Merge branch kvm-arm64/tlbi-range into kvmarm-master/next
[platform/kernel/linux-starfive.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
43
44 #define KVM_REQ_SLEEP \
45         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
50 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
51 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
52
53 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
54                                      KVM_DIRTY_LOG_INITIALLY_SET)
55
56 #define KVM_HAVE_MMU_RWLOCK
57
58 /*
59  * Mode of operation configurable with kvm-arm.mode early param.
60  * See Documentation/admin-guide/kernel-parameters.txt for more information.
61  */
62 enum kvm_mode {
63         KVM_MODE_DEFAULT,
64         KVM_MODE_PROTECTED,
65         KVM_MODE_NV,
66         KVM_MODE_NONE,
67 };
68 #ifdef CONFIG_KVM
69 enum kvm_mode kvm_get_mode(void);
70 #else
71 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
72 #endif
73
74 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
75
76 extern unsigned int __ro_after_init kvm_sve_max_vl;
77 int __init kvm_arm_init_sve(void);
78
79 u32 __attribute_const__ kvm_target_cpu(void);
80 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
81 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
82
83 struct kvm_hyp_memcache {
84         phys_addr_t head;
85         unsigned long nr_pages;
86 };
87
88 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
89                                      phys_addr_t *p,
90                                      phys_addr_t (*to_pa)(void *virt))
91 {
92         *p = mc->head;
93         mc->head = to_pa(p);
94         mc->nr_pages++;
95 }
96
97 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
98                                      void *(*to_va)(phys_addr_t phys))
99 {
100         phys_addr_t *p = to_va(mc->head);
101
102         if (!mc->nr_pages)
103                 return NULL;
104
105         mc->head = *p;
106         mc->nr_pages--;
107
108         return p;
109 }
110
111 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
112                                        unsigned long min_pages,
113                                        void *(*alloc_fn)(void *arg),
114                                        phys_addr_t (*to_pa)(void *virt),
115                                        void *arg)
116 {
117         while (mc->nr_pages < min_pages) {
118                 phys_addr_t *p = alloc_fn(arg);
119
120                 if (!p)
121                         return -ENOMEM;
122                 push_hyp_memcache(mc, p, to_pa);
123         }
124
125         return 0;
126 }
127
128 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
129                                        void (*free_fn)(void *virt, void *arg),
130                                        void *(*to_va)(phys_addr_t phys),
131                                        void *arg)
132 {
133         while (mc->nr_pages)
134                 free_fn(pop_hyp_memcache(mc, to_va), arg);
135 }
136
137 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
138 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
139
140 struct kvm_vmid {
141         atomic64_t id;
142 };
143
144 struct kvm_s2_mmu {
145         struct kvm_vmid vmid;
146
147         /*
148          * stage2 entry level table
149          *
150          * Two kvm_s2_mmu structures in the same VM can point to the same
151          * pgd here.  This happens when running a guest using a
152          * translation regime that isn't affected by its own stage-2
153          * translation, such as a non-VHE hypervisor running at vEL2, or
154          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
155          * canonical stage-2 page tables.
156          */
157         phys_addr_t     pgd_phys;
158         struct kvm_pgtable *pgt;
159
160         /* The last vcpu id that ran on each physical CPU */
161         int __percpu *last_vcpu_ran;
162
163 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
164         /*
165          * Memory cache used to split
166          * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
167          * is used to allocate stage2 page tables while splitting huge
168          * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
169          * influences both the capacity of the split page cache, and
170          * how often KVM reschedules. Be wary of raising CHUNK_SIZE
171          * too high.
172          *
173          * Protected by kvm->slots_lock.
