1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
29 * Some implementation details worth remembering:
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
63 #define pr_fmt(fmt) "CPU features: " fmt
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
77 #include <asm/cpufeature.h>
78 #include <asm/cpu_ops.h>
79 #include <asm/fpsimd.h>
81 #include <asm/kvm_host.h>
82 #include <asm/mmu_context.h>
84 #include <asm/processor.h>
86 #include <asm/sysreg.h>
87 #include <asm/traps.h>
90 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
91 static unsigned long elf_hwcap __read_mostly;
94 #define COMPAT_ELF_HWCAP_DEFAULT \
95 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
96 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
97 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
99 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
100 unsigned int compat_elf_hwcap2 __read_mostly;
103 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
104 EXPORT_SYMBOL(cpu_hwcaps);
105 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
107 /* Need also bit for ARM64_CB_PATCH */
108 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
110 bool arm64_use_ng_mappings = false;
111 EXPORT_SYMBOL(arm64_use_ng_mappings);
114 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
117 static bool __read_mostly allow_mismatched_32bit_el0;
120 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
121 * seen at least one CPU capable of 32-bit EL0.
123 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
126 * Mask of CPUs supporting 32-bit EL0.
127 * Only valid if arm64_mismatched_32bit_el0 is enabled.
129 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
132 * Flag to indicate if we have computed the system wide
133 * capabilities based on the boot time active CPUs. This
134 * will be used to determine if a new booting CPU should
135 * go through the verification process to make sure that it
136 * supports the system capabilities, without using a hotplug
137 * notifier. This is also used to decide if we could use
138 * the fast path for checking constant CPU caps.
140 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
141 EXPORT_SYMBOL(arm64_const_caps_ready);
142 static inline void finalize_system_capabilities(void)
144 static_branch_enable(&arm64_const_caps_ready);
147 void dump_cpu_features(void)
149 /* file-wide pr_fmt adds "CPU features: " prefix */
150 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
153 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
154 EXPORT_SYMBOL(cpu_hwcap_keys);
156 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
159 .visible = VISIBLE, \
164 .safe_val = SAFE_VAL, \
167 /* Define a feature with unsigned values */
168 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
169 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
171 /* Define a feature with a signed value */
172 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
173 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
175 #define ARM64_FTR_END \
180 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
182 static bool __system_matches_cap(unsigned int n);
185 * NOTE: Any changes to the visibility of features should be kept in
186 * sync with the documentation of the CPU feature register ABI.
188 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
206 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
214 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
216 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
221 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
223 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
228 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
235 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
236 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
239 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
240 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
244 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
248 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
252 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
254 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
255 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
259 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
260 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
261 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
262 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
263 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
264 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
265 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
266 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
267 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
268 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
269 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
271 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
272 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
273 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
274 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
275 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
276 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
277 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
281 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
286 * Page size not being supported at Stage-2 is not fatal. You
287 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
288 * your favourite nesting hypervisor.
290 * There is a small corner case where the hypervisor explicitly
291 * advertises a given granule size at Stage-2 (value 2) on some
292 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
293 * vCPUs. Although this is not forbidden by the architecture, it
294 * indicates that the hypervisor is being silly (or buggy).
296 * We make no effort to cope with this and pretend that if these
297 * fields are inconsistent across vCPUs, then it isn't worth
298 * trying to bring KVM up.
300 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
301 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
304 * We already refuse to boot CPUs that don't support our configured
305 * page size, so we can only detect mismatches for a page size other
306 * than the one we're currently using. Unfortunately, SoCs like this
307 * exist in the wild so, even though we don't like it, we'll have to go
308 * along with it and treat them as non-strict.
310 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
311 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
315 /* Linux shouldn't care about secure memory */
316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
320 * Differing PARange is fine as long as all peripherals and memory are mapped
321 * within the minimum PARange of all CPUs
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
327 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
332 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
333 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
334 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
335 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
341 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
342 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
343 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
344 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
345 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
346 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
347 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
348 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
349 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
350 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
351 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
352 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
360 static const struct arm64_ftr_bits ftr_ctr[] = {
361 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
362 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
363 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
364 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
365 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
366 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
368 * Linux can handle differing I-cache policies. Userspace JITs will
369 * make use of *minLine.
370 * If we have differing I-cache policies, report it as the weakest - VIPT.
372 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */
373 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
377 static struct arm64_ftr_override __ro_after_init no_override = { };
379 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
380 .name = "SYS_CTR_EL0",
382 .override = &no_override,
385 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
386 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
390 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
391 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
397 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
398 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
399 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
400 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
401 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
402 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
404 * We can instantiate multiple PMU instances with different levels
407 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
408 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
412 static const struct arm64_ftr_bits ftr_mvfr2[] = {
413 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
414 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
418 static const struct arm64_ftr_bits ftr_dczid[] = {
419 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
420 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
424 static const struct arm64_ftr_bits ftr_gmid[] = {
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
429 static const struct arm64_ftr_bits ftr_id_isar0[] = {
430 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
431 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
432 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
433 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
434 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
440 static const struct arm64_ftr_bits ftr_id_isar5[] = {
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
442 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
450 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
454 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
457 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
460 * SpecSEI = 1 indicates that the PE might generate an SError on an
461 * external abort on speculative read. It is safe to assume that an
462 * SError might be generated than it will not be. Hence it has been
463 * classified as FTR_HIGHER_SAFE.
465 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
469 static const struct arm64_ftr_bits ftr_id_isar4[] = {
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
481 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
486 static const struct arm64_ftr_bits ftr_id_isar6[] = {
487 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
492 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
497 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
500 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
507 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
510 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
511 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
512 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
519 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
520 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
521 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
525 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
526 /* [31:28] TraceFilt */
527 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
531 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
532 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
533 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
537 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
538 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
542 static const struct arm64_ftr_bits ftr_zcr[] = {
543 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
544 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
549 * Common ftr bits for a 32bit register with all hidden, strict
550 * attributes, with 4bit feature fields and a default safe value of
551 * 0. Covers the following 32bit registers:
552 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
554 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
555 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
556 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
557 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
558 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
559 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
560 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
562 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
566 /* Table for a single 32bit feature value */
567 static const struct arm64_ftr_bits ftr_single32[] = {
568 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
572 static const struct arm64_ftr_bits ftr_raz[] = {
576 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) { \
578 .reg = &(struct arm64_ftr_reg){ \
581 .ftr_bits = &((table)[0]), \
584 #define ARM64_FTR_REG(id, table) ARM64_FTR_REG_OVERRIDE(id, table, &no_override)
586 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
587 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
588 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
590 static const struct __ftr_reg_entry {
592 struct arm64_ftr_reg *reg;
593 } arm64_ftr_regs[] = {
595 /* Op1 = 0, CRn = 0, CRm = 1 */
596 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
597 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
598 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
599 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
600 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
601 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
602 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
604 /* Op1 = 0, CRn = 0, CRm = 2 */
605 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
606 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
607 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
608 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
609 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
610 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
611 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
612 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
614 /* Op1 = 0, CRn = 0, CRm = 3 */
615 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
616 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
617 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
618 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
619 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
620 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
622 /* Op1 = 0, CRn = 0, CRm = 4 */
623 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
624 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
625 &id_aa64pfr1_override),
626 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
628 /* Op1 = 0, CRn = 0, CRm = 5 */
629 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
630 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
632 /* Op1 = 0, CRn = 0, CRm = 6 */
633 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
634 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
635 &id_aa64isar1_override),
637 /* Op1 = 0, CRn = 0, CRm = 7 */
638 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
639 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
640 &id_aa64mmfr1_override),
641 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
643 /* Op1 = 0, CRn = 1, CRm = 2 */
644 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
646 /* Op1 = 1, CRn = 0, CRm = 0 */
647 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
649 /* Op1 = 3, CRn = 0, CRm = 0 */
650 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
651 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
653 /* Op1 = 3, CRn = 14, CRm = 0 */
654 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
657 static int search_cmp_ftr_reg(const void *id, const void *regp)
659 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
663 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
664 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
665 * ascending order of sys_id, we use binary search to find a matching
668 * returns - Upon success, matching ftr_reg entry for id.
