arm64: Take into account ID_AA64PFR0_EL1.CSV3
[platform/kernel/linux-rpi.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT        \
41                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46                                  COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56         /* file-wide pr_fmt adds "CPU features: " prefix */
57         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58         return 0;
59 }
60
61 static struct notifier_block cpu_hwcaps_notifier = {
62         .notifier_call = dump_cpu_hwcaps
63 };
64
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67         atomic_notifier_chain_register(&panic_notifier_list,
68                                        &cpu_hwcaps_notifier);
69         return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77         {                                               \
78                 .sign = SIGNED,                         \
79                 .visible = VISIBLE,                     \
80                 .strict = STRICT,                       \
81                 .type = TYPE,                           \
82                 .shift = SHIFT,                         \
83                 .width = WIDTH,                         \
84                 .safe_val = SAFE_VAL,                   \
85         }
86
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94
95 #define ARM64_FTR_END                                   \
96         {                                               \
97                 .width = 0,                             \
98         }
99
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
104
105 /*
106  * NOTE: Any changes to the visibility of features should be kept in
107  * sync with the documentation of the CPU feature register ABI.
108  */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116         ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
124         ARM64_FTR_END,
125 };
126
127 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
128         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
130         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
131         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
132         /* Linux doesn't care about the EL3 */
133         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
136         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
137         ARM64_FTR_END,
138 };
139
140 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
141         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
142         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
143         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
144         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
145         /* Linux shouldn't care about secure memory */
146         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
147         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
148         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
149         /*
150          * Differing PARange is fine as long as all peripherals and memory are mapped
151          * within the minimum PARange of all CPUs
152          */
153         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
154         ARM64_FTR_END,
155 };
156
157 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
158         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
159         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
160         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
161         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
162         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
163         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
164         ARM64_FTR_END,
165 };
166
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
173         ARM64_FTR_END,
174 };
175
176 static const struct arm64_ftr_bits ftr_ctr[] = {
177         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
178         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
179         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
180         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
181         /*
182          * Linux can handle differing I-cache policies. Userspace JITs will
183          * make use of *minLine.
184          * If we have differing I-cache policies, report it as the weakest - VIPT.
185          */
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
188         ARM64_FTR_END,
189 };
190
191 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
192         .name           = "SYS_CTR_EL0",
193         .ftr_bits       = ftr_ctr
194 };
195
196 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
197         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),        /* InnerShr */
198         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),    /* FCSE */
199         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
200         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),    /* TCM */
201         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* ShareLvl */
202         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
203         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),     /* PMSA */
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),     /* VMSA */
205         ARM64_FTR_END,
206 };
207
208 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
209         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
210         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
214         /*
215          * We can instantiate multiple PMU instances with different levels
216          * of support.
217          */
218         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
221         ARM64_FTR_END,
222 };
223
224 static const struct arm64_ftr_bits ftr_mvfr2[] = {
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* FPMisc */
226         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* SIMDMisc */
227         ARM64_FTR_END,
228 };
229
230 static const struct arm64_ftr_bits ftr_dczid[] = {
231         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
232         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
233         ARM64_FTR_END,
234 };
235
236
237 static const struct arm64_ftr_bits ftr_id_isar5[] = {
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
244         ARM64_FTR_END,
245 };
246
247 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
248         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* ac2 */
249         ARM64_FTR_END,
250 };
251
252 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),    /* State3 */
254         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),             /* State2 */
255         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),             /* State1 */