174          */
175         struct kvm_mmu_memory_cache split_page_cache;
176         uint64_t split_page_chunk_size;
177
178         struct kvm_arch *arch;
179 };
180
181 struct kvm_arch_memory_slot {
182 };
183
184 /**
185  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
186  *
187  * @std_bmap: Bitmap of standard secure service calls
188  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
189  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
190  */
191 struct kvm_smccc_features {
192         unsigned long std_bmap;
193         unsigned long std_hyp_bmap;
194         unsigned long vendor_hyp_bmap;
195 };
196
197 typedef unsigned int pkvm_handle_t;
198
199 struct kvm_protected_vm {
200         pkvm_handle_t handle;
201         struct kvm_hyp_memcache teardown_mc;
202 };
203
204 struct kvm_arch {
205         struct kvm_s2_mmu mmu;
206
207         /* VTCR_EL2 value for this VM */
208         u64    vtcr;
209
210         /* Interrupt controller */
211         struct vgic_dist        vgic;
212
213         /* Timers */
214         struct arch_timer_vm_data timer_data;
215
216         /* Mandated version of PSCI */
217         u32 psci_version;
218
219         /* Protects VM-scoped configuration data */
220         struct mutex config_lock;
221
222         /*
223          * If we encounter a data abort without valid instruction syndrome
224          * information, report this to user space.  User space can (and
225          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
226          * supported.
227          */
228 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
229         /* Memory Tagging Extension enabled for the guest */
230 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
231         /* At least one vCPU has ran in the VM */
232 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
233         /* The vCPU feature set for the VM is configured */
234 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED          3
235         /* PSCI SYSTEM_SUSPEND enabled for the guest */
236 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            4
237         /* VM counter offset */
238 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 5
239         /* Timer PPIs made immutable */
240 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              6
241         /* SMCCC filter initialized for the VM */
242 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED           7
243         /* Initial ID reg values loaded */
244 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED               8
245         unsigned long flags;
246
247         /* VM-wide vCPU feature set */
248         DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
249
250         /*
251          * VM-wide PMU filter, implemented as a bitmap and big enough for
252          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
253          */
254         unsigned long *pmu_filter;
255         struct arm_pmu *arm_pmu;
256
257         cpumask_var_t supported_cpus;
258
259         /* Hypercall features firmware registers' descriptor */
260         struct kvm_smccc_features smccc_feat;
261         struct maple_tree smccc_filter;
262
263         /*
264          * Emulated CPU ID registers per VM
265          * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
266          * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
267          *
268          * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
269          * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
270          */
271 #define IDREG_IDX(id)           (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
272 #define IDREG(kvm, id)          ((kvm)->arch.id_regs[IDREG_IDX(id)])
273 #define KVM_ARM_ID_REG_NUM      (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
274         u64 id_regs[KVM_ARM_ID_REG_NUM];
275
276         /*
277          * For an untrusted host VM, 'pkvm.handle' is used to lookup
278          * the associated pKVM instance in the hypervisor.
279          */
280         struct kvm_protected_vm pkvm;
281 };
282
283 struct kvm_vcpu_fault_info {
284         u64 esr_el2;            /* Hyp Syndrom Register */
285         u64 far_el2;            /* Hyp Fault Address Register */
286         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
287         u64 disr_el1;           /* Deferred [SError] Status Register */
288 };
289
290 enum vcpu_sysreg {
291         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
292         MPIDR_EL1,      /* MultiProcessor Affinity Register */
293         CLIDR_EL1,      /* Cache Level ID Register */
294         CSSELR_EL1,     /* Cache Size Selection Register */
295         SCTLR_EL1,      /* System Control Register */
296         ACTLR_EL1,      /* Auxiliary Control Register */
297         CPACR_EL1,      /* Coprocessor Access Control */
298         ZCR_EL1,        /* SVE Control */
299         TTBR0_EL1,      /* Translation Table Base Register 0 */