669 * - NULL on failure. It is upto the caller to decide
670 * the impact of a failure.
672 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
674 const struct __ftr_reg_entry *ret;
676 ret = bsearch((const void *)(unsigned long)sys_id,
678 ARRAY_SIZE(arm64_ftr_regs),
679 sizeof(arm64_ftr_regs[0]),
687 * get_arm64_ftr_reg - Looks up a feature register entry using
688 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
690 * returns - Upon success, matching ftr_reg entry for id.
691 * - NULL on failure but with an WARN_ON().
693 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
695 struct arm64_ftr_reg *reg;
697 reg = get_arm64_ftr_reg_nowarn(sys_id);
700 * Requesting a non-existent register search is an error. Warn
701 * and let the caller handle it.
707 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
710 u64 mask = arm64_ftr_mask(ftrp);
713 reg |= (ftr_val << ftrp->shift) & mask;
717 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
722 switch (ftrp->type) {
724 ret = ftrp->safe_val;
729 case FTR_HIGHER_OR_ZERO_SAFE:
733 case FTR_HIGHER_SAFE:
743 static void __init sort_ftr_regs(void)
747 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
748 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
749 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
753 * Features here must be sorted in descending order with respect
754 * to their shift values and should not overlap with each other.
756 for (; ftr_bits->width != 0; ftr_bits++, j++) {
757 unsigned int width = ftr_reg->ftr_bits[j].width;
758 unsigned int shift = ftr_reg->ftr_bits[j].shift;
759 unsigned int prev_shift;
761 WARN((shift + width) > 64,
762 "%s has invalid feature at shift %d\n",
763 ftr_reg->name, shift);
766 * Skip the first feature. There is nothing to
767 * compare against for now.
772 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
773 WARN((shift + width) > prev_shift,
774 "%s has feature overlap at shift %d\n",
775 ftr_reg->name, shift);
779 * Skip the first register. There is nothing to
780 * compare against for now.
785 * Registers here must be sorted in ascending order with respect
786 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
789 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
794 * Initialise the CPU feature register from Boot CPU values.
795 * Also initiliases the strict_mask for the register.
796 * Any bits that are not covered by an arm64_ftr_bits entry are considered
797 * RES0 for the system-wide value, and must strictly match.
799 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
802 u64 strict_mask = ~0x0ULL;
806 const struct arm64_ftr_bits *ftrp;
807 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
812 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
813 u64 ftr_mask = arm64_ftr_mask(ftrp);
814 s64 ftr_new = arm64_ftr_value(ftrp, new);
815 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
817 if ((ftr_mask & reg->override->mask) == ftr_mask) {
818 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
821 if (ftr_ovr != tmp) {
822 /* Unsafe, remove the override */
823 reg->override->mask &= ~ftr_mask;
824 reg->override->val &= ~ftr_mask;
826 str = "ignoring override";
827 } else if (ftr_new != tmp) {
828 /* Override was valid */
831 } else if (ftr_ovr == tmp) {
832 /* Override was the safe value */
837 pr_warn("%s[%d:%d]: %s to %llx\n",
839 ftrp->shift + ftrp->width - 1,
840 ftrp->shift, str, tmp);
841 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
842 reg->override->val &= ~ftr_mask;
843 pr_warn("%s[%d:%d]: impossible override, ignored\n",
845 ftrp->shift + ftrp->width - 1,
849 val = arm64_ftr_set_value(ftrp, val, ftr_new);
851 valid_mask |= ftr_mask;
853 strict_mask &= ~ftr_mask;
855 user_mask |= ftr_mask;
857 reg->user_val = arm64_ftr_set_value(ftrp,
865 reg->strict_mask = strict_mask;
866 reg->user_mask = user_mask;
869 extern const struct arm64_cpu_capabilities arm64_errata[];
870 static const struct arm64_cpu_capabilities arm64_features[];
873 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
875 for (; caps->matches; caps++) {
876 if (WARN(caps->capability >= ARM64_NCAPS,
877 "Invalid capability %d\n", caps->capability))
879 if (WARN(cpu_hwcaps_ptrs[caps->capability],
880 "Duplicate entry for capability %d\n",
883 cpu_hwcaps_ptrs[caps->capability] = caps;
887 static void __init init_cpu_hwcaps_indirect_list(void)
889 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
890 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
893 static void __init setup_boot_cpu_capabilities(void);
895 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
897 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
898 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
899 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
900 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
901 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
902 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
903 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
904 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
905 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
906 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
907 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
908 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
909 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
910 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
911 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
912 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
913 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
914 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
915 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
916 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
917 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
920 void __init init_cpu_features(struct cpuinfo_arm64 *info)
922 /* Before we start using the tables, make sure it is sorted */
925 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
926 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
927 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
928 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
929 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
930 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
931 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
932 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
933 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
934 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
935 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
936 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
937 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
939 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
940 init_32bit_cpu_features(&info->aarch32);
942 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
943 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
947 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
948 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
951 * Initialize the indirect array of CPU hwcaps capabilities pointers
952 * before we handle the boot CPU below.
954 init_cpu_hwcaps_indirect_list();
957 * Detect and enable early CPU capabilities based on the boot CPU,
958 * after we have initialised the CPU feature infrastructure.
960 setup_boot_cpu_capabilities();
963 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
965 const struct arm64_ftr_bits *ftrp;
967 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
968 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
969 s64 ftr_new = arm64_ftr_value(ftrp, new);
971 if (ftr_cur == ftr_new)
973 /* Find a safe value */
974 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
975 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
980 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
982 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
987 update_cpu_ftr_reg(regp, val);
988 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
990 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
991 regp->name, boot, cpu, val);
995 static void relax_cpu_ftr_reg(u32 sys_id, int field)
997 const struct arm64_ftr_bits *ftrp;
998 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1003 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1004 if (ftrp->shift == field) {
1005 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1011 WARN_ON(!ftrp->width);
1014 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1015 struct cpuinfo_arm64 *boot)
1017 static bool boot_cpu_32bit_regs_overridden = false;
1019 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1022 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1025 boot->aarch32 = info->aarch32;
1026 init_32bit_cpu_features(&boot->aarch32);
1027 boot_cpu_32bit_regs_overridden = true;
1030 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1031 struct cpuinfo_32bit *boot)
1034 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1037 * If we don't have AArch32 at EL1, then relax the strictness of
1038 * EL1-dependent register fields to avoid spurious sanity check fails.
1040 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1041 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1042 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1043 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1044 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1045 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1046 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1049 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1050 info->reg_id_dfr0, boot->reg_id_dfr0);
1051 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1052 info->reg_id_dfr1, boot->reg_id_dfr1);
1053 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1054 info->reg_id_isar0, boot->reg_id_isar0);
1055 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1056 info->reg_id_isar1, boot->reg_id_isar1);
1057 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1058 info->reg_id_isar2, boot->reg_id_isar2);
1059 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1060 info->reg_id_isar3, boot->reg_id_isar3);
1061 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1062 info->reg_id_isar4, boot->reg_id_isar4);
1063 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1064 info->reg_id_isar5, boot->reg_id_isar5);
1065 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1066 info->reg_id_isar6, boot->reg_id_isar6);
1069 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1070 * ACTLR formats could differ across CPUs and therefore would have to
1071 * be trapped for virtualization anyway.