256         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),             /* State0 */
257         ARM64_FTR_END,
258 };
259
260 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
262         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
265         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
266         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
267         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
268         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
269         ARM64_FTR_END,
270 };
271
272 /*
273  * Common ftr bits for a 32bit register with all hidden, strict
274  * attributes, with 4bit feature fields and a default safe value of
275  * 0. Covers the following 32bit registers:
276  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
277  */
278 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
279         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
280         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
281         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
283         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
285         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
287         ARM64_FTR_END,
288 };
289
290 /* Table for a single 32bit feature value */
291 static const struct arm64_ftr_bits ftr_single32[] = {
292         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
293         ARM64_FTR_END,
294 };
295
296 static const struct arm64_ftr_bits ftr_raz[] = {
297         ARM64_FTR_END,
298 };
299
300 #define ARM64_FTR_REG(id, table) {              \
301         .sys_id = id,                           \
302         .reg =  &(struct arm64_ftr_reg){        \
303                 .name = #id,                    \
304                 .ftr_bits = &((table)[0]),      \
305         }}
306
307 static const struct __ftr_reg_entry {
308         u32                     sys_id;
309         struct arm64_ftr_reg    *reg;
310 } arm64_ftr_regs[] = {
311
312         /* Op1 = 0, CRn = 0, CRm = 1 */
313         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
314         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
315         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
316         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
317         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
318         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
319         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
320
321         /* Op1 = 0, CRn = 0, CRm = 2 */
322         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
323         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
324         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
325         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
326         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
327         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
328         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
329
330         /* Op1 = 0, CRn = 0, CRm = 3 */
331         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
332         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
333         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
334
335         /* Op1 = 0, CRn = 0, CRm = 4 */
336         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
337         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
338
339         /* Op1 = 0, CRn = 0, CRm = 5 */
340         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
341         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
342
343         /* Op1 = 0, CRn = 0, CRm = 6 */
344         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
345         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
346
347         /* Op1 = 0, CRn = 0, CRm = 7 */
348         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
349         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
350         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
351
352         /* Op1 = 3, CRn = 0, CRm = 0 */
353         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
354         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
355
356         /* Op1 = 3, CRn = 14, CRm = 0 */
357         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
358 };
359
360 static int search_cmp_ftr_reg(const void *id, const void *regp)
361 {
362         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
363 }
364
365 /*
366  * get_arm64_ftr_reg - Lookup a feature register entry using its
367  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
368  * ascending order of sys_id , we use binary search to find a matching
369  * entry.
370  *
371  * returns - Upon success,  matching ftr_reg entry for id.
372  *         - NULL on failure. It is upto the caller to decide
373  *           the impact of a failure.
374  */
375 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
376 {
377         const struct __ftr_reg_entry *ret;
378
379         ret = bsearch((const void *)(unsigned long)sys_id,
380                         arm64_ftr_regs,
381                         ARRAY_SIZE(arm64_ftr_regs),
382                         sizeof(arm64_ftr_regs[0]),
383                         search_cmp_ftr_reg);
384         if (ret)
385                 return ret->reg;
386         return NULL;
387 }
388
389 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
390                                s64 ftr_val)
391 {
392         u64 mask = arm64_ftr_mask(ftrp);
393
394         reg &= ~mask;
395         reg |= (ftr_val << ftrp->shift) & mask;
396         return reg;
397 }
398
399 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
400                                 s64 cur)
401 {
402         s64 ret = 0;
403
404         switch (ftrp->type) {
405         case FTR_EXACT:
406                 ret = ftrp->safe_val;
407                 break;
408         case FTR_LOWER_SAFE:
409                 ret = new < cur ? new : cur;
410                 break;
411         case FTR_HIGHER_SAFE:
412                 ret = new > cur ? new : cur;
413                 break;
414         default:
415                 BUG();
416         }
417
418         return ret;
419 }
420
421 static void __init sort_ftr_regs(void)
422 {
423         int i;
424
425         /* Check that the array is sorted so that we can do the binary search */
426         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
427                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
428 }
429
430 /*
431  * Initialise the CPU feature register from Boot CPU values.
432  * Also initiliases the strict_mask for the register.
433  * Any bits that are not covered by an arm64_ftr_bits entry are considered
434  * RES0 for the system-wide value, and must strictly match.