300         TTBR1_EL1,      /* Translation Table Base Register 1 */
301         TCR_EL1,        /* Translation Control Register */
302         TCR2_EL1,       /* Extended Translation Control Register */
303         ESR_EL1,        /* Exception Syndrome Register */
304         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
305         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
306         FAR_EL1,        /* Fault Address Register */
307         MAIR_EL1,       /* Memory Attribute Indirection Register */
308         VBAR_EL1,       /* Vector Base Address Register */
309         CONTEXTIDR_EL1, /* Context ID Register */
310         TPIDR_EL0,      /* Thread ID, User R/W */
311         TPIDRRO_EL0,    /* Thread ID, User R/O */
312         TPIDR_EL1,      /* Thread ID, Privileged */
313         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
314         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
315         PAR_EL1,        /* Physical Address Register */
316         MDSCR_EL1,      /* Monitor Debug System Control Register */
317         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
318         OSLSR_EL1,      /* OS Lock Status Register */
319         DISR_EL1,       /* Deferred Interrupt Status Register */
320
321         /* Performance Monitors Registers */
322         PMCR_EL0,       /* Control Register */
323         PMSELR_EL0,     /* Event Counter Selection Register */
324         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
325         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
326         PMCCNTR_EL0,    /* Cycle Counter Register */
327         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
328         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
329         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
330         PMCNTENSET_EL0, /* Count Enable Set Register */
331         PMINTENSET_EL1, /* Interrupt Enable Set Register */
332         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
333         PMUSERENR_EL0,  /* User Enable Register */
334
335         /* Pointer Authentication Registers in a strict increasing order. */
336         APIAKEYLO_EL1,
337         APIAKEYHI_EL1,
338         APIBKEYLO_EL1,
339         APIBKEYHI_EL1,
340         APDAKEYLO_EL1,
341         APDAKEYHI_EL1,
342         APDBKEYLO_EL1,
343         APDBKEYHI_EL1,
344         APGAKEYLO_EL1,
345         APGAKEYHI_EL1,
346
347         ELR_EL1,
348         SP_EL1,
349         SPSR_EL1,
350
351         CNTVOFF_EL2,
352         CNTV_CVAL_EL0,
353         CNTV_CTL_EL0,
354         CNTP_CVAL_EL0,
355         CNTP_CTL_EL0,
356
357         /* Memory Tagging Extension registers */
358         RGSR_EL1,       /* Random Allocation Tag Seed Register */
359         GCR_EL1,        /* Tag Control Register */
360         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
361         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
362
363         /* Permission Indirection Extension registers */
364         PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
365         PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
366
367         /* 32bit specific registers. */
368         DACR32_EL2,     /* Domain Access Control Register */
369         IFSR32_EL2,     /* Instruction Fault Status Register */
370         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
371         DBGVCR32_EL2,   /* Debug Vector Catch Register */
372
373         /* EL2 registers */
374         VPIDR_EL2,      /* Virtualization Processor ID Register */
375         VMPIDR_EL2,     /* Virtualization Multiprocessor ID Register */
376         SCTLR_EL2,      /* System Control Register (EL2) */
377         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
378         HCR_EL2,        /* Hypervisor Configuration Register */
379         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
380         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
381         HSTR_EL2,       /* Hypervisor System Trap Register */
382         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
383         HCRX_EL2,       /* Extended Hypervisor Configuration Register */
384         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
385         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
386         TCR_EL2,        /* Translation Control Register (EL2) */
387         VTTBR_EL2,      /* Virtualization Translation Table Base Register */
388         VTCR_EL2,       /* Virtualization Translation Control Register */
389         SPSR_EL2,       /* EL2 saved program status register */
390         ELR_EL2,        /* EL2 exception link register */
391         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
392         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
393         ESR_EL2,        /* Exception Syndrome Register (EL2) */
394         FAR_EL2,        /* Fault Address Register (EL2) */