1073 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1074 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1075 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1076 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1077 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1078 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1079 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1080 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1081 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1082 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1083 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1084 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1085 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1086 info->reg_id_pfr0, boot->reg_id_pfr0);
1087 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1088 info->reg_id_pfr1, boot->reg_id_pfr1);
1089 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1090 info->reg_id_pfr2, boot->reg_id_pfr2);
1091 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1092 info->reg_mvfr0, boot->reg_mvfr0);
1093 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1094 info->reg_mvfr1, boot->reg_mvfr1);
1095 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1096 info->reg_mvfr2, boot->reg_mvfr2);
1102 * Update system wide CPU feature registers with the values from a
1103 * non-boot CPU. Also performs SANITY checks to make sure that there
1104 * aren't any insane variations from that of the boot CPU.
1106 void update_cpu_features(int cpu,
1107 struct cpuinfo_arm64 *info,
1108 struct cpuinfo_arm64 *boot)
1113 * The kernel can handle differing I-cache policies, but otherwise
1114 * caches should look identical. Userspace JITs will make use of
1117 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1118 info->reg_ctr, boot->reg_ctr);
1121 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1122 * could result in too much or too little memory being zeroed if a
1123 * process is preempted and migrated between CPUs.
1125 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1126 info->reg_dczid, boot->reg_dczid);
1128 /* If different, timekeeping will be broken (especially with KVM) */
1129 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1130 info->reg_cntfrq, boot->reg_cntfrq);
1133 * The kernel uses self-hosted debug features and expects CPUs to
1134 * support identical debug features. We presently need CTX_CMPs, WRPs,
1135 * and BRPs to be identical.
1136 * ID_AA64DFR1 is currently RES0.
1138 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1139 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1140 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1141 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1143 * Even in big.LITTLE, processors should be identical instruction-set
1146 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1147 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1148 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1149 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1152 * Differing PARange support is fine as long as all peripherals and
1153 * memory are mapped within the minimum PARange of all CPUs.
1154 * Linux should not care about secure memory.
1156 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1157 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1158 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1159 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1160 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1161 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1163 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1164 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1165 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1166 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1168 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1169 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1171 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1172 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1173 info->reg_zcr, boot->reg_zcr);
1175 /* Probe vector lengths, unless we already gave up on SVE */
1176 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1177 !system_capabilities_finalized())
1178 sve_update_vq_map();
1182 * The kernel uses the LDGM/STGM instructions and the number of tags
1183 * they read/write depends on the GMID_EL1.BS field. Check that the
1184 * value is the same on all CPUs.
1186 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1187 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1188 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1189 info->reg_gmid, boot->reg_gmid);
1193 * If we don't have AArch32 at all then skip the checks entirely
1194 * as the register values may be UNKNOWN and we're not going to be
1195 * using them for anything.
1197 * This relies on a sanitised view of the AArch64 ID registers
1198 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1200 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1201 lazy_init_32bit_cpu_features(info, boot);
1202 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1207 * Mismatched CPU features are a recipe for disaster. Don't even
1208 * pretend to support them.
1211 pr_warn_once("Unsupported CPU feature variation detected.\n");
1212 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1216 u64 read_sanitised_ftr_reg(u32 id)
1218 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1222 return regp->sys_val;
1224 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1226 #define read_sysreg_case(r) \
1227 case r: val = read_sysreg_s(r); break;
1230 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1231 * Read the system register on the current CPU
1233 u64 __read_sysreg_by_encoding(u32 sys_id)
1235 struct arm64_ftr_reg *regp;
1239 read_sysreg_case(SYS_ID_PFR0_EL1);
1240 read_sysreg_case(SYS_ID_PFR1_EL1);
1241 read_sysreg_case(SYS_ID_PFR2_EL1);
1242 read_sysreg_case(SYS_ID_DFR0_EL1);
1243 read_sysreg_case(SYS_ID_DFR1_EL1);
1244 read_sysreg_case(SYS_ID_MMFR0_EL1);
1245 read_sysreg_case(SYS_ID_MMFR1_EL1);
1246 read_sysreg_case(SYS_ID_MMFR2_EL1);
1247 read_sysreg_case(SYS_ID_MMFR3_EL1);
1248 read_sysreg_case(SYS_ID_MMFR4_EL1);
1249 read_sysreg_case(SYS_ID_MMFR5_EL1);
1250 read_sysreg_case(SYS_ID_ISAR0_EL1);
1251 read_sysreg_case(SYS_ID_ISAR1_EL1);
1252 read_sysreg_case(SYS_ID_ISAR2_EL1);
1253 read_sysreg_case(SYS_ID_ISAR3_EL1);
1254 read_sysreg_case(SYS_ID_ISAR4_EL1);
1255 read_sysreg_case(SYS_ID_ISAR5_EL1);
1256 read_sysreg_case(SYS_ID_ISAR6_EL1);
1257 read_sysreg_case(SYS_MVFR0_EL1);
1258 read_sysreg_case(SYS_MVFR1_EL1);
1259 read_sysreg_case(SYS_MVFR2_EL1);
1261 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1262 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1263 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1264 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1265 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1266 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1267 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1268 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1269 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1270 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1272 read_sysreg_case(SYS_CNTFRQ_EL0);
1273 read_sysreg_case(SYS_CTR_EL0);
1274 read_sysreg_case(SYS_DCZID_EL0);
1281 regp = get_arm64_ftr_reg(sys_id);
1283 val &= ~regp->override->mask;
1284 val |= (regp->override->val & regp->override->mask);
1290 #include <linux/irqchip/arm-gic-v3.h>
1293 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1295 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1297 return val >= entry->min_field_value;
1301 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1305 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1306 if (scope == SCOPE_SYSTEM)
1307 val = read_sanitised_ftr_reg(entry->sys_reg);
1309 val = __read_sysreg_by_encoding(entry->sys_reg);
1311 return feature_matches(val, entry);
1314 const struct cpumask *system_32bit_el0_cpumask(void)
1316 if (!system_supports_32bit_el0())
1317 return cpu_none_mask;
1319 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1320 return cpu_32bit_el0_mask;
1322 return cpu_possible_mask;
1325 static int __init parse_32bit_el0_param(char *str)
1327 allow_mismatched_32bit_el0 = true;
1330 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1332 static ssize_t aarch32_el0_show(struct device *dev,
1333 struct device_attribute *attr, char *buf)
1335 const struct cpumask *mask = system_32bit_el0_cpumask();
1337 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1339 static const DEVICE_ATTR_RO(aarch32_el0);
1341 static int __init aarch32_el0_sysfs_init(void)
1343 if (!allow_mismatched_32bit_el0)
1346 return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1348 device_initcall(aarch32_el0_sysfs_init);
1350 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1352 if (!has_cpuid_feature(entry, scope))
1353 return allow_mismatched_32bit_el0;
1355 if (scope == SCOPE_SYSTEM)
1356 pr_info("detected: 32-bit EL0 Support\n");
1361 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1365 if (!has_cpuid_feature(entry, scope))
1368 has_sre = gic_enable_sre();
1370 pr_warn_once("%s present but disabled by higher exception level\n",
1376 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1378 u32 midr = read_cpuid_id();
1380 /* Cavium ThunderX pass 1.x and 2.x */
1381 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1382 MIDR_CPU_VAR_REV(0, 0),
1383 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1386 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1388 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1390 return cpuid_feature_extract_signed_field(pfr0,
1391 ID_AA64PFR0_FP_SHIFT) < 0;
1394 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1399 if (scope == SCOPE_SYSTEM)
1400 ctr = arm64_ftr_reg_ctrel0.sys_val;
1402 ctr = read_cpuid_effective_cachetype();
1404 return ctr & BIT(CTR_IDC_SHIFT);
1407 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1410 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1411 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1412 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1415 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1416 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1419 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1424 if (scope == SCOPE_SYSTEM)
1425 ctr = arm64_ftr_reg_ctrel0.sys_val;
1427 ctr = read_cpuid_cachetype();
1429 return ctr & BIT(CTR_DIC_SHIFT);
1432 static bool __maybe_unused
1433 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1436 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1437 * may share TLB entries with a CPU stuck in the crashed
1440 if (is_kdump_kernel())
1443 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1446 return has_cpuid_feature(entry, scope);
1450 * This check is triggered during the early boot before the cpufeature
1451 * is initialised. Checking the status on the local CPU allows the boot
1452 * CPU to detect the need for non-global mappings and thus avoiding a
1453 * pagetable re-write after all the CPUs are booted. This check will be
1454 * anyway run on individual CPUs, allowing us to get the consistent
1455 * state once the SMP CPUs are up and thus make the switch to non-global
1456 * mappings if required.