435  */
436 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
437 {
438         u64 val = 0;
439         u64 strict_mask = ~0x0ULL;
440         u64 user_mask = 0;
441         u64 valid_mask = 0;
442
443         const struct arm64_ftr_bits *ftrp;
444         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
445
446         BUG_ON(!reg);
447
448         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
449                 u64 ftr_mask = arm64_ftr_mask(ftrp);
450                 s64 ftr_new = arm64_ftr_value(ftrp, new);
451
452                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
453
454                 valid_mask |= ftr_mask;
455                 if (!ftrp->strict)
456                         strict_mask &= ~ftr_mask;
457                 if (ftrp->visible)
458                         user_mask |= ftr_mask;
459                 else
460                         reg->user_val = arm64_ftr_set_value(ftrp,
461                                                             reg->user_val,
462                                                             ftrp->safe_val);
463         }
464
465         val &= valid_mask;
466
467         reg->sys_val = val;
468         reg->strict_mask = strict_mask;
469         reg->user_mask = user_mask;
470 }
471
472 void __init init_cpu_features(struct cpuinfo_arm64 *info)
473 {
474         /* Before we start using the tables, make sure it is sorted */
475         sort_ftr_regs();
476
477         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
478         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
479         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
480         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
481         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
482         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
483         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
484         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
485         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
486         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
487         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
488         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
489
490         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
491                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
492                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
493                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
494                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
495                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
496                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
497                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
498                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
499                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
500                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
501                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
502                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
503                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
504                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
505                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
506                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
507         }
508
509 }
510
511 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
512 {
513         const struct arm64_ftr_bits *ftrp;
514
515         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
516                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
517                 s64 ftr_new = arm64_ftr_value(ftrp, new);
518
519                 if (ftr_cur == ftr_new)
520                         continue;
521                 /* Find a safe value */
522                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
523                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
524         }
525
526 }
527
528 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
529 {
530         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
531
532         BUG_ON(!regp);
533         update_cpu_ftr_reg(regp, val);
534         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
535                 return 0;
536         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
537                         regp->name, boot, cpu, val);
538         return 1;
539 }
540
541 /*
542  * Update system wide CPU feature registers with the values from a
543  * non-boot CPU. Also performs SANITY checks to make sure that there
544  * aren't any insane variations from that of the boot CPU.
545  */
546 void update_cpu_features(int cpu,
547                          struct cpuinfo_arm64 *info,
548                          struct cpuinfo_arm64 *boot)
549 {
550         int taint = 0;
551
552         /*
553          * The kernel can handle differing I-cache policies, but otherwise
554          * caches should look identical. Userspace JITs will make use of
555          * *minLine.
556          */
557         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
558                                       info->reg_ctr, boot->reg_ctr);
559
560         /*
561          * Userspace may perform DC ZVA instructions. Mismatched block sizes
562          * could result in too much or too little memory being zeroed if a
563          * process is preempted and migrated between CPUs.
564          */
565         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
566                                       info->reg_dczid, boot->reg_dczid);
567
568         /* If different, timekeeping will be broken (especially with KVM) */
569         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
570                                       info->reg_cntfrq, boot->reg_cntfrq);
571
572         /*
573          * The kernel uses self-hosted debug features and expects CPUs to
574          * support identical debug features. We presently need CTX_CMPs, WRPs,
575          * and BRPs to be identical.
576          * ID_AA64DFR1 is currently RES0.
577          */
578         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
579                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
580         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
581                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
582         /*
583          * Even in big.LITTLE, processors should be identical instruction-set
584          * wise.
585          */
586         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
587                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
588         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
589                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
590
591         /*
592          * Differing PARange support is fine as long as all peripherals and
593          * memory are mapped within the minimum PARange of all CPUs.
594          * Linux should not care about secure memory.
595          */
596         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
597                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
598         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
599                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
600         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
601                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
602
603         /*
604          * EL3 is not our concern.
605          * ID_AA64PFR1 is currently RES0.
606          */
607         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
608                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
609         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
610                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
611
612         /*
613          * If we have AArch32, we care about 32-bit features for compat.
614          * If the system doesn't support AArch32, don't update them.
615          */
616         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
617                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
618
619                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
620                                         info->reg_id_dfr0, boot->reg_id_dfr0);
621                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
622                                         info->reg_id_isar0, boot->reg_id_isar0);
623                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
624                                         info->reg_id_isar1, boot->reg_id_isar1);
625                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
626                                         info->reg_id_isar2, boot->reg_id_isar2);
627                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
628                                         info->reg_id_isar3, boot->reg_id_isar3);
629                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
630                                         info->reg_id_isar4, boot->reg_id_isar4);
631                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
632                                         info->reg_id_isar5, boot->reg_id_isar5);
633
634                 /*
635                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
636                  * ACTLR formats could differ across CPUs and therefore would have to
637                  * be trapped for virtualization anyway.