395         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
396         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
397         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
398         VBAR_EL2,       /* Vector Base Address Register (EL2) */
399         RVBAR_EL2,      /* Reset Vector Base Address Register */
400         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
401         TPIDR_EL2,      /* EL2 Software Thread ID Register */
402         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
403         SP_EL2,         /* EL2 Stack Pointer */
404         HFGRTR_EL2,
405         HFGWTR_EL2,
406         HFGITR_EL2,
407         HDFGRTR_EL2,
408         HDFGWTR_EL2,
409         CNTHP_CTL_EL2,
410         CNTHP_CVAL_EL2,
411         CNTHV_CTL_EL2,
412         CNTHV_CVAL_EL2,
413
414         NR_SYS_REGS     /* Nothing after this line! */
415 };
416
417 struct kvm_cpu_context {
418         struct user_pt_regs regs;       /* sp = sp_el0 */
419
420         u64     spsr_abt;
421         u64     spsr_und;
422         u64     spsr_irq;
423         u64     spsr_fiq;
424
425         struct user_fpsimd_state fp_regs;
426
427         u64 sys_regs[NR_SYS_REGS];
428
429         struct kvm_vcpu *__hyp_running_vcpu;
430 };
431
432 struct kvm_host_data {
433         struct kvm_cpu_context host_ctxt;
434 };
435
436 struct kvm_host_psci_config {
437         /* PSCI version used by host. */
438         u32 version;
439         u32 smccc_version;
440
441         /* Function IDs used by host if version is v0.1. */
442         struct psci_0_1_function_ids function_ids_0_1;
443
444         bool psci_0_1_cpu_suspend_implemented;
445         bool psci_0_1_cpu_on_implemented;
446         bool psci_0_1_cpu_off_implemented;
447         bool psci_0_1_migrate_implemented;
448 };
449
450 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
451 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
452
453 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
454 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
455
456 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
457 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
458
459 struct vcpu_reset_state {
460         unsigned long   pc;
461         unsigned long   r0;
462         bool            be;
463         bool            reset;
464 };
465
466 struct kvm_vcpu_arch {
467         struct kvm_cpu_context ctxt;
468
469         /*
470          * Guest floating point state
471          *
472          * The architecture has two main floating point extensions,
473          * the original FPSIMD and SVE.  These have overlapping
474          * register views, with the FPSIMD V registers occupying the
475          * low 128 bits of the SVE Z registers.  When the core
476          * floating point code saves the register state of a task it
477          * records which view it saved in fp_type.
478          */
479         void *sve_state;
480         enum fp_type fp_type;
481         unsigned int sve_max_vl;
482         u64 svcr;
483
484         /* Stage 2 paging state used by the hardware on next switch */
485         struct kvm_s2_mmu *hw_mmu;
486
487         /* Values of trap registers for the guest. */
488         u64 hcr_el2;
489         u64 mdcr_el2;
490         u64 cptr_el2;
491
492         /* Values of trap registers for the host before guest entry. */
493         u64 mdcr_el2_host;
494
495         /* Exception Information */
496         struct kvm_vcpu_fault_info fault;
497
498         /* Ownership of the FP regs */
499         enum {
500                 FP_STATE_FREE,
501                 FP_STATE_HOST_OWNED,
502                 FP_STATE_GUEST_OWNED,
503         } fp_state;
504
505         /* Configuration flags, set once and for all before the vcpu can run */
506         u8 cflags;
507
508         /* Input flags to the hypervisor code, potentially cleared after use */
509         u8 iflags;
510
511         /* State flags for kernel bookkeeping, unused by the hypervisor code */
512         u8 sflags;
513
514         /*
515          * Don't run the guest (internal implementation need).
516          *
517          * Contrary to the flags above, this is set/cleared outside of
518          * a vcpu context, and thus cannot be mixed with the flags
519          * themselves (or the flag accesses need to be made atomic).
520          */
521         bool pause;
522
523         /*
524          * We maintain more than a single set of debug registers to support
525          * debugging the guest from the host and to maintain separate host and
526          * guest state during world switches. vcpu_debug_state are the debug
527          * registers of the vcpu as the guest sees them.  host_debug_state are
528          * the host registers which are saved and restored during
529          * world switches. external_debug_state contains the debug
530          * values we want to debug the guest. This is set via the
531          * KVM_SET_GUEST_DEBUG ioctl.
