre;
1555 }
1556
1557 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1558 {
1559         u32 midr = read_cpuid_id();
1560
1561         /* Cavium ThunderX pass 1.x and 2.x */
1562         return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1563                 MIDR_CPU_VAR_REV(0, 0),
1564                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1565 }
1566
1567 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1568 {
1569         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1570
1571         return cpuid_feature_extract_signed_field(pfr0,
1572                                         ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1573 }
1574
1575 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1576                           int scope)
1577 {
1578         u64 ctr;
1579
1580         if (scope == SCOPE_SYSTEM)
1581                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1582         else
1583                 ctr = read_cpuid_effective_cachetype();
1584
1585         return ctr & BIT(CTR_EL0_IDC_SHIFT);
1586 }
1587
1588 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1589 {
1590         /*
1591          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1592          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1593          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1594          * value.
1595          */
1596         if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1597                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1598 }
1599
1600 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1601                           int scope)
1602 {
1603         u64 ctr;
1604
1605         if (scope == SCOPE_SYSTEM)
1606                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1607         else
1608                 ctr = read_cpuid_cachetype();
1609
1610         return ctr & BIT(CTR_EL0_DIC_SHIFT);
1611 }
1612
1613 static bool __maybe_unused
1614 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1615 {
1616         /*
1617          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1618          * may share TLB entries with a CPU stuck in the crashed
1619          * kernel.
1620          */
1621         if (is_kdump_kernel())
1622                 return false;
1623
1624         if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1625                 return false;
1626
1627         return has_cpuid_feature(entry, scope);
1628 }
1629
1630 /*
1631  * This check is triggered during the early boot before the cpufeature
1632  * is initialised. Checking the status on the local CPU allows the boot
1633  * CPU to detect the need for non-global mappings and thus avoiding a
1634  * pagetable re-write after all the CPUs are booted. This check will be
1635  * anyway run on individual CPUs, allowing us to get the consistent
1636  * state once the SMP CPUs are up and thus make the switch to non-global
1637  * mappings if required.
1638  */
1639 bool kaslr_requires_kpti(void)
1640 {
1641         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1642                 return false;
1643
1644         /*
1645          * E0PD does a similar job to KPTI so can be used instead
1646          * where available.
1647          */
1648         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1649                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1650                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1651                                                 ID_AA64MMFR2_EL1_E0PD_SHIFT))
1652                         return false;
1653         }
1654
1655         /*
1656          * Systems affected by Cavium erratum 24756 are incompatible
1657          * with KPTI.
1658          */
1659         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1660                 extern const struct midr_range cavium_erratum_27456_cpus[];
1661
1662                 if (is_midr_in_range_list(read_cpuid_id(),
1663                                           cavium_erratum_27456_cpus))
1664                         return false;
1665         }
1666
1667         return kaslr_enabled();
1668 }
1669
1670 static bool __meltdown_safe = true;
1671 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1672
1673 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1674                                 int scope)
1675 {
1676         /* List of CPUs that are not vulnerable and don't need KPTI */
1677         static const struct midr_range kpti_safe_list[] = {
1678                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1679                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1680                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1681                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1682                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1683                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1684                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1685                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1686                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1687                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1688                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1689                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1690                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1691                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1692                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1693                 { /* sentinel */ }
1694         };
1695         char const *str = "kpti command line option";
1696         bool meltdown_safe;
1697
1698         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1699
1700         /* Defer to CPU feature registers */
1701         if (has_cpuid_feature(entry, scope))
1702                 meltdown_safe = true;
1703
1704         if (!meltdown_safe)
1705                 __meltdown_safe = false;
1706
1707         /*
1708          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1709          * ThunderX leads to apparent I-cache corruption of kernel text, which
1710          * ends as well as you might imagine. Don't even try. We cannot rely
1711          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1712          * because cpucap detection order may change. However, since we know
1713          * affected CPUs are always in a homogeneous configuration, it is
1714          * safe to rely on this_cpu_has_cap() here.
1715          */
1716         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1717                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1718                 __kpti_forced = -1;
1719         }
1720
1721         /* Useful for KASLR robustness */
1722         if (kaslr_requires_kpti()) {
1723                 if (!__kpti_forced) {
1724                         str = "KASLR";
1725                         __kpti_forced = 1;
1726                 }
1727         }
1728
1729         if (cpu_mitigations_off() && !__kpti_forced) {
1730                 str = "mitigations=off";
1731                 __kpti_forced = -1;
1732         }
1733
1734         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1735                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1736                 return false;
1737         }
1738
1739         /* Forced? */
1740         if (__kpti_forced) {
1741                 pr_info_once("kernel page table isolation forced %s by %s\n",
1742                              __kpti_forced > 0 ? "ON" : "OFF", str);
1743                 return __kpti_forced > 0;
1744         }
1745
1746         return !meltdown_safe;
1747 }
1748
1749 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1750 #define KPTI_NG_TEMP_VA         (-(1UL << PMD_SHIFT))
1751
1752 extern
1753 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1754                              phys_addr_t size, pgprot_t prot,
1755                              phys_addr_t (*pgtable_alloc)(int), int flags);
1756
1757 static phys_addr_t kpti_ng_temp_alloc;
1758
1759 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1760 {
1761         kpti_ng_temp_alloc -= PAGE_SIZE;
1762         return kpti_ng_temp_alloc;
1763 }
1764
1765 static void
1766 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1767 {
1768         typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1769         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1770         kpti_remap_fn *remap_fn;
1771
1772         int cpu = smp_processor_id();
1773         int levels = CONFIG_PGTABLE_LEVELS;
1774         int order = order_base_2(levels);
1775         u64 kpti_ng_temp_pgd_pa = 0;
1776         pgd_t *kpti_ng_temp_pgd;
1777         u64 alloc = 0;
1778
1779         if (__this_cpu_read(this_cpu_vector) == vectors) {
1780                 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1781
1782                 __this_cpu_write(this_cpu_vector, v);
1783         }
1784
1785         /*
1786          * We don't need to rewrite the page-tables if either we've done
1787          * it already or we have KASLR enabled and therefore have not
1788          * created any global mappings at all.
1789          */
1790         if (arm64_use_ng_mappings)
1791                 return;
1792
1793         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1794
1795         if (!cpu) {
1796                 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1797                 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1798                 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1799
1800                 //
1801                 // Create a minimal page table hierarchy that permits us to map
1802                 // the swapper page tables temporarily as we traverse them.
1803                 //
1804                 // The physical pages are laid out as follows:
1805                 //
1806                 // +--------+-/-------+-/------ +-\\--------+
1807                 // :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1808                 // +--------+-\-------+-\------ +-//--------+
1809                 //      ^
1810                 // The first page is mapped into this hierarchy at a PMD_SHIFT
1811                 // aligned virtual address, so that we can manipulate the PTE
1812                 // level entries while the mapping is active. The first entry
1813                 // covers the PTE[] page itself, the remaining entries are free
1814                 // to be used as a ad-hoc fixmap.