638                  */
639                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
640                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
641                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
642                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
643                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
644                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
645                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
646                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
647                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
648                                         info->reg_id_pfr0, boot->reg_id_pfr0);
649                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
650                                         info->reg_id_pfr1, boot->reg_id_pfr1);
651                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
652                                         info->reg_mvfr0, boot->reg_mvfr0);
653                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
654                                         info->reg_mvfr1, boot->reg_mvfr1);
655                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
656                                         info->reg_mvfr2, boot->reg_mvfr2);
657         }
658
659         /*
660          * Mismatched CPU features are a recipe for disaster. Don't even
661          * pretend to support them.
662          */
663         if (taint) {
664                 pr_warn_once("Unsupported CPU feature variation detected.\n");
665                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
666         }
667 }
668
669 u64 read_sanitised_ftr_reg(u32 id)
670 {
671         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
672
673         /* We shouldn't get a request for an unsupported register */
674         BUG_ON(!regp);
675         return regp->sys_val;
676 }
677
678 #define read_sysreg_case(r)     \
679         case r:         return read_sysreg_s(r)
680
681 /*
682  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
683  * Read the system register on the current CPU
684  */
685 static u64 __read_sysreg_by_encoding(u32 sys_id)
686 {
687         switch (sys_id) {
688         read_sysreg_case(SYS_ID_PFR0_EL1);
689         read_sysreg_case(SYS_ID_PFR1_EL1);
690         read_sysreg_case(SYS_ID_DFR0_EL1);
691         read_sysreg_case(SYS_ID_MMFR0_EL1);
692         read_sysreg_case(SYS_ID_MMFR1_EL1);
693         read_sysreg_case(SYS_ID_MMFR2_EL1);
694         read_sysreg_case(SYS_ID_MMFR3_EL1);
695         read_sysreg_case(SYS_ID_ISAR0_EL1);
696         read_sysreg_case(SYS_ID_ISAR1_EL1);
697         read_sysreg_case(SYS_ID_ISAR2_EL1);
698         read_sysreg_case(SYS_ID_ISAR3_EL1);
699         read_sysreg_case(SYS_ID_ISAR4_EL1);
700         read_sysreg_case(SYS_ID_ISAR5_EL1);
701         read_sysreg_case(SYS_MVFR0_EL1);
702         read_sysreg_case(SYS_MVFR1_EL1);
703         read_sysreg_case(SYS_MVFR2_EL1);
704
705         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
706         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
707         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
708         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
709         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
710         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
711         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
712         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
713         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
714
715         read_sysreg_case(SYS_CNTFRQ_EL0);
716         read_sysreg_case(SYS_CTR_EL0);
717         read_sysreg_case(SYS_DCZID_EL0);
718
719         default:
720                 BUG();
721                 return 0;
722         }
723 }
724
725 #include <linux/irqchip/arm-gic-v3.h>
726
727 static bool
728 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
729 {
730         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
731
732         return val >= entry->min_field_value;
733 }
734
735 static bool
736 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
737 {
738         u64 val;
739
740         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
741         if (scope == SCOPE_SYSTEM)
742                 val = read_sanitised_ftr_reg(entry->sys_reg);
743         else
744                 val = __read_sysreg_by_encoding(entry->sys_reg);
745
746         return feature_matches(val, entry);
747 }
748
749 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
750 {
751         bool has_sre;
752
753         if (!has_cpuid_feature(entry, scope))
754                 return false;
755
756         has_sre = gic_enable_sre();
757         if (!has_sre)
758                 pr_warn_once("%s present but disabled by higher exception level\n",
759                              entry->desc);
760
761         return has_sre;
762 }
763
764 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
765 {
766         u32 midr = read_cpuid_id();
767
768         /* Cavium ThunderX pass 1.x and 2.x */
769         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
770                 MIDR_CPU_VAR_REV(0, 0),
771                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
772 }
773
774 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
775 {
776         return is_kernel_in_hyp_mode();
777 }
778
779 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
780                            int __unused)
781 {
782         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
783
784         /*
785          * Activate the lower HYP offset only if:
786          * - the idmap doesn't clash with it,
787          * - the kernel is not running at EL2.