532          *
533          * debug_ptr points to the set of debug registers that should be loaded
534          * onto the hardware when running the guest.
535          */
536         struct kvm_guest_debug_arch *debug_ptr;
537         struct kvm_guest_debug_arch vcpu_debug_state;
538         struct kvm_guest_debug_arch external_debug_state;
539
540         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
541         struct task_struct *parent_task;
542
543         struct {
544                 /* {Break,watch}point registers */
545                 struct kvm_guest_debug_arch regs;
546                 /* Statistical profiling extension */
547                 u64 pmscr_el1;
548                 /* Self-hosted trace */
549                 u64 trfcr_el1;
550         } host_debug_state;
551
552         /* VGIC state */
553         struct vgic_cpu vgic_cpu;
554         struct arch_timer_cpu timer_cpu;
555         struct kvm_pmu pmu;
556
557         /*
558          * Guest registers we preserve during guest debugging.
559          *
560          * These shadow registers are updated by the kvm_handle_sys_reg
561          * trap handler if the guest accesses or updates them while we
562          * are using guest debug.
563          */
564         struct {
565                 u32     mdscr_el1;
566                 bool    pstate_ss;
567         } guest_debug_preserved;
568
569         /* vcpu power state */
570         struct kvm_mp_state mp_state;
571         spinlock_t mp_state_lock;
572
573         /* Cache some mmu pages needed inside spinlock regions */
574         struct kvm_mmu_memory_cache mmu_page_cache;
575
576         /* feature flags */
577         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
578
579         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
580         u64 vsesr_el2;
581
582         /* Additional reset state */
583         struct vcpu_reset_state reset_state;
584
585         /* Guest PV state */
586         struct {
587                 u64 last_steal;
588                 gpa_t base;
589         } steal;
590
591         /* Per-vcpu CCSIDR override or NULL */
592         u32 *ccsidr;
593 };
594
595 /*
596  * Each 'flag' is composed of a comma-separated triplet:
597  *
598  * - the flag-set it belongs to in the vcpu->arch structure
599  * - the value for that flag
600  * - the mask for that flag
601  *
602  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
603  * unpack_vcpu_flag() extract the flag value from the triplet for
604  * direct use outside of the flag accessors.
605  */
606 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
607
608 #define __unpack_flag(_set, _f, _m)     _f
609 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
610
611 #define __build_check_flag(v, flagset, f, m)                    \
612         do {                                                    \
613                 typeof(v->arch.flagset) *_fset;                 \
614                                                                 \
615                 /* Check that the flags fit in the mask */      \
616                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
617                 /* Check that the flags fit in the type */      \
618                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
619         } while (0)
620
621 #define __vcpu_get_flag(v, flagset, f, m)                       \
622         ({                                                      \
623                 __build_check_flag(v, flagset, f, m);           \
624                                                                 \
625                 READ_ONCE(v->arch.flagset) & (m);               \
626         })
627
628 /*
629  * Note that the set/clear accessors must be preempt-safe in order to
630  * avoid nesting them with load/put which also manipulate flags...