1815                 //
1816                 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1817                                         KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1818                                         kpti_ng_pgd_alloc, 0);
1819         }
1820
1821         cpu_install_idmap();
1822         remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1823         cpu_uninstall_idmap();
1824
1825         if (!cpu) {
1826                 free_pages(alloc, order);
1827                 arm64_use_ng_mappings = true;
1828         }
1829 }
1830 #else
1831 static void
1832 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1833 {
1834 }
1835 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1836
1837 static int __init parse_kpti(char *str)
1838 {
1839         bool enabled;
1840         int ret = kstrtobool(str, &enabled);
1841
1842         if (ret)
1843                 return ret;
1844
1845         __kpti_forced = enabled ? 1 : -1;
1846         return 0;
1847 }
1848 early_param("kpti", parse_kpti);
1849
1850 #ifdef CONFIG_ARM64_HW_AFDBM
1851 static inline void __cpu_enable_hw_dbm(void)
1852 {
1853         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1854
1855         write_sysreg(tcr, tcr_el1);
1856         isb();
1857         local_flush_tlb_all();
1858 }
1859
1860 static bool cpu_has_broken_dbm(void)
1861 {
1862         /* List of CPUs which have broken DBM support. */
1863         static const struct midr_range cpus[] = {
1864 #ifdef CONFIG_ARM64_ERRATUM_1024718
1865                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1866                 /* Kryo4xx Silver (rdpe => r1p0) */
1867                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1868 #endif
1869 #ifdef CONFIG_ARM64_ERRATUM_2051678
1870                 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1871 #endif
1872                 {},
1873         };
1874
1875         return is_midr_in_range_list(read_cpuid_id(), cpus);
1876 }
1877
1878 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1879 {
1880         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1881                !cpu_has_broken_dbm();
1882 }
1883
1884 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1885 {
1886         if (cpu_can_use_dbm(cap))
1887                 __cpu_enable_hw_dbm();
1888 }
1889
1890 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1891                        int __unused)
1892 {
1893         static bool detected = false;
1894         /*
1895          * DBM is a non-conflicting feature. i.e, the kernel can safely
1896          * run a mix of CPUs with and without the feature. So, we
1897          * unconditionally enable the capability to allow any late CPU
1898          * to use the feature. We only enable the control bits on the
1899          * CPU, if it actually supports.
1900          *
1901          * We have to make sure we print the "feature" detection only
1902          * when at least one CPU actually uses it. So check if this CPU
1903          * can actually use it and print the message exactly once.
1904          *
1905          * This is safe as all CPUs (including secondary CPUs - due to the
1906          * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1907          * goes through the "matches" check exactly once. Also if a CPU
1908          * matches the criteria, it is guaranteed that the CPU will turn
1909          * the DBM on, as the capability is unconditionally enabled.
1910          */
1911         if (!detected && cpu_can_use_dbm(cap)) {
1912                 detected = true;
1913                 pr_info("detected: Hardware dirty bit management\n");
1914         }
1915
1916         return true;
1917 }
1918
1919 #endif
1920
1921 #ifdef CONFIG_ARM64_AMU_EXTN
1922
1923 /*
1924  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1925  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1926  * information regarding all the events that it supports. When a CPU bit is
1927  * set in the cpumask, the user of this feature can only rely on the presence
1928  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1929  * counters are enabled or access to these counters is enabled by code
1930  * executed at higher exception levels (firmware).
1931  */
1932 static struct cpumask amu_cpus __read_mostly;
1933
1934 bool cpu_has_amu_feat(int cpu)
1935 {
1936         return cpumask_test_cpu(cpu, &amu_cpus);
1937 }
1938
1939 int get_cpu_with_amu_feat(void)
1940 {
1941         return cpumask_any(&amu_cpus);
1942 }
1943
1944 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1945 {
1946         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1947                 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1948                         smp_processor_id());
1949                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1950
1951                 /* 0 reference values signal broken/disabled counters */
1952                 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1953                         update_freq_counters_refs();
1954         }
1955 }
1956
1957 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1958                     int __unused)
1959 {
1960         /*
1961          * The AMU extension is a non-conflicting feature: the kernel can
1962          * safely run a mix of CPUs with and without support for the
1963          * activity monitors extension. Therefore, unconditionally enable
1964          * the capability to allow any late CPU to use the feature.
1965          *
1966          * With this feature unconditionally enabled, the cpu_enable
1967          * function will be called for all CPUs that match the criteria,
1968          * including secondary and hotplugged, marking this feature as
1969          * present on that respective CPU. The enable function will also
1970          * print a detection message.
1971          */
1972
1973         return true;
1974 }
1975 #else
1976 int get_cpu_with_amu_feat(void)
1977 {
1978         return nr_cpu_ids;
1979 }
1980 #endif
1981
1982 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1983 {
1984         return is_kernel_in_hyp_mode();
1985 }
1986
1987 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1988 {
1989         /*
1990          * Copy register values that aren't redirected by hardware.
1991          *
1992          * Before code patching, we only set tpidr_el1, all CPUs need to copy
1993          * this value to tpidr_el2 before we patch the code. Once we've done
1994          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1995          * do anything here.
1996          */
1997         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1998                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1999 }
2000
2001 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2002                                     int scope)
2003 {
2004         if (kvm_get_mode() != KVM_MODE_NV)
2005                 return false;
2006
2007         if (!has_cpuid_feature(cap, scope)) {
2008                 pr_warn("unavailable: %s\n", cap->desc);
2009                 return false;
2010         }
2011
2012         return true;
2013 }
2014
2015 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2016                           int __unused)
2017 {
2018         u64 val;
2019
2020         val = read_sysreg(id_aa64mmfr1_el1);
2021         if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
2022                 return false;
2023
2024         val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
2025         return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
2026 }
2027
2028 #ifdef CONFIG_ARM64_PAN
2029 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2030 {
2031         /*
2032          * We modify PSTATE. This won't work from irq context as the PSTATE
2033          * is discarded once we return from the exception.
2034          */
2035         WARN_ON_ONCE(in_interrupt());
2036
2037         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2038         set_pstate_pan(1);
2039 }
2040 #endif /* CONFIG_ARM64_PAN */
2041
2042 #ifdef CONFIG_ARM64_RAS_EXTN
2043 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2044 {
2045         /* Firmware may have left a deferred SError in this register. */
2046         write_sysreg_s(0, SYS_DISR_EL1);
2047 }
2048 #endif /* CONFIG_ARM64_RAS_EXTN */
2049
2050 #ifdef CONFIG_ARM64_PTR_AUTH
2051 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2052 {
2053         int boot_val, sec_val;
2054
2055         /* We don't expect to be called with SCOPE_SYSTEM */
2056         WARN_ON(scope == SCOPE_SYSTEM);
2057         /*
2058          * The ptr-auth feature levels are not intercompatible with lower
2059          * levels. Hence we must match ptr-auth feature level of the secondary
2060          * CPUs with that of the boot CPU. The level of boot cpu is fetched
2061          * from the sanitised register whereas direct register read is done for
2062          * the secondary CPUs.