788          */
789         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
790 }
791
792 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
793 {
794         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
795
796         return cpuid_feature_extract_signed_field(pfr0,
797                                         ID_AA64PFR0_FP_SHIFT) < 0;
798 }
799
800 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
801 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
802
803 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
804                                 int __unused)
805 {
806         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
807
808         /* Forced on command line? */
809         if (__kpti_forced) {
810                 pr_info_once("kernel page table isolation forced %s by command line option\n",
811                              __kpti_forced > 0 ? "ON" : "OFF");
812                 return __kpti_forced > 0;
813         }
814
815         /* Useful for KASLR robustness */
816         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
817                 return true;
818
819         /* Defer to CPU feature registers */
820         return !cpuid_feature_extract_unsigned_field(pfr0,
821                                                      ID_AA64PFR0_CSV3_SHIFT);
822 }
823
824 static int __init parse_kpti(char *str)
825 {
826         bool enabled;
827         int ret = strtobool(str, &enabled);
828
829         if (ret)
830                 return ret;
831
832         __kpti_forced = enabled ? 1 : -1;
833         return 0;
834 }
835 __setup("kpti=", parse_kpti);
836 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
837
838 static const struct arm64_cpu_capabilities arm64_features[] = {
839         {
840                 .desc = "GIC system register CPU interface",
841                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
842                 .def_scope = SCOPE_SYSTEM,
843                 .matches = has_useable_gicv3_cpuif,
844                 .sys_reg = SYS_ID_AA64PFR0_EL1,
845                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
846                 .sign = FTR_UNSIGNED,
847                 .min_field_value = 1,
848         },
849 #ifdef CONFIG_ARM64_PAN
850         {
851                 .desc = "Privileged Access Never",
852                 .capability = ARM64_HAS_PAN,
853                 .def_scope = SCOPE_SYSTEM,
854                 .matches = has_cpuid_feature,
855                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
856                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
857                 .sign = FTR_UNSIGNED,
858                 .min_field_value = 1,
859                 .enable = cpu_enable_pan,
860         },
861 #endif /* CONFIG_ARM64_PAN */
862 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
863         {
864                 .desc = "LSE atomic instructions",
865                 .capability = ARM64_HAS_LSE_ATOMICS,
866                 .def_scope = SCOPE_SYSTEM,
867                 .matches = has_cpuid_feature,
868                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
869                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
870                 .sign = FTR_UNSIGNED,
871                 .min_field_value = 2,
872         },
873 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
874         {
875                 .desc = "Software prefetching using PRFM",
876                 .capability = ARM64_HAS_NO_HW_PREFETCH,
877                 .def_scope = SCOPE_SYSTEM,
878                 .matches = has_no_hw_prefetch,
879         },
880 #ifdef CONFIG_ARM64_UAO
881         {
882                 .desc = "User Access Override",
883                 .capability = ARM64_HAS_UAO,
884                 .def_scope = SCOPE_SYSTEM,
885                 .matches = has_cpuid_feature,
886                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
887                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
888                 .min_field_value = 1,
889                 /*
890                  * We rely on stop_machine() calling uao_thread_switch() to set
891                  * UAO immediately after patching.