631  */
632 #ifdef __KVM_NVHE_HYPERVISOR__
633 /* the nVHE hypervisor is always non-preemptible */
634 #define __vcpu_flags_preempt_disable()
635 #define __vcpu_flags_preempt_enable()
636 #else
637 #define __vcpu_flags_preempt_disable()  preempt_disable()
638 #define __vcpu_flags_preempt_enable()   preempt_enable()
639 #endif
640
641 #define __vcpu_set_flag(v, flagset, f, m)                       \
642         do {                                                    \
643                 typeof(v->arch.flagset) *fset;                  \
644                                                                 \
645                 __build_check_flag(v, flagset, f, m);           \
646                                                                 \
647                 fset = &v->arch.flagset;                        \
648                 __vcpu_flags_preempt_disable();                 \
649                 if (HWEIGHT(m) > 1)                             \
650                         *fset &= ~(m);                          \
651                 *fset |= (f);                                   \
652                 __vcpu_flags_preempt_enable();                  \
653         } while (0)
654
655 #define __vcpu_clear_flag(v, flagset, f, m)                     \
656         do {                                                    \
657                 typeof(v->arch.flagset) *fset;                  \
658                                                                 \
659                 __build_check_flag(v, flagset, f, m);           \
660                                                                 \
661                 fset = &v->arch.flagset;                        \
662                 __vcpu_flags_preempt_disable();                 \
663                 *fset &= ~(m);                                  \
664                 __vcpu_flags_preempt_enable();                  \
665         } while (0)
666
667 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
668 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
669 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
670
671 /* SVE exposed to guest */
672 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
673 /* SVE config completed */
674 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
675 /* PTRAUTH exposed to guest */
676 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
677 /* KVM_ARM_VCPU_INIT completed */
678 #define VCPU_INITIALIZED        __vcpu_single_flag(cflags, BIT(3))
679
680 /* Exception pending */
681 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
682 /*
683  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
684  * be set together with an exception...
685  */
686 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
687 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
688 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
689
690 /* Helpers to encode exceptions with minimum fuss */
691 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
692 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
693 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
694
695 /*
696  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
697  * values:
698  *
699  * For AArch32 EL1:
700  */
701 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
702 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
703 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
704 /* For AArch64: */
705 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
706 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
707 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
708 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
709 /* For AArch64 with NV: */
710 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
711 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
712 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
713 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
714 /* Guest debug is live */
715 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
716 /* Save SPE context if active  */
717 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
718 /* Save TRBE context if active  */
719 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
720 /* vcpu running in HYP context */
721 #define VCPU_HYP_CONTEXT        __vcpu_single_flag(iflags, BIT(7))
722
723 /* SVE enabled for host EL0 */
724 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
725 /* SME enabled for EL0 */
726 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
727 /* Physical CPU not in supported_cpus */
728 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
729 /* WFIT instruction trapped */
730 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
731 /* vcpu system registers loaded on physical CPU */
732 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
733 /* Software step state is Active-pending */
734 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
735 /* PMUSERENR for the guest EL0 is on physical CPU */
736 #define PMUSERENR_ON_CPU        __vcpu_single_flag(sflags, BIT(6))
737 /* WFI instruction trapped */
738 #define IN_WFI                  __vcpu_single_flag(sflags, BIT(7))
739
740
741 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
742 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
743                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
744
745 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
746
747 #define vcpu_sve_state_size(vcpu) ({                                    \
748         size_t __size_ret;                                              \
749         unsigned int __vcpu_vq;                                         \
750                                                                         \
751         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
752                 __size_ret = 0;                                         \
753         } else {                                                        \
754                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
755                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
756         }                                                               \
757                                                                         \
758         __size_ret;                                                     \
759 })
760
761 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
762                                  KVM_GUESTDBG_USE_SW_BP | \
763                                  KVM_GUESTDBG_USE_HW | \
764                                  KVM_GUESTDBG_SINGLESTEP)
765
766 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
767                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
768
769 #ifdef CONFIG_ARM64_PTR_AUTH
770 #define vcpu_has_ptrauth(vcpu)                                          \
771         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
772           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
773           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
774 #else
775 #define vcpu_has_ptrauth(vcpu)          false
776 #endif
777
778 #define vcpu_on_unsupported_cpu(vcpu)                                   \
779         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
780
781 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
782         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
783
784 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
785         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
786
787 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
788
789 /*
790  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
791  * memory backed version of a register, and not the one most recently
792  * accessed by a running VCPU.  For example, for userspace access or
793  * for system registers that are never context switched, but only
794  * emulated.
795  */
796 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
797
798 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
799
800 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
801
802 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
803 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
804
805 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
806 {
807         /*
808          * *** VHE ONLY ***
809          *
810          * System registers listed in the switch are not saved on every
811          * exit from the guest but are only saved on vcpu_put.