1458 bool kaslr_requires_kpti(void)
1460 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1464 * E0PD does a similar job to KPTI so can be used instead
1467 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1468 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1469 if (cpuid_feature_extract_unsigned_field(mmfr2,
1470 ID_AA64MMFR2_E0PD_SHIFT))
1475 * Systems affected by Cavium erratum 24756 are incompatible
1478 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1479 extern const struct midr_range cavium_erratum_27456_cpus[];
1481 if (is_midr_in_range_list(read_cpuid_id(),
1482 cavium_erratum_27456_cpus))
1486 return kaslr_offset() > 0;
1489 static bool __meltdown_safe = true;
1490 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1492 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1495 /* List of CPUs that are not vulnerable and don't need KPTI */
1496 static const struct midr_range kpti_safe_list[] = {
1497 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1498 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1499 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1500 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1501 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1502 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1503 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1504 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1505 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1506 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1507 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1508 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1509 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1510 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1511 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1514 char const *str = "kpti command line option";
1517 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1519 /* Defer to CPU feature registers */
1520 if (has_cpuid_feature(entry, scope))
1521 meltdown_safe = true;
1524 __meltdown_safe = false;
1527 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1528 * ThunderX leads to apparent I-cache corruption of kernel text, which
1529 * ends as well as you might imagine. Don't even try. We cannot rely
1530 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1531 * because cpucap detection order may change. However, since we know
1532 * affected CPUs are always in a homogeneous configuration, it is
1533 * safe to rely on this_cpu_has_cap() here.
1535 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1536 str = "ARM64_WORKAROUND_CAVIUM_27456";
1540 /* Useful for KASLR robustness */
1541 if (kaslr_requires_kpti()) {
1542 if (!__kpti_forced) {
1548 if (cpu_mitigations_off() && !__kpti_forced) {
1549 str = "mitigations=off";
1553 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1554 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1559 if (__kpti_forced) {
1560 pr_info_once("kernel page table isolation forced %s by %s\n",
1561 __kpti_forced > 0 ? "ON" : "OFF", str);
1562 return __kpti_forced > 0;
1565 return !meltdown_safe;
1568 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1570 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1572 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1573 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1574 kpti_remap_fn *remap_fn;
1576 int cpu = smp_processor_id();
1579 * We don't need to rewrite the page-tables if either we've done
1580 * it already or we have KASLR enabled and therefore have not
1581 * created any global mappings at all.
1583 if (arm64_use_ng_mappings)
1586 remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1588 cpu_install_idmap();
1589 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1590 cpu_uninstall_idmap();
1593 arm64_use_ng_mappings = true;
1597 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1600 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1602 static int __init parse_kpti(char *str)
1605 int ret = strtobool(str, &enabled);
1610 __kpti_forced = enabled ? 1 : -1;
1613 early_param("kpti", parse_kpti);
1615 #ifdef CONFIG_ARM64_HW_AFDBM
1616 static inline void __cpu_enable_hw_dbm(void)
1618 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1620 write_sysreg(tcr, tcr_el1);
1622 local_flush_tlb_all();
1625 static bool cpu_has_broken_dbm(void)
1627 /* List of CPUs which have broken DBM support. */
1628 static const struct midr_range cpus[] = {
1629 #ifdef CONFIG_ARM64_ERRATUM_1024718
1630 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1631 /* Kryo4xx Silver (rdpe => r1p0) */
1632 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1637 return is_midr_in_range_list(read_cpuid_id(), cpus);
1640 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1642 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1643 !cpu_has_broken_dbm();
1646 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1648 if (cpu_can_use_dbm(cap))
1649 __cpu_enable_hw_dbm();
1652 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1655 static bool detected = false;
1657 * DBM is a non-conflicting feature. i.e, the kernel can safely
1658 * run a mix of CPUs with and without the feature. So, we
1659 * unconditionally enable the capability to allow any late CPU
1660 * to use the feature. We only enable the control bits on the
1661 * CPU, if it actually supports.
1663 * We have to make sure we print the "feature" detection only
1664 * when at least one CPU actually uses it. So check if this CPU
1665 * can actually use it and print the message exactly once.
1667 * This is safe as all CPUs (including secondary CPUs - due to the
1668 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1669 * goes through the "matches" check exactly once. Also if a CPU
1670 * matches the criteria, it is guaranteed that the CPU will turn
1671 * the DBM on, as the capability is unconditionally enabled.
1673 if (!detected && cpu_can_use_dbm(cap)) {
1675 pr_info("detected: Hardware dirty bit management\n");
1683 #ifdef CONFIG_ARM64_AMU_EXTN
1686 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1687 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1688 * information regarding all the events that it supports. When a CPU bit is
1689 * set in the cpumask, the user of this feature can only rely on the presence
1690 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1691 * counters are enabled or access to these counters is enabled by code
1692 * executed at higher exception levels (firmware).
1694 static struct cpumask amu_cpus __read_mostly;
1696 bool cpu_has_amu_feat(int cpu)
1698 return cpumask_test_cpu(cpu, &amu_cpus);
1701 int get_cpu_with_amu_feat(void)
1703 return cpumask_any(&amu_cpus);
1706 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1708 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1709 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1710 smp_processor_id());
1711 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1712 update_freq_counters_refs();
1716 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1720 * The AMU extension is a non-conflicting feature: the kernel can
1721 * safely run a mix of CPUs with and without support for the
1722 * activity monitors extension. Therefore, unconditionally enable
1723 * the capability to allow any late CPU to use the feature.
1725 * With this feature unconditionally enabled, the cpu_enable
1726 * function will be called for all CPUs that match the criteria,
1727 * including secondary and hotplugged, marking this feature as
1728 * present on that respective CPU. The enable function will also
1729 * print a detection message.
1735 int get_cpu_with_amu_feat(void)
1741 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1743 return is_kernel_in_hyp_mode();
1746 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1749 * Copy register values that aren't redirected by hardware.
1751 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1752 * this value to tpidr_el2 before we patch the code. Once we've done
1753 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1756 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1757 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1760 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1762 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1764 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1765 WARN_ON(CLIDR_LOUU(val) || CLIDR_LOUIS(val));
1768 #ifdef CONFIG_ARM64_PAN
1769 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1772 * We modify PSTATE. This won't work from irq context as the PSTATE
1773 * is discarded once we return from the exception.