892                  */
893         },
894 #endif /* CONFIG_ARM64_UAO */
895 #ifdef CONFIG_ARM64_PAN
896         {
897                 .capability = ARM64_ALT_PAN_NOT_UAO,
898                 .def_scope = SCOPE_SYSTEM,
899                 .matches = cpufeature_pan_not_uao,
900         },
901 #endif /* CONFIG_ARM64_PAN */
902         {
903                 .desc = "Virtualization Host Extensions",
904                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
905                 .def_scope = SCOPE_SYSTEM,
906                 .matches = runs_at_el2,
907         },
908         {
909                 .desc = "32-bit EL0 Support",
910                 .capability = ARM64_HAS_32BIT_EL0,
911                 .def_scope = SCOPE_SYSTEM,
912                 .matches = has_cpuid_feature,
913                 .sys_reg = SYS_ID_AA64PFR0_EL1,
914                 .sign = FTR_UNSIGNED,
915                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
916                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
917         },
918         {
919                 .desc = "Reduced HYP mapping offset",
920                 .capability = ARM64_HYP_OFFSET_LOW,
921                 .def_scope = SCOPE_SYSTEM,
922                 .matches = hyp_offset_low,
923         },
924 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
925         {
926                 .desc = "Kernel page table isolation (KPTI)",
927                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
928                 .def_scope = SCOPE_SYSTEM,
929                 .matches = unmap_kernel_at_el0,
930         },
931 #endif
932         {
933                 /* FP/SIMD is not implemented */
934                 .capability = ARM64_HAS_NO_FPSIMD,
935                 .def_scope = SCOPE_SYSTEM,
936                 .min_field_value = 0,
937                 .matches = has_no_fpsimd,
938         },
939 #ifdef CONFIG_ARM64_PMEM
940         {
941                 .desc = "Data cache clean to Point of Persistence",
942                 .capability = ARM64_HAS_DCPOP,
943                 .def_scope = SCOPE_SYSTEM,
944                 .matches = has_cpuid_feature,
945                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
946                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
947                 .min_field_value = 1,
948         },
949 #endif
950         {},
951 };
952
953 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
954         {                                                       \
955                 .desc = #cap,                                   \
956                 .def_scope = SCOPE_SYSTEM,                      \
957                 .matches = has_cpuid_feature,                   \
958                 .sys_reg = reg,                                 \
959                 .field_pos = field,                             \
960                 .sign = s,                                      \
961                 .min_field_value = min_value,                   \
962                 .hwcap_type = type,                             \
963                 .hwcap = cap,                                   \
964         }
965
966 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
967         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
968         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
969         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
970         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
971         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
972         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
973         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
974         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
975         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
976         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
977         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
978         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
979         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
980         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
981         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
982         {},
983 };
984
985 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
986 #ifdef CONFIG_COMPAT
987         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
988         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
989         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
990         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
991         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
992 #endif
993         {},
994 };
995
996 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
997 {
998         switch (cap->hwcap_type) {
999         case CAP_HWCAP:
1000                 elf_hwcap |= cap->hwcap;
1001                 break;
1002 #ifdef CONFIG_COMPAT
1003         case CAP_COMPAT_HWCAP:
1004                 compat_elf_hwcap |= (u32)cap->hwcap;
1005                 break;
1006         case CAP_COMPAT_HWCAP2:
1007                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1008                 break;
1009 #endif
1010         default:
1011                 WARN_ON(1);
1012                 break;
1013         }
1014 }
1015
1016 /* Check if we have a particular HWCAP enabled */
1017 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1018 {
1019         bool rc;
1020
1021         switch (cap->hwcap_type) {
1022         case CAP_HWCAP:
1023                 rc = (elf_hwcap & cap->hwcap) != 0;
1024                 break;
1025 #ifdef CONFIG_COMPAT
1026         case CAP_COMPAT_HWCAP:
1027                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1028                 break;
1029         case CAP_COMPAT_HWCAP2:
1030                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1031                 break;
1032 #endif
1033         default:
1034                 WARN_ON(1);
1035                 rc = false;
1036         }
1037
1038         return rc;
1039 }
1040
1041 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1042 {
1043         /* We support emulation of accesses to CPU ID feature registers */
1044         elf_hwcap |= HWCAP_CPUID;
1045         for (; hwcaps->matches; hwcaps++)
1046                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1047                         cap_set_elf_hwcap(hwcaps);
1048 }
1049
1050 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1051                             const char *info)
1052 {
1053         for (; caps->matches; caps++) {
1054                 if (!caps->matches(caps, caps->def_scope))
1055                         continue;
1056
1057                 if (!cpus_have_cap(caps->capability) && caps->desc)
1058                         pr_info("%s %s\n", info, caps->desc);
1059                 cpus_set_cap(caps->capability);
1060         }
1061 }
1062
1063 /*
1064  * Run through the enabled capabilities and enable() it on all active
1065  * CPUs
1066  */
1067 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1068 {
1069         for (; caps->matches; caps++) {
1070                 unsigned int num = caps->capability;
1071
1072                 if (!cpus_have_cap(num))
1073                         continue;
1074
1075                 /* Ensure cpus_have_const_cap(num) works */
1076                 static_branch_enable(&cpu_hwcap_keys[num]);
1077
1078                 if (caps->enable) {
1079                         /*
1080                          * Use stop_machine() as it schedules the work allowing
1081                          * us to modify PSTATE, instead of on_each_cpu() which
1082                          * uses an IPI, giving us a PSTATE that disappears when
1083                          * we return.