2063          * The sanitised feature state is guaranteed to match that of the
2064          * boot CPU as a mismatched secondary CPU is parked before it gets
2065          * a chance to update the state, with the capability.
2066          */
2067         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2068                                                entry->field_pos, entry->sign);
2069         if (scope & SCOPE_BOOT_CPU)
2070                 return boot_val >= entry->min_field_value;
2071         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2072         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2073                                               entry->field_pos, entry->sign);
2074         return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2075 }
2076
2077 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2078                                      int scope)
2079 {
2080         bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2081         bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2082         bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2083
2084         return apa || apa3 || api;
2085 }
2086
2087 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2088                              int __unused)
2089 {
2090         bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2091         bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2092         bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2093
2094         return gpa || gpa3 || gpi;
2095 }
2096 #endif /* CONFIG_ARM64_PTR_AUTH */
2097
2098 #ifdef CONFIG_ARM64_E0PD
2099 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2100 {
2101         if (this_cpu_has_cap(ARM64_HAS_E0PD))
2102                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2103 }
2104 #endif /* CONFIG_ARM64_E0PD */
2105
2106 #ifdef CONFIG_ARM64_PSEUDO_NMI
2107 static bool enable_pseudo_nmi;
2108
2109 static int __init early_enable_pseudo_nmi(char *p)
2110 {
2111         return kstrtobool(p, &enable_pseudo_nmi);
2112 }
2113 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2114
2115 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2116                                    int scope)
2117 {
2118         /*
2119          * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2120          * feature, so will be detected earlier.
2121          */
2122         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2123         if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2124                 return false;
2125
2126         return enable_pseudo_nmi;
2127 }
2128
2129 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2130                                       int scope)
2131 {
2132         /*
2133          * If we're not using priority masking then we won't be poking PMR_EL1,
2134          * and there's no need to relax synchronization of writes to it, and
2135          * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2136          * that.
2137          *
2138          * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2139          * feature, so will be detected earlier.
2140          */
2141         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2142         if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2143                 return false;
2144
2145         /*
2146          * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2147          * hint for interrupt distribution, a DSB is not necessary when
2148          * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2149          *
2150          * Linux itself doesn't use 1:N distribution, so has no need to
2151          * set PMHE. The only reason to have it set is if EL3 requires it
2152          * (and we can't change it).
2153          */
2154         return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2155 }
2156 #endif
2157
2158 #ifdef CONFIG_ARM64_BTI
2159 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2160 {
2161         /*
2162          * Use of X16/X17 for tail-calls and trampolines that jump to
2163          * function entry points using BR is a requirement for
2164          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2165          * So, be strict and forbid other BRs using other registers to
2166          * jump onto a PACIxSP instruction:
2167          */
2168         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2169         isb();
2170 }
2171 #endif /* CONFIG_ARM64_BTI */
2172
2173 #ifdef CONFIG_ARM64_MTE
2174 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2175 {
2176         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2177
2178         mte_cpu_setup();
2179
2180         /*
2181          * Clear the tags in the zero page. This needs to be done via the
2182          * linear map which has the Tagged attribute.
2183          */
2184         if (try_page_mte_tagging(ZERO_PAGE(0))) {
2185                 mte_clear_page_tags(lm_alias(empty_zero_page));
2186                 set_page_mte_tagged(ZERO_PAGE(0));
2187         }
2188
2189         kasan_init_hw_tags_cpu();
2190 }
2191 #endif /* CONFIG_ARM64_MTE */
2192
2193 static void elf_hwcap_fixup(void)
2194 {
2195 #ifdef CONFIG_ARM64_ERRATUM_1742098
2196         if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2197                 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2198 #endif /* ARM64_ERRATUM_1742098 */
2199 }
2200
2201 #ifdef CONFIG_KVM
2202 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2203 {
2204         return kvm_get_mode() == KVM_MODE_PROTECTED;
2205 }
2206 #endif /* CONFIG_KVM */
2207
2208 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2209 {
2210         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2211 }
2212
2213 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2214 {
2215         set_pstate_dit(1);
2216 }
2217
2218 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2219 {
2220         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2221 }
2222
2223 /* Internal helper functions to match cpu capability type */
2224 static bool
2225 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2226 {
2227         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2228 }
2229
2230 static bool
2231 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2232 {
2233         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2234 }
2235
2236 static bool
2237 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2238 {
2239         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2240 }
2241
2242 static const struct arm64_cpu_capabilities arm64_features[] = {
2243         {
2244                 .capability = ARM64_ALWAYS_BOOT,
2245                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2246                 .matches = has_always,
2247         },
2248         {
2249                 .capability = ARM64_ALWAYS_SYSTEM,
2250                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2251                 .matches = has_always,
2252         },
2253         {
2254                 .desc = "GIC system register CPU interface",
2255                 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2256                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2257                 .matches = has_useable_gicv3_cpuif,
2258                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2259         },
2260         {
2261                 .desc = "Enhanced Counter Virtualization",
2262                 .capability = ARM64_HAS_ECV,
2263                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2264                 .matches = has_cpuid_feature,
2265                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2266         },
2267         {
2268                 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2269                 .capability = ARM64_HAS_ECV_CNTPOFF,
2270                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2271                 .matches = has_cpuid_feature,
2272                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2273         },
2274 #ifdef CONFIG_ARM64_PAN
2275         {
2276                 .desc = "Privileged Access Never",
2277                 .capability = ARM64_HAS_PAN,
2278                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2279                 .matches = has_cpuid_feature,
2280                 .cpu_enable = cpu_enable_pan,
2281                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2282         },
2283 #endif /* CONFIG_ARM64_PAN */
2284 #ifdef CONFIG_ARM64_EPAN
2285         {
2286                 .desc = "Enhanced Privileged Access Never",
2287                 .capability = ARM64_HAS_EPAN,
2288                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2289                 .matches = has_cpuid_feature,
2290                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2291         },
2292 #endif /* CONFIG_ARM64_EPAN */
2293 #ifdef CONFIG_ARM64_LSE_ATOMICS
2294         {
2295                 .desc = "LSE atomic instructions",
2296                 .capability = ARM64_HAS_LSE_ATOMICS,
2297                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2298                 .matches = has_cpuid_feature,
2299                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2300         },
2301 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2302         {
2303                 .desc = "Software prefetching using PRFM",
2304                 .capability = ARM64_HAS_NO_HW_PREFETCH,
2305                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2306                 .matches = has_no_hw_prefetch,
2307         },
2308         {
2309                 .desc = "Virtualization Host Extensions",
2310                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2311                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2312                 .matches = runs_at_el2,
2313                 .cpu_enable = cpu_copy_el2regs,
2314         },
2315         {
2316                 .desc = "Nested Virtualization Support",
2317                 .capability = ARM64_HAS_NESTED_VIRT,
2318                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2319                 .matches = has_nested_virt_support,
2320                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, IMP)
2321         },
2322         {
2323                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2324                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2325                 .matches = has_32bit_el0,
2326                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2327         },
2328 #ifdef CONFIG_KVM
2329         {
2330                 .desc = "32-bit EL1 Support",
2331                 .capability = ARM64_HAS_32BIT_EL1,
2332                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2333                 .matches = has_cpuid_feature,
2334                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2335         },
2336         {
2337                 .desc = "Protected KVM",
2338                 .capability = ARM64_KVM_PROTECTED_MODE,
2339                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2340                 .matches = is_kvm_protected_mode,
2341         },
2342         {
2343                 .desc = "HCRX_EL2 register",
2344                 .capability = ARM64_HAS_HCX,
2345                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2346                 .matches = has_cpuid_feature,
2347                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2348         },
2349 #endif
2350         {
2351                 .desc = "Kernel page table isolation (KPTI)",
2352                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2353                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2354                 .cpu_enable = kpti_install_ng_mappings,
2355                 .matches = unmap_kernel_at_el0,
2356                 /*
2357                  * The ID feature fields below are used to indicate that
2358                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2359                  * more details.