1775 WARN_ON_ONCE(in_interrupt());
1777 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1780 #endif /* CONFIG_ARM64_PAN */
1782 #ifdef CONFIG_ARM64_RAS_EXTN
1783 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1785 /* Firmware may have left a deferred SError in this register. */
1786 write_sysreg_s(0, SYS_DISR_EL1);
1788 #endif /* CONFIG_ARM64_RAS_EXTN */
1790 #ifdef CONFIG_ARM64_PTR_AUTH
1791 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1793 int boot_val, sec_val;
1795 /* We don't expect to be called with SCOPE_SYSTEM */
1796 WARN_ON(scope == SCOPE_SYSTEM);
1798 * The ptr-auth feature levels are not intercompatible with lower
1799 * levels. Hence we must match ptr-auth feature level of the secondary
1800 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1801 * from the sanitised register whereas direct register read is done for
1802 * the secondary CPUs.
1803 * The sanitised feature state is guaranteed to match that of the
1804 * boot CPU as a mismatched secondary CPU is parked before it gets
1805 * a chance to update the state, with the capability.
1807 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1808 entry->field_pos, entry->sign);
1809 if (scope & SCOPE_BOOT_CPU)
1810 return boot_val >= entry->min_field_value;
1811 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1812 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1813 entry->field_pos, entry->sign);
1814 return sec_val == boot_val;
1817 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1820 return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1821 has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1824 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1827 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1828 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1830 #endif /* CONFIG_ARM64_PTR_AUTH */
1832 #ifdef CONFIG_ARM64_E0PD
1833 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1835 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1836 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1838 #endif /* CONFIG_ARM64_E0PD */
1840 #ifdef CONFIG_ARM64_PSEUDO_NMI
1841 static bool enable_pseudo_nmi;
1843 static int __init early_enable_pseudo_nmi(char *p)
1845 return strtobool(p, &enable_pseudo_nmi);
1847 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1849 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1852 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1856 #ifdef CONFIG_ARM64_BTI
1857 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1860 * Use of X16/X17 for tail-calls and trampolines that jump to
1861 * function entry points using BR is a requirement for
1862 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1863 * So, be strict and forbid other BRs using other registers to
1864 * jump onto a PACIxSP instruction:
1866 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1869 #endif /* CONFIG_ARM64_BTI */
1871 #ifdef CONFIG_ARM64_MTE
1872 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1874 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
1878 * Clear the tags in the zero page. This needs to be done via the
1879 * linear map which has the Tagged attribute.
1881 if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1882 mte_clear_page_tags(lm_alias(empty_zero_page));
1884 kasan_init_hw_tags_cpu();
1886 #endif /* CONFIG_ARM64_MTE */
1889 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1891 if (kvm_get_mode() != KVM_MODE_PROTECTED)
1894 if (is_kernel_in_hyp_mode()) {
1895 pr_warn("Protected KVM not available with VHE\n");
1901 #endif /* CONFIG_KVM */
1903 /* Internal helper functions to match cpu capability type */
1905 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1907 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1911 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1913 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1917 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1919 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1922 static const struct arm64_cpu_capabilities arm64_features[] = {
1924 .desc = "GIC system register CPU interface",
1925 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1926 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1927 .matches = has_useable_gicv3_cpuif,
1928 .sys_reg = SYS_ID_AA64PFR0_EL1,
1929 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1930 .sign = FTR_UNSIGNED,
1931 .min_field_value = 1,
1933 #ifdef CONFIG_ARM64_PAN
1935 .desc = "Privileged Access Never",
1936 .capability = ARM64_HAS_PAN,
1937 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1938 .matches = has_cpuid_feature,
1939 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1940 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1941 .sign = FTR_UNSIGNED,
1942 .min_field_value = 1,
1943 .cpu_enable = cpu_enable_pan,
1945 #endif /* CONFIG_ARM64_PAN */
1946 #ifdef CONFIG_ARM64_EPAN
1948 .desc = "Enhanced Privileged Access Never",
1949 .capability = ARM64_HAS_EPAN,
1950 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1951 .matches = has_cpuid_feature,
1952 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1953 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1954 .sign = FTR_UNSIGNED,
1955 .min_field_value = 3,
1957 #endif /* CONFIG_ARM64_EPAN */
1958 #ifdef CONFIG_ARM64_LSE_ATOMICS
1960 .desc = "LSE atomic instructions",
1961 .capability = ARM64_HAS_LSE_ATOMICS,
1962 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1963 .matches = has_cpuid_feature,
1964 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1965 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1966 .sign = FTR_UNSIGNED,
1967 .min_field_value = 2,
1969 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1971 .desc = "Software prefetching using PRFM",
1972 .capability = ARM64_HAS_NO_HW_PREFETCH,
1973 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1974 .matches = has_no_hw_prefetch,
1977 .desc = "Virtualization Host Extensions",
1978 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1979 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1980 .matches = runs_at_el2,
1981 .cpu_enable = cpu_copy_el2regs,
1984 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
1985 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1986 .matches = has_32bit_el0,
1987 .sys_reg = SYS_ID_AA64PFR0_EL1,
1988 .sign = FTR_UNSIGNED,
1989 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1990 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
1994 .desc = "32-bit EL1 Support",
1995 .capability = ARM64_HAS_32BIT_EL1,
1996 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1997 .matches = has_cpuid_feature,
1998 .sys_reg = SYS_ID_AA64PFR0_EL1,
1999 .sign = FTR_UNSIGNED,
2000 .field_pos = ID_AA64PFR0_EL1_SHIFT,
2001 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2004 .desc = "Protected KVM",
2005 .capability = ARM64_KVM_PROTECTED_MODE,
2006 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2007 .matches = is_kvm_protected_mode,
2011 .desc = "Kernel page table isolation (KPTI)",
2012 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2013 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2015 * The ID feature fields below are used to indicate that
2016 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2019 .sys_reg = SYS_ID_AA64PFR0_EL1,
2020 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
2021 .min_field_value = 1,
2022 .matches = unmap_kernel_at_el0,
2023 .cpu_enable = kpti_install_ng_mappings,
2026 /* FP/SIMD is not implemented */
2027 .capability = ARM64_HAS_NO_FPSIMD,
2028 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2029 .min_field_value = 0,
2030 .matches = has_no_fpsimd,
2032 #ifdef CONFIG_ARM64_PMEM
2034 .desc = "Data cache clean to Point of Persistence",
2035 .capability = ARM64_HAS_DCPOP,
2036 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2037 .matches = has_cpuid_feature,
2038 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2039 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2040 .min_field_value = 1,
2043 .desc = "Data cache clean to Point of Deep Persistence",
2044 .capability = ARM64_HAS_DCPODP,
2045 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2046 .matches = has_cpuid_feature,
2047 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2048 .sign = FTR_UNSIGNED,
2049 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2050 .min_field_value = 2,
2053 #ifdef CONFIG_ARM64_SVE
2055 .desc = "Scalable Vector Extension",
2056 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2057 .capability = ARM64_SVE,
2058 .sys_reg = SYS_ID_AA64PFR0_EL1,
2059 .sign = FTR_UNSIGNED,
2060 .field_pos = ID_AA64PFR0_SVE_SHIFT,
2061 .min_field_value = ID_AA64PFR0_SVE,
2062 .matches = has_cpuid_feature,
2063 .cpu_enable = sve_kernel_enable,
2065 #endif /* CONFIG_ARM64_SVE */
2066 #ifdef CONFIG_ARM64_RAS_EXTN
2068 .desc = "RAS Extension Support",
2069 .capability = ARM64_HAS_RAS_EXTN,
2070 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2071 .matches = has_cpuid_feature,
2072 .sys_reg = SYS_ID_AA64PFR0_EL1,
2073 .sign = FTR_UNSIGNED,
2074 .field_pos = ID_AA64PFR0_RAS_SHIFT,
2075 .min_field_value = ID_AA64PFR0_RAS_V1,
2076 .cpu_enable = cpu_clear_disr,
2078 #endif /* CONFIG_ARM64_RAS_EXTN */
2079 #ifdef CONFIG_ARM64_AMU_EXTN
2082 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2083 * Therefore, don't provide .desc as we don't want the detection
2084 * message to be shown until at least one CPU is detected to
2085 * support the feature.