1084                          */
1085                         stop_machine(caps->enable, NULL, cpu_online_mask);
1086                 }
1087         }
1088 }
1089
1090 /*
1091  * Flag to indicate if we have computed the system wide
1092  * capabilities based on the boot time active CPUs. This
1093  * will be used to determine if a new booting CPU should
1094  * go through the verification process to make sure that it
1095  * supports the system capabilities, without using a hotplug
1096  * notifier.
1097  */
1098 static bool sys_caps_initialised;
1099
1100 static inline void set_sys_caps_initialised(void)
1101 {
1102         sys_caps_initialised = true;
1103 }
1104
1105 /*
1106  * Check for CPU features that are used in early boot
1107  * based on the Boot CPU value.
1108  */
1109 static void check_early_cpu_features(void)
1110 {
1111         verify_cpu_run_el();
1112         verify_cpu_asid_bits();
1113 }
1114
1115 static void
1116 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1117 {
1118
1119         for (; caps->matches; caps++)
1120                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1121                         pr_crit("CPU%d: missing HWCAP: %s\n",
1122                                         smp_processor_id(), caps->desc);
1123                         cpu_die_early();
1124                 }
1125 }
1126
1127 static void
1128 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1129 {
1130         for (; caps->matches; caps++) {
1131                 if (!cpus_have_cap(caps->capability))
1132                         continue;
1133                 /*
1134                  * If the new CPU misses an advertised feature, we cannot proceed
1135                  * further, park the cpu.
1136                  */
1137                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1138                         pr_crit("CPU%d: missing feature: %s\n",
1139                                         smp_processor_id(), caps->desc);
1140                         cpu_die_early();
1141                 }
1142                 if (caps->enable)
1143                         caps->enable(NULL);
1144         }
1145 }
1146
1147 /*
1148  * Run through the enabled system capabilities and enable() it on this CPU.
1149  * The capabilities were decided based on the available CPUs at the boot time.
1150  * Any new CPU should match the system wide status of the capability. If the
1151  * new CPU doesn't have a capability which the system now has enabled, we
1152  * cannot do anything to fix it up and could cause unexpected failures. So
1153  * we park the CPU.
1154  */
1155 static void verify_local_cpu_capabilities(void)
1156 {
1157         verify_local_cpu_errata_workarounds();
1158         verify_local_cpu_features(arm64_features);
1159         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1160         if (system_supports_32bit_el0())
1161                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1162 }
1163
1164 void check_local_cpu_capabilities(void)
1165 {
1166         /*
1167          * All secondary CPUs should conform to the early CPU features
1168          * in use by the kernel based on boot CPU.
1169          */
1170         check_early_cpu_features();
1171
1172         /*
1173          * If we haven't finalised the system capabilities, this CPU gets
1174          * a chance to update the errata work arounds.
1175          * Otherwise, this CPU should verify that it has all the system
1176          * advertised capabilities.
1177          */
1178         if (!sys_caps_initialised)
1179                 update_cpu_errata_workarounds();
1180         else
1181                 verify_local_cpu_capabilities();
1182 }
1183
1184 static void __init setup_feature_capabilities(void)
1185 {
1186         update_cpu_capabilities(arm64_features, "detected feature:");
1187         enable_cpu_capabilities(arm64_features);
1188 }
1189
1190 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1191 EXPORT_SYMBOL(arm64_const_caps_ready);
1192
1193 static void __init mark_const_caps_ready(void)
1194 {
1195         static_branch_enable(&arm64_const_caps_ready);
1196 }
1197
1198 /*
1199  * Check if the current CPU has a given feature capability.
1200  * Should be called from non-preemptible context.