812          *
813          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
814          * should never be listed below, because the guest cannot modify its
815          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
816          * thread when emulating cross-VCPU communication.
817          */
818         if (!has_vhe())
819                 return false;
820
821         switch (reg) {
822         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
823         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
824         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
825         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
826         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
827         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
828         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
829         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
830         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
831         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
832         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
833         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
834         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
835         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
836         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
837         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
838         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
839         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
840         case PAR_EL1:           *val = read_sysreg_par();               break;
841         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
842         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
843         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
844         default:                return false;
845         }
846
847         return true;
848 }
849
850 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
851 {
852         /*
853          * *** VHE ONLY ***
854          *
855          * System registers listed in the switch are not restored on every
856          * entry to the guest but are only restored on vcpu_load.
857          *
858          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
859          * should never be listed below, because the MPIDR should only be set
860          * once, before running the VCPU, and never changed later.
861          */
862         if (!has_vhe())
863                 return false;
864
865         switch (reg) {
866         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
867         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
868         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
869         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
870         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
871         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
872         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
873         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
874         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
875         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
876         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
877         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
878         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
879         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
880         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
881         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
882         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
883         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
884         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
885         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
886         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
887         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
888         default:                return false;
889         }
890
891         return true;
892 }
893
894 struct kvm_vm_stat {
895         struct kvm_vm_stat_generic generic;
896 };
897
898 struct kvm_vcpu_stat {
899         struct kvm_vcpu_stat_generic generic;
900         u64 hvc_exit_stat;
901         u64 wfe_exit_stat;
902         u64 wfi_exit_stat;
903         u64 mmio_exit_user;
904         u64 mmio_exit_kernel;
905         u64 signal_exits;
906         u64 exits;
907 };
908
909 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
910 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
911 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
912 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
913
914 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
915 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
916
917 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
918                               struct kvm_vcpu_events *events);
919
920 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
921                               struct kvm_vcpu_events *events);
922
923 #define KVM_ARCH_WANT_MMU_NOTIFIER
924
925 void kvm_arm_halt_guest(struct kvm *kvm);
926 void kvm_arm_resume_guest(struct kvm *kvm);
927
928 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
929
930 #ifndef __KVM_NVHE_HYPERVISOR__
931 #define kvm_call_hyp_nvhe(f, ...)                                               \
932         ({                                                              \
933                 struct arm_smccc_res res;                               \
934                                                                         \
935                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
936                                   ##__VA_ARGS__, &res);                 \
937                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
938                                                                         \
939                 res.a1;                                                 \
940         })
941
942 /*
943  * The couple of isb() below are there to guarantee the same behaviour
944  * on VHE as on !VHE, where the eret to EL1 acts as a context
945  * synchronization event.
946  */
947 #define kvm_call_hyp(f, ...)                                            \
948         do {                                                            \
949                 if (has_vhe()) {                                        \
950                         f(__VA_ARGS__);                                 \
951                         isb();                                          \
952                 } else {                                                \
953                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
954                 }                                                       \
955         } while(0)
956
957 #define kvm_call_hyp_ret(f, ...)                                        \
958         ({                                                              \
959                 typeof(f(__VA_ARGS__)) ret;                             \
960                                                                         \
961                 if (has_vhe()) {                                        \
962                         ret = f(__VA_ARGS__);                           \
963                         isb();                                          \
964                 } else {                                                \
965                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
966                 }                                                       \
967                                                                         \
968                 ret;                                                    \
969         })
970 #else /* __KVM_NVHE_HYPERVISOR__ */
971 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
972 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
973 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
974 #endif /* __KVM_NVHE_HYPERVISOR__ */
975
976 void force_vm_exit(const cpumask_t *mask);
977
978 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
979 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
980
981 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
982 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
983 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
984 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
985 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
986 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
987 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
988
989 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
990
991 int __init kvm_sys_reg_table_init(void);
992 int __init populate_nv_trap_config(void);
993
994 bool lock_all_vcpus(struct kvm *kvm);
995 void unlock_all_vcpus(struct kvm *kvm);
996
997 /* MMIO helpers */
998 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
999 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1000
1001 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1002 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1003
1004 /*
1005  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1006  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1007  * loaded is considered to be "in guest".