2087 .capability = ARM64_HAS_AMU_EXTN,
2088 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2090 .sys_reg = SYS_ID_AA64PFR0_EL1,
2091 .sign = FTR_UNSIGNED,
2092 .field_pos = ID_AA64PFR0_AMU_SHIFT,
2093 .min_field_value = ID_AA64PFR0_AMU,
2094 .cpu_enable = cpu_amu_enable,
2096 #endif /* CONFIG_ARM64_AMU_EXTN */
2098 .desc = "Data cache clean to the PoU not required for I/D coherence",
2099 .capability = ARM64_HAS_CACHE_IDC,
2100 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2101 .matches = has_cache_idc,
2102 .cpu_enable = cpu_emulate_effective_ctr,
2105 .desc = "Instruction cache invalidation not required for I/D coherence",
2106 .capability = ARM64_HAS_CACHE_DIC,
2107 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2108 .matches = has_cache_dic,
2111 .desc = "Stage-2 Force Write-Back",
2112 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2113 .capability = ARM64_HAS_STAGE2_FWB,
2114 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2115 .sign = FTR_UNSIGNED,
2116 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2117 .min_field_value = 1,
2118 .matches = has_cpuid_feature,
2119 .cpu_enable = cpu_has_fwb,
2122 .desc = "ARMv8.4 Translation Table Level",
2123 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2124 .capability = ARM64_HAS_ARMv8_4_TTL,
2125 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2126 .sign = FTR_UNSIGNED,
2127 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2128 .min_field_value = 1,
2129 .matches = has_cpuid_feature,
2132 .desc = "TLB range maintenance instructions",
2133 .capability = ARM64_HAS_TLB_RANGE,
2134 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2135 .matches = has_cpuid_feature,
2136 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2137 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
2138 .sign = FTR_UNSIGNED,
2139 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
2141 #ifdef CONFIG_ARM64_HW_AFDBM
2144 * Since we turn this on always, we don't want the user to
2145 * think that the feature is available when it may not be.
2146 * So hide the description.
2148 * .desc = "Hardware pagetable Dirty Bit Management",
2151 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2152 .capability = ARM64_HW_DBM,
2153 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2154 .sign = FTR_UNSIGNED,
2155 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2156 .min_field_value = 2,
2157 .matches = has_hw_dbm,
2158 .cpu_enable = cpu_enable_hw_dbm,
2162 .desc = "CRC32 instructions",
2163 .capability = ARM64_HAS_CRC32,
2164 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2165 .matches = has_cpuid_feature,
2166 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2167 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2168 .min_field_value = 1,
2171 .desc = "Speculative Store Bypassing Safe (SSBS)",
2172 .capability = ARM64_SSBS,
2173 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2174 .matches = has_cpuid_feature,
2175 .sys_reg = SYS_ID_AA64PFR1_EL1,
2176 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2177 .sign = FTR_UNSIGNED,
2178 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2180 #ifdef CONFIG_ARM64_CNP
2182 .desc = "Common not Private translations",
2183 .capability = ARM64_HAS_CNP,
2184 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2185 .matches = has_useable_cnp,
2186 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2187 .sign = FTR_UNSIGNED,
2188 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2189 .min_field_value = 1,
2190 .cpu_enable = cpu_enable_cnp,
2194 .desc = "Speculation barrier (SB)",
2195 .capability = ARM64_HAS_SB,
2196 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2197 .matches = has_cpuid_feature,
2198 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2199 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2200 .sign = FTR_UNSIGNED,
2201 .min_field_value = 1,
2203 #ifdef CONFIG_ARM64_PTR_AUTH
2205 .desc = "Address authentication (architected algorithm)",
2206 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2207 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2208 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2209 .sign = FTR_UNSIGNED,
2210 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2211 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2212 .matches = has_address_auth_cpucap,
2215 .desc = "Address authentication (IMP DEF algorithm)",
2216 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2217 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2218 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2219 .sign = FTR_UNSIGNED,
2220 .field_pos = ID_AA64ISAR1_API_SHIFT,
2221 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2222 .matches = has_address_auth_cpucap,
2225 .capability = ARM64_HAS_ADDRESS_AUTH,
2226 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2227 .matches = has_address_auth_metacap,
2230 .desc = "Generic authentication (architected algorithm)",
2231 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2232 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2233 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2234 .sign = FTR_UNSIGNED,
2235 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2236 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2237 .matches = has_cpuid_feature,
2240 .desc = "Generic authentication (IMP DEF algorithm)",
2241 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2242 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2243 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2244 .sign = FTR_UNSIGNED,
2245 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2246 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2247 .matches = has_cpuid_feature,
2250 .capability = ARM64_HAS_GENERIC_AUTH,
2251 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2252 .matches = has_generic_auth,
2254 #endif /* CONFIG_ARM64_PTR_AUTH */
2255 #ifdef CONFIG_ARM64_PSEUDO_NMI
2258 * Depends on having GICv3
2260 .desc = "IRQ priority masking",
2261 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2262 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2263 .matches = can_use_gic_priorities,
2264 .sys_reg = SYS_ID_AA64PFR0_EL1,
2265 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2266 .sign = FTR_UNSIGNED,
2267 .min_field_value = 1,
2270 #ifdef CONFIG_ARM64_E0PD
2273 .capability = ARM64_HAS_E0PD,
2274 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2275 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2276 .sign = FTR_UNSIGNED,
2277 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2278 .matches = has_cpuid_feature,
2279 .min_field_value = 1,
2280 .cpu_enable = cpu_enable_e0pd,
2283 #ifdef CONFIG_ARCH_RANDOM
2285 .desc = "Random Number Generator",
2286 .capability = ARM64_HAS_RNG,
2287 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2288 .matches = has_cpuid_feature,
2289 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2290 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2291 .sign = FTR_UNSIGNED,
2292 .min_field_value = 1,
2295 #ifdef CONFIG_ARM64_BTI
2297 .desc = "Branch Target Identification",
2298 .capability = ARM64_BTI,
2299 #ifdef CONFIG_ARM64_BTI_KERNEL
2300 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2302 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2304 .matches = has_cpuid_feature,
2305 .cpu_enable = bti_enable,
2306 .sys_reg = SYS_ID_AA64PFR1_EL1,
2307 .field_pos = ID_AA64PFR1_BT_SHIFT,
2308 .min_field_value = ID_AA64PFR1_BT_BTI,
2309 .sign = FTR_UNSIGNED,
2312 #ifdef CONFIG_ARM64_MTE
2314 .desc = "Memory Tagging Extension",
2315 .capability = ARM64_MTE,
2316 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2317 .matches = has_cpuid_feature,
2318 .sys_reg = SYS_ID_AA64PFR1_EL1,
2319 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2320 .min_field_value = ID_AA64PFR1_MTE,
2321 .sign = FTR_UNSIGNED,
2322 .cpu_enable = cpu_enable_mte,
2324 #endif /* CONFIG_ARM64_MTE */
2326 .desc = "RCpc load-acquire (LDAPR)",
2327 .capability = ARM64_HAS_LDAPR,
2328 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2329 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2330 .sign = FTR_UNSIGNED,
2331 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2332 .matches = has_cpuid_feature,
2333 .min_field_value = 1,
2338 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2339 .matches = has_cpuid_feature, \
2341 .field_pos = field, \
2343 .min_field_value = min_value,
2345 #define __HWCAP_CAP(name, cap_type, cap) \
2347 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2348 .hwcap_type = cap_type, \
2351 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
2353 __HWCAP_CAP(#cap, cap_type, cap) \
2354 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2357 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2359 __HWCAP_CAP(#cap, cap_type, cap) \
2360 .matches = cpucap_multi_entry_cap_matches, \
2361 .match_list = list, \
2364 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2366 __HWCAP_CAP(#cap, cap_type, cap) \
2370 #ifdef CONFIG_ARM64_PTR_AUTH
2371 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2373 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2374 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2377 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2378 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2383 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2385 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2386 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2389 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2390 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2396 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2397 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2398 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2399 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2400 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2401 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2402 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2403 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2404 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2405 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2406 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2407 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2408 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2409 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2410 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2411 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2412 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2413 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2414 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2415 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2416 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2417 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2418 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2419 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2420 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2421 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2422 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2423 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2424 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2425 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2426 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2427 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2428 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2429 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2430 #ifdef CONFIG_ARM64_SVE
2431 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2432 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2433 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2434 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2435 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2436 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2437 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2438 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2439 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2440 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2441 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2443 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2444 #ifdef CONFIG_ARM64_BTI
2445 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2447 #ifdef CONFIG_ARM64_PTR_AUTH
2448 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2449 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2451 #ifdef CONFIG_ARM64_MTE
2452 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2453 #endif /* CONFIG_ARM64_MTE */
2457 #ifdef CONFIG_COMPAT
2458 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2461 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2462 * in line with that of arm32 as in vfp_init(). We make sure that the
2463 * check is future proof, by making sure value is non-zero.