1201  */
1202 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1203                                unsigned int cap)
1204 {
1205         const struct arm64_cpu_capabilities *caps;
1206
1207         if (WARN_ON(preemptible()))
1208                 return false;
1209
1210         for (caps = cap_array; caps->desc; caps++)
1211                 if (caps->capability == cap && caps->matches)
1212                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1213
1214         return false;
1215 }
1216
1217 extern const struct arm64_cpu_capabilities arm64_errata[];
1218
1219 bool this_cpu_has_cap(unsigned int cap)
1220 {
1221         return (__this_cpu_has_cap(arm64_features, cap) ||
1222                 __this_cpu_has_cap(arm64_errata, cap));
1223 }
1224
1225 void __init setup_cpu_features(void)
1226 {
1227         u32 cwg;
1228         int cls;
1229
1230         /* Set the CPU feature capabilies */
1231         setup_feature_capabilities();
1232         enable_errata_workarounds();
1233         mark_const_caps_ready();
1234         setup_elf_hwcaps(arm64_elf_hwcaps);
1235
1236         if (system_supports_32bit_el0())
1237                 setup_elf_hwcaps(compat_elf_hwcaps);
1238
1239         /* Advertise that we have computed the system capabilities */
1240         set_sys_caps_initialised();
1241
1242         /*
1243          * Check for sane CTR_EL0.CWG value.
1244          */
1245         cwg = cache_type_cwg();
1246         cls = cache_line_size();
1247         if (!cwg)
1248                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1249                         cls);
1250         if (L1_CACHE_BYTES < cls)
1251                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1252                         L1_CACHE_BYTES, cls);
1253 }
1254
1255 static bool __maybe_unused
1256 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1257 {
1258         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1259 }
1260
1261 /*
1262  * We emulate only the following system register space.
1263  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1264  * See Table C5-6 System instruction encodings for System register accesses,
1265  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1266  */
1267 static inline bool __attribute_const__ is_emulated(u32 id)
1268 {
1269         return (sys_reg_Op0(id) == 0x3 &&
1270                 sys_reg_CRn(id) == 0x0 &&
1271                 sys_reg_Op1(id) == 0x0 &&
1272                 (sys_reg_CRm(id) == 0 ||
1273                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1274 }
1275
1276 /*
1277  * With CRm == 0, reg should be one of :
1278  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1279  */
1280 static inline int emulate_id_reg(u32 id, u64 *valp)
1281 {
1282         switch (id) {
1283         case SYS_MIDR_EL1:
1284                 *valp = read_cpuid_id();
1285                 break;
1286         case SYS_MPIDR_EL1:
1287                 *valp = SYS_MPIDR_SAFE_VAL;
1288                 break;
1289         case SYS_REVIDR_EL1:
1290                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1291                 *valp = 0;
1292                 break;
1293         default:
1294                 return -EINVAL;
1295         }
1296
1297         return 0;
1298 }
1299
1300 static int emulate_sys_reg(u32 id, u64 *valp)
1301 {
1302         struct arm64_ftr_reg *regp;
1303
1304         if (!is_emulated(id))
1305                 return -EINVAL;
1306
1307         if (sys_reg_CRm(id) == 0)
1308                 return emulate_id_reg(id, valp);
1309
1310         regp = get_arm64_ftr_reg(id);
1311         if (regp)
1312                 *valp = arm64_ftr_reg_user_value(regp);
1313         else
1314                 /*
1315                  * The untracked registers are either IMPLEMENTATION DEFINED
1316                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1317                  */
1318                 *valp = 0;
1319         return 0;
1320 }
1321
1322 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1323 {
1324         int rc;
1325         u32 sys_reg, dst;
1326         u64 val;
1327
1328         /*
1329          * sys_reg values are defined as used in mrs/msr instruction.
1330          * shift the imm value to get the encoding.
1331          */
1332         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1333         rc = emulate_sys_reg(sys_reg, &val);
1334         if (!rc) {
1335                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1336                 pt_regs_write_reg(regs, dst, val);
1337                 regs->pc += 4;
1338         }
1339
1340         return rc;
1341 }
1342
1343 static struct undef_hook mrs_hook = {
1344         .instr_mask = 0xfff00000,
1345         .instr_val  = 0xd5300000,
1346         .pstate_mask = COMPAT_PSR_MODE_MASK,
1347         .pstate_val = PSR_MODE_EL0t,
1348         .fn = emulate_mrs,
1349 };
1350
1351 static int __init enable_mrs_emulation(void)
1352 {
1353         register_undef_hook(&mrs_hook);
1354         return 0;
1355 }
1356
1357 core_initcall(enable_mrs_emulation);