1008  */
1009 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1010 {
1011         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1012 }
1013
1014 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1015 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1016 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1017
1018 bool kvm_arm_pvtime_supported(void);
1019 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1020                             struct kvm_device_attr *attr);
1021 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1022                             struct kvm_device_attr *attr);
1023 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1024                             struct kvm_device_attr *attr);
1025
1026 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1027 int __init kvm_arm_vmid_alloc_init(void);
1028 void __init kvm_arm_vmid_alloc_free(void);
1029 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1030 void kvm_arm_vmid_clear_active(void);
1031
1032 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1033 {
1034         vcpu_arch->steal.base = INVALID_GPA;
1035 }
1036
1037 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1038 {
1039         return (vcpu_arch->steal.base != INVALID_GPA);
1040 }
1041
1042 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1043
1044 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1045
1046 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1047
1048 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1049 {
1050         /* The host's MPIDR is immutable, so let's set it up at boot time */
1051         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1052 }
1053
1054 static inline bool kvm_system_needs_idmapped_vectors(void)
1055 {
1056         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1057 }
1058
1059 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1060
1061 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1062 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1063
1064 void kvm_arm_init_debug(void);
1065 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1066 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1067 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1068 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1069
1070 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1071         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1072
1073 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1074                                struct kvm_device_attr *attr);
1075 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1076                                struct kvm_device_attr *attr);
1077 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1078                                struct kvm_device_attr *attr);
1079
1080 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1081                                struct kvm_arm_copy_mte_tags *copy_tags);
1082 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1083                                     struct kvm_arm_counter_offset *offset);
1084
1085 /* Guest/host FPSIMD coordination helpers */
1086 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1087 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1088 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1089 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1090 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1091 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1092
1093 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1094 {
1095         return (!has_vhe() && attr->exclude_host);
1096 }
1097
1098 /* Flags for host debug state */
1099 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1100 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1101
1102 #ifdef CONFIG_KVM
1103 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1104 void kvm_clr_pmu_events(u32 clr);
1105 bool kvm_set_pmuserenr(u64 val);
1106 #else
1107 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1108 static inline void kvm_clr_pmu_events(u32 clr) {}
1109 static inline bool kvm_set_pmuserenr(u64 val)
1110 {
1111         return false;
1112 }
1113 #endif
1114
1115 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1116 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1117
1118 int __init kvm_set_ipa_limit(void);
1119
1120 #define __KVM_HAVE_ARCH_VM_ALLOC
1121 struct kvm *kvm_arch_alloc_vm(void);
1122
1123 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1124
1125 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1126
1127 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1128 {
1129         return false;
1130 }
1131
1132 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1133
1134 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1135 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1136
1137 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1138
1139 #define kvm_has_mte(kvm)                                        \
1140         (system_supports_mte() &&                               \
1141          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1142
1143 #define kvm_supports_32bit_el0()                                \
1144         (system_supports_32bit_el0() &&                         \
1145          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1146
1147 #define kvm_vm_has_ran_once(kvm)                                        \
1148         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1149
1150 int kvm_trng_call(struct kvm_vcpu *vcpu);
1151 #ifdef CONFIG_KVM
1152 extern phys_addr_t hyp_mem_base;
1153 extern phys_addr_t hyp_mem_size;
1154 void __init kvm_hyp_reserve(void);
1155 #else
1156 static inline void kvm_hyp_reserve(void) { }
1157 #endif
1158
1159 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1160 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1161
1162 #endif /* __ARM64_KVM_HOST_H__ */