2360                  */
2361                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2362         },
2363         {
2364                 /* FP/SIMD is not implemented */
2365                 .capability = ARM64_HAS_NO_FPSIMD,
2366                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2367                 .min_field_value = 0,
2368                 .matches = has_no_fpsimd,
2369         },
2370 #ifdef CONFIG_ARM64_PMEM
2371         {
2372                 .desc = "Data cache clean to Point of Persistence",
2373                 .capability = ARM64_HAS_DCPOP,
2374                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2375                 .matches = has_cpuid_feature,
2376                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2377         },
2378         {
2379                 .desc = "Data cache clean to Point of Deep Persistence",
2380                 .capability = ARM64_HAS_DCPODP,
2381                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2382                 .matches = has_cpuid_feature,
2383                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2384         },
2385 #endif
2386 #ifdef CONFIG_ARM64_SVE
2387         {
2388                 .desc = "Scalable Vector Extension",
2389                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2390                 .capability = ARM64_SVE,
2391                 .cpu_enable = sve_kernel_enable,
2392                 .matches = has_cpuid_feature,
2393                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2394         },
2395 #endif /* CONFIG_ARM64_SVE */
2396 #ifdef CONFIG_ARM64_RAS_EXTN
2397         {
2398                 .desc = "RAS Extension Support",
2399                 .capability = ARM64_HAS_RAS_EXTN,
2400                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2401                 .matches = has_cpuid_feature,
2402                 .cpu_enable = cpu_clear_disr,
2403                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2404         },
2405 #endif /* CONFIG_ARM64_RAS_EXTN */
2406 #ifdef CONFIG_ARM64_AMU_EXTN
2407         {
2408                 /*
2409                  * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2410                  * Therefore, don't provide .desc as we don't want the detection
2411                  * message to be shown until at least one CPU is detected to
2412                  * support the feature.
2413                  */
2414                 .capability = ARM64_HAS_AMU_EXTN,
2415                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2416                 .matches = has_amu,
2417                 .cpu_enable = cpu_amu_enable,
2418                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2419         },
2420 #endif /* CONFIG_ARM64_AMU_EXTN */
2421         {
2422                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2423                 .capability = ARM64_HAS_CACHE_IDC,
2424                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2425                 .matches = has_cache_idc,
2426                 .cpu_enable = cpu_emulate_effective_ctr,
2427         },
2428         {
2429                 .desc = "Instruction cache invalidation not required for I/D coherence",
2430                 .capability = ARM64_HAS_CACHE_DIC,
2431                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2432                 .matches = has_cache_dic,
2433         },
2434         {
2435                 .desc = "Stage-2 Force Write-Back",
2436                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2437                 .capability = ARM64_HAS_STAGE2_FWB,
2438                 .matches = has_cpuid_feature,
2439                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2440         },
2441         {
2442                 .desc = "ARMv8.4 Translation Table Level",
2443                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2444                 .capability = ARM64_HAS_ARMv8_4_TTL,
2445                 .matches = has_cpuid_feature,
2446                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2447         },
2448         {
2449                 .desc = "TLB range maintenance instructions",
2450                 .capability = ARM64_HAS_TLB_RANGE,
2451                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2452                 .matches = has_cpuid_feature,
2453                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2454         },
2455 #ifdef CONFIG_ARM64_HW_AFDBM
2456         {
2457                 /*
2458                  * Since we turn this on always, we don't want the user to
2459                  * think that the feature is available when it may not be.
2460                  * So hide the description.