2467 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2468 if (scope == SCOPE_SYSTEM)
2469 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2471 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2473 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2474 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2475 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2479 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2480 #ifdef CONFIG_COMPAT
2481 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2482 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2483 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2484 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2485 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2486 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2487 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2488 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2489 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2490 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2495 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2497 switch (cap->hwcap_type) {
2499 cpu_set_feature(cap->hwcap);
2501 #ifdef CONFIG_COMPAT
2502 case CAP_COMPAT_HWCAP:
2503 compat_elf_hwcap |= (u32)cap->hwcap;
2505 case CAP_COMPAT_HWCAP2:
2506 compat_elf_hwcap2 |= (u32)cap->hwcap;
2515 /* Check if we have a particular HWCAP enabled */
2516 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2520 switch (cap->hwcap_type) {
2522 rc = cpu_have_feature(cap->hwcap);
2524 #ifdef CONFIG_COMPAT
2525 case CAP_COMPAT_HWCAP:
2526 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2528 case CAP_COMPAT_HWCAP2:
2529 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2540 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2542 /* We support emulation of accesses to CPU ID feature registers */
2543 cpu_set_named_feature(CPUID);
2544 for (; hwcaps->matches; hwcaps++)
2545 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2546 cap_set_elf_hwcap(hwcaps);
2549 static void update_cpu_capabilities(u16 scope_mask)
2552 const struct arm64_cpu_capabilities *caps;
2554 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2555 for (i = 0; i < ARM64_NCAPS; i++) {
2556 caps = cpu_hwcaps_ptrs[i];
2557 if (!caps || !(caps->type & scope_mask) ||
2558 cpus_have_cap(caps->capability) ||
2559 !caps->matches(caps, cpucap_default_scope(caps)))
2563 pr_info("detected: %s\n", caps->desc);
2564 cpus_set_cap(caps->capability);
2566 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2567 set_bit(caps->capability, boot_capabilities);
2572 * Enable all the available capabilities on this CPU. The capabilities
2573 * with BOOT_CPU scope are handled separately and hence skipped here.
2575 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2578 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2580 for_each_available_cap(i) {
2581 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2586 if (!(cap->type & non_boot_scope))
2589 if (cap->cpu_enable)
2590 cap->cpu_enable(cap);
2596 * Run through the enabled capabilities and enable() it on all active
2599 static void __init enable_cpu_capabilities(u16 scope_mask)
2602 const struct arm64_cpu_capabilities *caps;
2605 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2606 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2608 for (i = 0; i < ARM64_NCAPS; i++) {
2611 caps = cpu_hwcaps_ptrs[i];
2612 if (!caps || !(caps->type & scope_mask))
2614 num = caps->capability;
2615 if (!cpus_have_cap(num))
2618 /* Ensure cpus_have_const_cap(num) works */
2619 static_branch_enable(&cpu_hwcap_keys[num]);
2621 if (boot_scope && caps->cpu_enable)
2623 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2624 * before any secondary CPU boots. Thus, each secondary
2625 * will enable the capability as appropriate via
2626 * check_local_cpu_capabilities(). The only exception is
2627 * the boot CPU, for which the capability must be
2628 * enabled here. This approach avoids costly
2629 * stop_machine() calls for this case.
2631 caps->cpu_enable(caps);
2635 * For all non-boot scope capabilities, use stop_machine()
2636 * as it schedules the work allowing us to modify PSTATE,
2637 * instead of on_each_cpu() which uses an IPI, giving us a
2638 * PSTATE that disappears when we return.
2641 stop_machine(cpu_enable_non_boot_scope_capabilities,
2642 NULL, cpu_online_mask);
2646 * Run through the list of capabilities to check for conflicts.
2647 * If the system has already detected a capability, take necessary
2648 * action on this CPU.
2650 static void verify_local_cpu_caps(u16 scope_mask)
2653 bool cpu_has_cap, system_has_cap;
2654 const struct arm64_cpu_capabilities *caps;
2656 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2658 for (i = 0; i < ARM64_NCAPS; i++) {
2659 caps = cpu_hwcaps_ptrs[i];
2660 if (!caps || !(caps->type & scope_mask))
2663 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2664 system_has_cap = cpus_have_cap(caps->capability);
2666 if (system_has_cap) {
2668 * Check if the new CPU misses an advertised feature,
2669 * which is not safe to miss.
2671 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2674 * We have to issue cpu_enable() irrespective of
2675 * whether the CPU has it or not, as it is enabeld
2676 * system wide. It is upto the call back to take
2677 * appropriate action on this CPU.
2679 if (caps->cpu_enable)
2680 caps->cpu_enable(caps);
2683 * Check if the CPU has this capability if it isn't
2684 * safe to have when the system doesn't.
2686 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2691 if (i < ARM64_NCAPS) {
2692 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2693 smp_processor_id(), caps->capability,
2694 caps->desc, system_has_cap, cpu_has_cap);
2696 if (cpucap_panic_on_conflict(caps))
2704 * Check for CPU features that are used in early boot
2705 * based on the Boot CPU value.
2707 static void check_early_cpu_features(void)
2709 verify_cpu_asid_bits();
2711 verify_local_cpu_caps(SCOPE_BOOT_CPU);
2715 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2718 for (; caps->matches; caps++)
2719 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2720 pr_crit("CPU%d: missing HWCAP: %s\n",
2721 smp_processor_id(), caps->desc);
2726 static void verify_local_elf_hwcaps(void)
2728 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
2730 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
2731 __verify_local_elf_hwcaps(compat_elf_hwcaps);
2734 static void verify_sve_features(void)
2736 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2737 u64 zcr = read_zcr_features();
2739 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2740 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2742 if (len < safe_len || sve_verify_vq_map()) {
2743 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2744 smp_processor_id());
2748 /* Add checks on other ZCR bits here if necessary */
2751 static void verify_hyp_capabilities(void)
2753 u64 safe_mmfr1, mmfr0, mmfr1;
2754 int parange, ipa_max;
2755 unsigned int safe_vmid_bits, vmid_bits;
2757 if (!IS_ENABLED(CONFIG_KVM))
2760 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2761 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2762 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2764 /* Verify VMID bits */
2765 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2766 vmid_bits = get_vmid_bits(mmfr1);
2767 if (vmid_bits < safe_vmid_bits) {
2768 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2772 /* Verify IPA range */
2773 parange = cpuid_feature_extract_unsigned_field(mmfr0,
2774 ID_AA64MMFR0_PARANGE_SHIFT);
2775 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2776 if (ipa_max < get_kvm_ipa_limit()) {
2777 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2783 * Run through the enabled system capabilities and enable() it on this CPU.