2461                  *
2462                  * .desc = "Hardware pagetable Dirty Bit Management",
2463                  *
2464                  */
2465                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2466                 .capability = ARM64_HW_DBM,
2467                 .matches = has_hw_dbm,
2468                 .cpu_enable = cpu_enable_hw_dbm,
2469                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2470         },
2471 #endif
2472         {
2473                 .desc = "CRC32 instructions",
2474                 .capability = ARM64_HAS_CRC32,
2475                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2476                 .matches = has_cpuid_feature,
2477                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2478         },
2479         {
2480                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2481                 .capability = ARM64_SSBS,
2482                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2483                 .matches = has_cpuid_feature,
2484                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2485         },
2486 #ifdef CONFIG_ARM64_CNP
2487         {
2488                 .desc = "Common not Private translations",
2489                 .capability = ARM64_HAS_CNP,
2490                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2491                 .matches = has_useable_cnp,
2492                 .cpu_enable = cpu_enable_cnp,
2493                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2494         },
2495 #endif
2496         {
2497                 .desc = "Speculation barrier (SB)",
2498                 .capability = ARM64_HAS_SB,
2499                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2500                 .matches = has_cpuid_feature,
2501                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2502         },
2503 #ifdef CONFIG_ARM64_PTR_AUTH
2504         {
2505                 .desc = "Address authentication (architected QARMA5 algorithm)",
2506                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2507                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2508                 .matches = has_address_auth_cpucap,
2509                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2510         },
2511         {
2512                 .desc = "Address authentication (architected QARMA3 algorithm)",
2513                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2514                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2515                 .matches = has_address_auth_cpucap,
2516                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2517         },
2518         {
2519                 .desc = "Address authentication (IMP DEF algorithm)",
2520                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2521                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2522                 .matches = has_address_auth_cpucap,
2523                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2524         },
2525         {
2526                 .capability = ARM64_HAS_ADDRESS_AUTH,
2527                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2528                 .matches = has_address_auth_metacap,
2529         },
2530         {
2531                 .desc = "Generic authentication (architected QARMA5 algorithm)",
2532                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2533                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2534                 .matches = has_cpuid_feature,
2535                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2536         },
2537         {
2538                 .desc = "Generic authentication (architected QARMA3 algorithm)",
2539                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2540                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2541                 .matches = has_cpuid_feature,
2542                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2543         },
2544         {
2545                 .desc = "Generic authentication (IMP DEF algorithm)",
2546                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2547                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2548                 .matches = has_cpuid_feature,
2549                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2550         },
2551         {
2552                 .capability = ARM64_HAS_GENERIC_AUTH,
2553                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2554                 .matches = has_generic_auth,
2555         },
2556 #endif /* CONFIG_ARM64_PTR_AUTH */
2557 #ifdef CONFIG_ARM64_PSEUDO_NMI
2558         {
2559                 /*
2560                  * Depends on having GICv3
2561                  */
2562                 .desc = "IRQ priority masking",
2563                 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2564                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2565                 .matches = can_use_gic_priorities,
2566         },
2567         {
2568                 /*
2569                  * Depends on ARM64_HAS_GIC_PRIO_MASKING
2570                  */
2571                 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2572                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2573                 .matches = has_gic_prio_relaxed_sync,
2574         },
2575 #endif
2576 #ifdef CONFIG_ARM64_E0PD
2577         {
2578                 .desc = "E0PD",
2579                 .capability = ARM64_HAS_E0PD,
2580                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2581                 .cpu_enable = cpu_enable_e0pd,
2582                 .matches = has_cpuid_feature,
2583                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2584         },
2585 #endif
2586         {
2587                 .desc = "Random Number Generator",
2588                 .capability = ARM64_HAS_RNG,
2589                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2590                 .matches = has_cpuid_feature,
2591                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2592         },
2593 #ifdef CONFIG_ARM64_BTI
2594         {
2595                 .desc = "Branch Target Identification",
2596                 .capability = ARM64_BTI,
2597 #ifdef CONFIG_ARM64_BTI_KERNEL
2598                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2599 #else
2600                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2601 #endif
2602                 .matches = has_cpuid_feature,
2603                 .cpu_enable = bti_enable,
2604                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2605         },
2606 #endif
2607 #ifdef CONFIG_ARM64_MTE
2608         {
2609                 .desc = "Memory Tagging Extension",
2610                 .capability = ARM64_MTE,
2611                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2612                 .matches = has_cpuid_feature,
2613                 .cpu_enable = cpu_enable_mte,
2614                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2615         },
2616         {
2617                 .desc = "Asymmetric MTE Tag Check Fault",
2618                 .capability = ARM64_MTE_ASYMM,
2619                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2620                 .matches = has_cpuid_feature,
2621                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2622         },
2623 #endif /* CONFIG_ARM64_MTE */
2624         {
2625                 .desc = "RCpc load-acquire (LDAPR)",
2626                 .capability = ARM64_HAS_LDAPR,
2627                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2628                 .matches = has_cpuid_feature,
2629                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2630         },
2631         {
2632                 .desc = "Fine Grained Traps",
2633                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2634                 .capability = ARM64_HAS_FGT,
2635                 .matches = has_cpuid_feature,
2636                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2637         },
2638 #ifdef CONFIG_ARM64_SME
2639         {
2640                 .desc = "Scalable Matrix Extension",
2641                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2642                 .capability = ARM64_SME,
2643                 .matches = has_cpuid_feature,
2644                 .cpu_enable = sme_kernel_enable,
2645                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2646         },
2647         /* FA64 should be sorted after the base SME capability */
2648         {
2649                 .desc = "FA64",
2650                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2651                 .capability = ARM64_SME_FA64,
2652                 .matches = has_cpuid_feature,
2653                 .cpu_enable = fa64_kernel_enable,
2654                 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2655         },
2656         {
2657                 .desc = "SME2",
2658                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2659                 .capability = ARM64_SME2,
2660                 .matches = has_cpuid_feature,
2661                 .cpu_enable = sme2_kernel_enable,
2662                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2663         },
2664 #endif /* CONFIG_ARM64_SME */
2665         {
2666                 .desc = "WFx with timeout",
2667                 .capability = ARM64_HAS_WFXT,
2668                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2669                 .matches = has_cpuid_feature,
2670                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2671         },
2672         {
2673                 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2674                 .capability = ARM64_HAS_TIDCP1,
2675                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2676                 .matches = has_cpuid_feature,
2677                 .cpu_enable = cpu_trap_el0_impdef,
2678                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2679         },
2680         {
2681                 .desc = "Data independent timing control (DIT)",
2682                 .capability = ARM64_HAS_DIT,
2683                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2684                 .matches = has_cpuid_feature,
2685                 .cpu_enable = cpu_enable_dit,
2686                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2687         },
2688         {
2689                 .desc = "Memory Copy and Memory Set instructions",
2690                 .capability = ARM64_HAS_MOPS,
2691                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2692                 .matches = has_cpuid_feature,
2693                 .cpu_enable = cpu_enable_mops,
2694                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2695         },
2696         {
2697                 .capability = ARM64_HAS_TCR2,
2698                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2699                 .matches = has_cpuid_feature,
2700                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2701         },
2702         {
2703                 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2704                 .capability = ARM64_HAS_S1PIE,
2705                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2706                 .matches = has_cpuid_feature,
2707                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2708         },
2709         {
2710                 .desc = "VHE for hypervisor only",
2711                 .capability = ARM64_KVM_HVHE,
2712                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713                 .matches = hvhe_possible,
2714         },
2715         {
2716                 .desc = "Enhanced Virtualization Traps",
2717                 .capability = ARM64_HAS_EVT,
2718                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2719                 .matches = has_cpuid_feature,
2720                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2721         },
2722         {},
2723 };
2724
2725 #define HWCAP_CPUID_MATCH(reg, field, min_value)                        \
2726                 .matches = has_user_cpuid_feature,                      \
2727                 ARM64_CPUID_FIELDS(reg, field, min_value)
2728
2729 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2730                 .desc = name,                                                   \
2731                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2732                 .hwcap_type = cap_type,                                         \
2733                 .hwcap = cap,                                                   \
2734
2735 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)         \
2736         {                                                                       \
2737                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2738                 HWCAP_CPUID_MATCH(reg, field, min_value)                \
2739         }
2740
2741 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2742         {                                                                       \
2743                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2744                 .matches = cpucap_multi_entry_cap_matches,                      \
2745                 .match_list = list,                                             \
2746         }
2747
2748 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2749         {                                                                       \
2750                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2751                 .matches = match,                                               \
2752         }
2753
2754 #ifdef CONFIG_ARM64_PTR_AUTH
2755 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2756         {
2757                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2758         },
2759         {
2760                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2761         },
2762         {
2763                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2764         },
2765         {},
2766 };
2767
2768 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2769         {
2770                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2771         },
2772         {
2773                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2774         },
2775         {
2776                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2777         },
2778         {},
2779 };
2780 #endif
2781
2782 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2783         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2784         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2785         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2786         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2787         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2788         HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2789         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2790         HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2791         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2792         HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2793         HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2794         HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2795         HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2796         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2797         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2798         HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2799         HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2800         HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2801         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2802         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2803         HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2804         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2805         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2806         HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2807         HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2808         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2809         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2810         HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2811         HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2812         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2813         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2814         HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2815         HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2816         HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2817 #ifdef CONFIG_ARM64_SVE
2818         HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2819         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2820         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2821         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2822         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2823         HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2824         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2825         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2826         HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2827         HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2828         HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2829         HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2830         HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2831 #endif
2832         HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2833 #ifdef CONFIG_ARM64_BTI
2834         HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2835 #endif
2836 #ifdef CONFIG_ARM64_PTR_AUTH
2837         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2838         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2839 #endif
2840 #ifdef CONFIG_ARM64_MTE
2841         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2842         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2843 #endif /* CONFIG_ARM64_MTE */
2844         HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2845         HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2846         HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2847         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2848         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2849         HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2850         HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2851         HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
2852 #ifdef CONFIG_ARM64_SME
2853         HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2854         HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2855         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2856         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2857         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2858         HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2859         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2860         HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2861         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2862         HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2863         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2864         HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2865         HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2866         HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2867 #endif /* CONFIG_ARM64_SME */
2868         {},
2869 };
2870
2871 #ifdef CONFIG_COMPAT
2872 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2873 {
2874         /*
2875          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2876          * in line with that of arm32 as in vfp_init(). We make sure that the
2877          * check is future proof, by making sure value is non-zero.
2878          */
2879         u32 mvfr1;
2880
2881         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2882         if (scope == SCOPE_SYSTEM)
2883                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2884         else
2885                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2886
2887         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2888                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2889                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2890 }
2891 #endif
2892
2893 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2894 #ifdef CONFIG_COMPAT
2895         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2896         HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2897         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2898         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2899         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2900         HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2901         HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2902         HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2903         HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2904         HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2905         HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2906         HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2907         HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2908         HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2909         HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2910         HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2911         HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2912         HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2913 #endif
2914         {},
2915 };
2916
2917 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2918 {
2919         switch (cap->hwcap_type) {
2920         case CAP_HWCAP:
2921                 cpu_set_feature(cap->hwcap);
2922                 break;
2923 #ifdef CONFIG_COMPAT
2924         case CAP_COMPAT_HWCAP:
2925                 compat_elf_hwcap |= (u32)cap->hwcap;
2926                 break;
2927         case CAP_COMPAT_HWCAP2:
2928                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2929                 break;
2930 #endif
2931         default:
2932                 WARN_ON(1);
2933                 break;
2934         }
2935 }
2936
2937 /* Check if we have a particular HWCAP enabled */
2938 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2939 {
2940         bool rc;
2941
2942         switch (cap->hwcap_type) {
2943         case CAP_HWCAP:
2944                 rc = cpu_have_feature(cap->hwcap);
2945                 break;
2946 #ifdef CONFIG_COMPAT
2947         case CAP_COMPAT_HWCAP:
2948                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2949                 break;
2950         case CAP_COMPAT_HWCAP2:
2951                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2952                 break;
2953 #endif
2954         default:
2955                 WARN_ON(1);
2956                 rc = false;
2957         }
2958
2959         return rc;
2960 }
2961
2962 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2963 {
2964         /* We support emulation of accesses to CPU ID feature registers */
2965         cpu_set_named_feature(CPUID);
2966         for (; hwcaps->matches; hwcaps++)
2967                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2968                         cap_set_elf_hwcap(hwcaps);
2969 }
2970
2971 static void update_cpu_capabilities(u16 scope_mask)
2972 {
2973         int i;
2974         const struct arm64_cpu_capabilities *caps;
2975
2976         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2977         for (i = 0; i < ARM64_NCAPS; i++) {
2978                 caps = cpucap_ptrs[i];
2979                 if (!caps || !(caps->type & scope_mask) ||
2980                     cpus_have_cap(caps->capability) ||
2981                     !caps->matches(caps, cpucap_default_scope(caps)))
2982                         continue;
2983
2984                 if (caps->desc)
2985                         pr_info("detected: %s\n", caps->desc);
2986
2987                 __set_bit(caps->capability, system_cpucaps);
2988
2989                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2990                         set_bit(caps->capability, boot_cpucaps);
2991         }
2992 }
2993
2994 /*
2995  * Enable all the available capabilities on this CPU. The capabilities
2996  * with BOOT_CPU scope are handled separately and hence skipped here.
2997  */
2998 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2999 {
3000         int i;
3001         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3002
3003         for_each_available_cap(i) {
3004                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3005
3006                 if (WARN_ON(!cap))
3007                         continue;
3008
3009                 if (!(cap->type & non_boot_scope))
3010                         continue;
3011
3012                 if (cap->cpu_enable)
3013                         cap->cpu_enable(cap);
3014         }
3015         return 0;
3016 }
3017
3018 /*
3019  * Run through the enabled capabilities and enable() it on all active
3020  * CPUs
3021  */
3022 static void __init enable_cpu_capabilities(u16 scope_mask)
3023 {
3024         int i;
3025         const struct arm64_cpu_capabilities *caps;
3026         bool boot_scope;
3027
3028         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3029         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3030
3031         for (i = 0; i < ARM64_NCAPS; i++) {
3032                 unsigned int num;
3033
3034                 caps = cpucap_ptrs[i];
3035                 if (!caps || !(caps->type & scope_mask))
3036                         continue;
3037                 num = caps->capability;
3038                 if (!cpus_have_cap(num))
3039                         continue;
3040
3041                 if (boot_scope && caps->cpu_enable)
3042                         /*
3043                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
3044                          * before any secondary CPU boots. Thus, each secondary
3045                          * will enable the capability as appropriate via
3046                          * check_local_cpu_capabilities(). The only exception is
3047                          * the boot CPU, for which the capability must be
3048                          * enabled here. This approach avoids costly
3049                          * stop_machine() calls for this case.
3050                          */
3051                         caps->cpu_enable(caps);
3052         }
3053
3054         /*
3055          * For all non-boot scope capabilities, use stop_machine()
3056          * as it schedules the work allowing us to modify PSTATE,
3057          * instead of on_each_cpu() which uses an IPI, giving us a
3058          * PSTATE that disappears when we return.