2784 * The capabilities were decided based on the available CPUs at the boot time.
2785 * Any new CPU should match the system wide status of the capability. If the
2786 * new CPU doesn't have a capability which the system now has enabled, we
2787 * cannot do anything to fix it up and could cause unexpected failures. So
2790 static void verify_local_cpu_capabilities(void)
2793 * The capabilities with SCOPE_BOOT_CPU are checked from
2794 * check_early_cpu_features(), as they need to be verified
2795 * on all secondary CPUs.
2797 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2798 verify_local_elf_hwcaps();
2800 if (system_supports_sve())
2801 verify_sve_features();
2803 if (is_hyp_mode_available())
2804 verify_hyp_capabilities();
2807 void check_local_cpu_capabilities(void)
2810 * All secondary CPUs should conform to the early CPU features
2811 * in use by the kernel based on boot CPU.
2813 check_early_cpu_features();
2816 * If we haven't finalised the system capabilities, this CPU gets
2817 * a chance to update the errata work arounds and local features.
2818 * Otherwise, this CPU should verify that it has all the system
2819 * advertised capabilities.
2821 if (!system_capabilities_finalized())
2822 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2824 verify_local_cpu_capabilities();
2827 static void __init setup_boot_cpu_capabilities(void)
2829 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2830 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2831 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2832 enable_cpu_capabilities(SCOPE_BOOT_CPU);
2835 bool this_cpu_has_cap(unsigned int n)
2837 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2838 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2841 return cap->matches(cap, SCOPE_LOCAL_CPU);
2846 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
2849 * This helper function is used in a narrow window when,
2850 * - The system wide safe registers are set with all the SMP CPUs and,
2851 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2852 * In all other cases cpus_have_{const_}cap() should be used.
2854 static bool __maybe_unused __system_matches_cap(unsigned int n)
2856 if (n < ARM64_NCAPS) {
2857 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2860 return cap->matches(cap, SCOPE_SYSTEM);
2865 void cpu_set_feature(unsigned int num)
2867 WARN_ON(num >= MAX_CPU_FEATURES);
2868 elf_hwcap |= BIT(num);
2870 EXPORT_SYMBOL_GPL(cpu_set_feature);
2872 bool cpu_have_feature(unsigned int num)
2874 WARN_ON(num >= MAX_CPU_FEATURES);
2875 return elf_hwcap & BIT(num);
2877 EXPORT_SYMBOL_GPL(cpu_have_feature);
2879 unsigned long cpu_get_elf_hwcap(void)
2882 * We currently only populate the first 32 bits of AT_HWCAP. Please
2883 * note that for userspace compatibility we guarantee that bits 62
2884 * and 63 will always be returned as 0.
2886 return lower_32_bits(elf_hwcap);
2889 unsigned long cpu_get_elf_hwcap2(void)
2891 return upper_32_bits(elf_hwcap);
2894 static void __init setup_system_capabilities(void)
2897 * We have finalised the system-wide safe feature
2898 * registers, finalise the capabilities that depend
2899 * on it. Also enable all the available capabilities,
2900 * that are not enabled already.
2902 update_cpu_capabilities(SCOPE_SYSTEM);
2903 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2906 void __init setup_cpu_features(void)
2910 setup_system_capabilities();
2911 setup_elf_hwcaps(arm64_elf_hwcaps);
2913 if (system_supports_32bit_el0())
2914 setup_elf_hwcaps(compat_elf_hwcaps);
2916 if (system_uses_ttbr0_pan())
2917 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2920 minsigstksz_setup();
2922 /* Advertise that we have computed the system capabilities */
2923 finalize_system_capabilities();
2926 * Check for sane CTR_EL0.CWG value.
2928 cwg = cache_type_cwg();
2930 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2934 static int enable_mismatched_32bit_el0(unsigned int cpu)
2937 * The first 32-bit-capable CPU we detected and so can no longer
2938 * be offlined by userspace. -1 indicates we haven't yet onlined
2939 * a 32-bit-capable CPU.
2941 static int lucky_winner = -1;
2943 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
2944 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
2947 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
2948 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
2951 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
2954 if (lucky_winner >= 0)
2958 * We've detected a mismatch. We need to keep one of our CPUs with
2959 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
2960 * every CPU in the system for a 32-bit task.
2962 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
2964 get_cpu_device(lucky_winner)->offline_disabled = true;
2965 setup_elf_hwcaps(compat_elf_hwcaps);
2966 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
2971 static int __init init_32bit_el0_mask(void)
2973 if (!allow_mismatched_32bit_el0)
2976 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
2979 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
2980 "arm64/mismatched_32bit_el0:online",
2981 enable_mismatched_32bit_el0, NULL);
2983 subsys_initcall_sync(init_32bit_el0_mask);
2985 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2987 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2991 * We emulate only the following system register space.
2992 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2993 * See Table C5-6 System instruction encodings for System register accesses,
2994 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2996 static inline bool __attribute_const__ is_emulated(u32 id)
2998 return (sys_reg_Op0(id) == 0x3 &&
2999 sys_reg_CRn(id) == 0x0 &&
3000 sys_reg_Op1(id) == 0x0 &&
3001 (sys_reg_CRm(id) == 0 ||
3002 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3006 * With CRm == 0, reg should be one of :
3007 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3009 static inline int emulate_id_reg(u32 id, u64 *valp)
3013 *valp = read_cpuid_id();
3016 *valp = SYS_MPIDR_SAFE_VAL;
3018 case SYS_REVIDR_EL1:
3019 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3029 static int emulate_sys_reg(u32 id, u64 *valp)
3031 struct arm64_ftr_reg *regp;
3033 if (!is_emulated(id))
3036 if (sys_reg_CRm(id) == 0)
3037 return emulate_id_reg(id, valp);
3039 regp = get_arm64_ftr_reg_nowarn(id);
3041 *valp = arm64_ftr_reg_user_value(regp);
3044 * The untracked registers are either IMPLEMENTATION DEFINED
3045 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3051 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3056 rc = emulate_sys_reg(sys_reg, &val);
3058 pt_regs_write_reg(regs, rt, val);
3059 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3064 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3069 * sys_reg values are defined as used in mrs/msr instruction.
3070 * shift the imm value to get the encoding.
3072 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3073 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3074 return do_emulate_mrs(regs, sys_reg, rt);
3077 static struct undef_hook mrs_hook = {
3078 .instr_mask = 0xffff0000,
3079 .instr_val = 0xd5380000,
3080 .pstate_mask = PSR_AA32_MODE_MASK,
3081 .pstate_val = PSR_MODE_EL0t,
3085 static int __init enable_mrs_emulation(void)
3087 register_undef_hook(&mrs_hook);
3091 core_initcall(enable_mrs_emulation);
3093 enum mitigation_state arm64_get_meltdown_state(void)
3095 if (__meltdown_safe)
3096 return SPECTRE_UNAFFECTED;
3098 if (arm64_kernel_unmapped_at_el0())
3099 return SPECTRE_MITIGATED;
3101 return SPECTRE_VULNERABLE;
3104 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3107 switch (arm64_get_meltdown_state()) {
3108 case SPECTRE_UNAFFECTED:
3109 return sprintf(buf, "Not affected\n");
3111 case SPECTRE_MITIGATED:
3112 return sprintf(buf, "Mitigation: PTI\n");
3115 return sprintf(buf, "Vulnerable\n");