3059          */
3060         if (!boot_scope)
3061                 stop_machine(cpu_enable_non_boot_scope_capabilities,
3062                              NULL, cpu_online_mask);
3063 }
3064
3065 /*
3066  * Run through the list of capabilities to check for conflicts.
3067  * If the system has already detected a capability, take necessary
3068  * action on this CPU.
3069  */
3070 static void verify_local_cpu_caps(u16 scope_mask)
3071 {
3072         int i;
3073         bool cpu_has_cap, system_has_cap;
3074         const struct arm64_cpu_capabilities *caps;
3075
3076         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3077
3078         for (i = 0; i < ARM64_NCAPS; i++) {
3079                 caps = cpucap_ptrs[i];
3080                 if (!caps || !(caps->type & scope_mask))
3081                         continue;
3082
3083                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3084                 system_has_cap = cpus_have_cap(caps->capability);
3085
3086                 if (system_has_cap) {
3087                         /*
3088                          * Check if the new CPU misses an advertised feature,
3089                          * which is not safe to miss.
3090                          */
3091                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3092                                 break;
3093                         /*
3094                          * We have to issue cpu_enable() irrespective of
3095                          * whether the CPU has it or not, as it is enabeld
3096                          * system wide. It is upto the call back to take
3097                          * appropriate action on this CPU.
3098                          */
3099                         if (caps->cpu_enable)
3100                                 caps->cpu_enable(caps);
3101                 } else {
3102                         /*
3103                          * Check if the CPU has this capability if it isn't
3104                          * safe to have when the system doesn't.
3105                          */
3106                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3107                                 break;
3108                 }
3109         }
3110
3111         if (i < ARM64_NCAPS) {
3112                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3113                         smp_processor_id(), caps->capability,
3114                         caps->desc, system_has_cap, cpu_has_cap);
3115
3116                 if (cpucap_panic_on_conflict(caps))
3117                         cpu_panic_kernel();
3118                 else
3119                         cpu_die_early();
3120         }
3121 }
3122
3123 /*
3124  * Check for CPU features that are used in early boot
3125  * based on the Boot CPU value.
3126  */
3127 static void check_early_cpu_features(void)
3128 {
3129         verify_cpu_asid_bits();
3130
3131         verify_local_cpu_caps(SCOPE_BOOT_CPU);
3132 }
3133
3134 static void
3135 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3136 {
3137
3138         for (; caps->matches; caps++)
3139                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3140                         pr_crit("CPU%d: missing HWCAP: %s\n",
3141                                         smp_processor_id(), caps->desc);
3142                         cpu_die_early();
3143                 }
3144 }
3145
3146 static void verify_local_elf_hwcaps(void)
3147 {
3148         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3149
3150         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3151                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3152 }
3153
3154 static void verify_sve_features(void)
3155 {
3156         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3157         u64 zcr = read_zcr_features();
3158
3159         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3160         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3161
3162         if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3163                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3164                         smp_processor_id());
3165                 cpu_die_early();
3166         }
3167
3168         /* Add checks on other ZCR bits here if necessary */
3169 }
3170
3171 static void verify_sme_features(void)
3172 {
3173         u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3174         u64 smcr = read_smcr_features();
3175
3176         unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3177         unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3178
3179         if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3180                 pr_crit("CPU%d: SME: vector length support mismatch\n",
3181                         smp_processor_id());
3182                 cpu_die_early();
3183         }
3184
3185         /* Add checks on other SMCR bits here if necessary */
3186 }
3187
3188 static void verify_hyp_capabilities(void)
3189 {
3190         u64 safe_mmfr1, mmfr0, mmfr1;
3191         int parange, ipa_max;
3192         unsigned int safe_vmid_bits, vmid_bits;
3193
3194         if (!IS_ENABLED(CONFIG_KVM))
3195                 return;
3196
3197         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3198         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3199         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3200
3201         /* Verify VMID bits */
3202         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3203         vmid_bits = get_vmid_bits(mmfr1);
3204         if (vmid_bits < safe_vmid_bits) {
3205                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3206                 cpu_die_early();
3207         }
3208
3209         /* Verify IPA range */
3210         parange = cpuid_feature_extract_unsigned_field(mmfr0,
3211                                 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3212         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3213         if (ipa_max < get_kvm_ipa_limit()) {
3214                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3215                 cpu_die_early();
3216         }
3217 }
3218
3219 /*
3220  * Run through the enabled system capabilities and enable() it on this CPU.
3221  * The capabilities were decided based on the available CPUs at the boot time.
3222  * Any new CPU should match the system wide status of the capability. If the
3223  * new CPU doesn't have a capability which the system now has enabled, we
3224  * cannot do anything to fix it up and could cause unexpected failures. So
3225  * we park the CPU.
3226  */
3227 static void verify_local_cpu_capabilities(void)
3228 {
3229         /*
3230          * The capabilities with SCOPE_BOOT_CPU are checked from
3231          * check_early_cpu_features(), as they need to be verified
3232          * on all secondary CPUs.
3233          */
3234         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3235         verify_local_elf_hwcaps();
3236
3237         if (system_supports_sve())
3238                 verify_sve_features();
3239
3240         if (system_supports_sme())
3241                 verify_sme_features();
3242
3243         if (is_hyp_mode_available())
3244                 verify_hyp_capabilities();
3245 }
3246
3247 void check_local_cpu_capabilities(void)
3248 {
3249         /*
3250          * All secondary CPUs should conform to the early CPU features
3251          * in use by the kernel based on boot CPU.
3252          */
3253         check_early_cpu_features();
3254
3255         /*
3256          * If we haven't finalised the system capabilities, this CPU gets
3257          * a chance to update the errata work arounds and local features.
3258          * Otherwise, this CPU should verify that it has all the system
3259          * advertised capabilities.
3260          */
3261         if (!system_capabilities_finalized())
3262                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3263         else
3264                 verify_local_cpu_capabilities();
3265 }
3266
3267 static void __init setup_boot_cpu_capabilities(void)
3268 {
3269         /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3270         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3271         /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3272         enable_cpu_capabilities(SCOPE_BOOT_CPU);
3273 }
3274
3275 bool this_cpu_has_cap(unsigned int n)
3276 {
3277         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3278                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3279
3280                 if (cap)
3281                         return cap->matches(cap, SCOPE_LOCAL_CPU);
3282         }
3283
3284         return false;
3285 }
3286 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3287
3288 /*
3289  * This helper function is used in a narrow window when,
3290  * - The system wide safe registers are set with all the SMP CPUs and,
3291  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3292  * In all other cases cpus_have_{const_}cap() should be used.
3293  */
3294 static bool __maybe_unused __system_matches_cap(unsigned int n)
3295 {
3296         if (n < ARM64_NCAPS) {
3297                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3298
3299                 if (cap)
3300                         return cap->matches(cap, SCOPE_SYSTEM);
3301         }
3302         return false;
3303 }
3304
3305 void cpu_set_feature(unsigned int num)
3306 {
3307         set_bit(num, elf_hwcap);
3308 }
3309
3310 bool cpu_have_feature(unsigned int num)
3311 {
3312         return test_bit(num, elf_hwcap);
3313 }
3314 EXPORT_SYMBOL_GPL(cpu_have_feature);
3315
3316 unsigned long cpu_get_elf_hwcap(void)
3317 {
3318         /*
3319          * We currently only populate the first 32 bits of AT_HWCAP. Please
3320          * note that for userspace compatibility we guarantee that bits 62
3321          * and 63 will always be returned as 0.
3322          */
3323         return elf_hwcap[0];
3324 }
3325
3326 unsigned long cpu_get_elf_hwcap2(void)
3327 {
3328         return elf_hwcap[1];
3329 }
3330
3331 static void __init setup_system_capabilities(void)
3332 {
3333         /*
3334          * We have finalised the system-wide safe feature
3335          * registers, finalise the capabilities that depend
3336          * on it. Also enable all the available capabilities,
3337          * that are not enabled already.
3338          */
3339         update_cpu_capabilities(SCOPE_SYSTEM);
3340         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3341 }
3342
3343 void __init setup_cpu_features(void)
3344 {
3345         u32 cwg;
3346
3347         setup_system_capabilities();
3348         setup_elf_hwcaps(arm64_elf_hwcaps);
3349
3350         if (system_supports_32bit_el0()) {
3351                 setup_elf_hwcaps(compat_elf_hwcaps);
3352                 elf_hwcap_fixup();
3353         }
3354
3355         if (system_uses_ttbr0_pan())
3356                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3357
3358         sve_setup();
3359         sme_setup();
3360         minsigstksz_setup();
3361
3362         /*
3363          * Check for sane CTR_EL0.CWG value.
3364          */
3365         cwg = cache_type_cwg();
3366         if (!cwg)
3367                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3368                         ARCH_DMA_MINALIGN);
3369 }
3370
3371 static int enable_mismatched_32bit_el0(unsigned int cpu)
3372 {
3373         /*
3374          * The first 32-bit-capable CPU we detected and so can no longer
3375          * be offlined by userspace. -1 indicates we haven't yet onlined
3376          * a 32-bit-capable CPU.
3377          */
3378         static int lucky_winner = -1;
3379
3380         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3381         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3382
3383         if (cpu_32bit) {
3384                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3385                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3386         }
3387
3388         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3389                 return 0;
3390
3391         if (lucky_winner >= 0)
3392                 return 0;
3393
3394         /*
3395          * We've detected a mismatch. We need to keep one of our CPUs with
3396          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3397          * every CPU in the system for a 32-bit task.
3398          */
3399         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3400                                                          cpu_active_mask);
3401         get_cpu_device(lucky_winner)->offline_disabled = true;
3402         setup_elf_hwcaps(compat_elf_hwcaps);
3403         elf_hwcap_fixup();
3404         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3405                 cpu, lucky_winner);
3406         return 0;
3407 }
3408
3409 static int __init init_32bit_el0_mask(void)
3410 {
3411         if (!allow_mismatched_32bit_el0)
3412                 return 0;
3413
3414         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3415                 return -ENOMEM;
3416
3417         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3418                                  "arm64/mismatched_32bit_el0:online",
3419                                  enable_mismatched_32bit_el0, NULL);
3420 }
3421 subsys_initcall_sync(init_32bit_el0_mask);
3422
3423 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3424 {
3425         cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3426 }
3427
3428 /*
3429  * We emulate only the following system register space.
3430  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3431  * See Table C5-6 System instruction encodings for System register accesses,
3432  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3433  */
3434 static inline bool __attribute_const__ is_emulated(u32 id)
3435 {
3436         return (sys_reg_Op0(id) == 0x3 &&
3437                 sys_reg_CRn(id) == 0x0 &&
3438                 sys_reg_Op1(id) == 0x0 &&
3439                 (sys_reg_CRm(id) == 0 ||
3440                  ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3441 }
3442
3443 /*
3444  * With CRm == 0, reg should be one of :
3445  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3446  */
3447 static inline int emulate_id_reg(u32 id, u64 *valp)
3448 {
3449         switch (id) {
3450         case SYS_MIDR_EL1:
3451                 *valp = read_cpuid_id();
3452                 break;
3453         case SYS_MPIDR_EL1:
3454                 *valp = SYS_MPIDR_SAFE_VAL;
3455                 break;
3456         case SYS_REVIDR_EL1:
3457                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3458                 *valp = 0;
3459                 break;
3460         default:
3461                 return -EINVAL;
3462         }
3463
3464         return 0;
3465 }
3466
3467 static int emulate_sys_reg(u32 id, u64 *valp)
3468 {
3469         struct arm64_ftr_reg *regp;
3470
3471         if (!is_emulated(id))
3472                 return -EINVAL;
3473
3474         if (sys_reg_CRm(id) == 0)
3475                 return emulate_id_reg(id, valp);
3476
3477         regp = get_arm64_ftr_reg_nowarn(id);
3478         if (regp)
3479                 *valp = arm64_ftr_reg_user_value(regp);
3480         else
3481                 /*
3482                  * The untracked registers are either IMPLEMENTATION DEFINED
3483                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3484                  */
3485                 *valp = 0;
3486         return 0;
3487 }
3488
3489 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3490 {
3491         int rc;
3492         u64 val;
3493
3494         rc = emulate_sys_reg(sys_reg, &val);
3495         if (!rc) {
3496                 pt_regs_write_reg(regs, rt, val);
3497                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3498         }
3499         return rc;
3500 }
3501
3502 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3503 {
3504         u32 sys_reg, rt;
3505
3506         if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3507                 return false;
3508
3509         /*
3510          * sys_reg values are defined as used in mrs/msr instruction.
3511          * shift the imm value to get the encoding.
3512          */
3513         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3514         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3515         return do_emulate_mrs(regs, sys_reg, rt) == 0;
3516 }
3517
3518 enum mitigation_state arm64_get_meltdown_state(void)
3519 {
3520         if (__meltdown_safe)
3521                 return SPECTRE_UNAFFECTED;
3522
3523         if (arm64_kernel_unmapped_at_el0())
3524                 return SPECTRE_MITIGATED;
3525
3526         return SPECTRE_VULNERABLE;
3527 }
3528
3529 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3530                           char *buf)
3531 {
3532         switch (arm64_get_meltdown_state()) {
3533         case SPECTRE_UNAFFECTED:
3534                 return sprintf(buf, "Not affected\n");
3535
3536         case SPECTRE_MITIGATED:
3537                 return sprintf(buf, "Mitigation: PTI\n");
3538
3539         default:
3540                 return sprintf(buf, "Vulnerable\n");
3541         }
3542 }