Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29
30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
31
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39
40 #define KVM_VCPU_MAX_FEATURES 7
41
42 #define KVM_REQ_SLEEP \
43         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
48 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
49 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
50
51 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52                                      KVM_DIRTY_LOG_INITIALLY_SET)
53
54 #define KVM_HAVE_MMU_RWLOCK
55
56 /*
57  * Mode of operation configurable with kvm-arm.mode early param.
58  * See Documentation/admin-guide/kernel-parameters.txt for more information.
59  */
60 enum kvm_mode {
61         KVM_MODE_DEFAULT,
62         KVM_MODE_PROTECTED,
63         KVM_MODE_NONE,
64 };
65 enum kvm_mode kvm_get_mode(void);
66
67 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68
69 extern unsigned int kvm_sve_max_vl;
70 int kvm_arm_init_sve(void);
71
72 u32 __attribute_const__ kvm_target_cpu(void);
73 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
74 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
75
76 struct kvm_vmid {
77         atomic64_t id;
78 };
79
80 struct kvm_s2_mmu {
81         struct kvm_vmid vmid;
82
83         /*
84          * stage2 entry level table
85          *
86          * Two kvm_s2_mmu structures in the same VM can point to the same
87          * pgd here.  This happens when running a guest using a
88          * translation regime that isn't affected by its own stage-2
89          * translation, such as a non-VHE hypervisor running at vEL2, or
90          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
91          * canonical stage-2 page tables.
92          */
93         phys_addr_t     pgd_phys;
94         struct kvm_pgtable *pgt;
95
96         /* The last vcpu id that ran on each physical CPU */
97         int __percpu *last_vcpu_ran;
98
99         struct kvm_arch *arch;
100 };
101
102 struct kvm_arch_memory_slot {
103 };
104
105 /**
106  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
107  *
108  * @std_bmap: Bitmap of standard secure service calls
109  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
110  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
111  */
112 struct kvm_smccc_features {
113         unsigned long std_bmap;
114         unsigned long std_hyp_bmap;
115         unsigned long vendor_hyp_bmap;
116 };
117
118 struct kvm_arch {
119         struct kvm_s2_mmu mmu;
120
121         /* VTCR_EL2 value for this VM */
122         u64    vtcr;
123
124         /* Interrupt controller */
125         struct vgic_dist        vgic;
126
127         /* Mandated version of PSCI */
128         u32 psci_version;
129
130         /*
131          * If we encounter a data abort without valid instruction syndrome
132          * information, report this to user space.  User space can (and
133          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
134          * supported.
135          */
136 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
137         /* Memory Tagging Extension enabled for the guest */
138 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
139         /* At least one vCPU has ran in the VM */
140 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
141         /*
142          * The following two bits are used to indicate the guest's EL1
143          * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
144          * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
145          * Otherwise, the guest's EL1 register width has not yet been
146          * determined yet.
147          */
148 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED              3
149 #define KVM_ARCH_FLAG_EL1_32BIT                         4
150         /* PSCI SYSTEM_SUSPEND enabled for the guest */
151 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            5
152
153         unsigned long flags;
154
155         /*
156          * VM-wide PMU filter, implemented as a bitmap and big enough for
157          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
158          */
159         unsigned long *pmu_filter;
160         struct arm_pmu *arm_pmu;
161
162         cpumask_var_t supported_cpus;
163
164         u8 pfr0_csv2;
165         u8 pfr0_csv3;
166
167         /* Hypercall features firmware registers' descriptor */
168         struct kvm_smccc_features smccc_feat;
169 };
170
171 struct kvm_vcpu_fault_info {
172         u64 esr_el2;            /* Hyp Syndrom Register */
173         u64 far_el2;            /* Hyp Fault Address Register */
174         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
175         u64 disr_el1;           /* Deferred [SError] Status Register */
176 };
177
178 enum vcpu_sysreg {
179         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
180         MPIDR_EL1,      /* MultiProcessor Affinity Register */
181         CSSELR_EL1,     /* Cache Size Selection Register */
182         SCTLR_EL1,      /* System Control Register */
183         ACTLR_EL1,      /* Auxiliary Control Register */
184         CPACR_EL1,      /* Coprocessor Access Control */
185         ZCR_EL1,        /* SVE Control */
186         TTBR0_EL1,      /* Translation Table Base Register 0 */
187         TTBR1_EL1,      /* Translation Table Base Register 1 */
188         TCR_EL1,        /* Translation Control Register */
189         ESR_EL1,        /* Exception Syndrome Register */
190         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
191         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
192         FAR_EL1,        /* Fault Address Register */
193         MAIR_EL1,       /* Memory Attribute Indirection Register */
194         VBAR_EL1,       /* Vector Base Address Register */
195         CONTEXTIDR_EL1, /* Context ID Register */
196         TPIDR_EL0,      /* Thread ID, User R/W */
197         TPIDRRO_EL0,    /* Thread ID, User R/O */
198         TPIDR_EL1,      /* Thread ID, Privileged */
199         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
200         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
201         PAR_EL1,        /* Physical Address Register */
202         MDSCR_EL1,      /* Monitor Debug System Control Register */
203         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
204         OSLSR_EL1,      /* OS Lock Status Register */
205         DISR_EL1,       /* Deferred Interrupt Status Register */
206
207         /* Performance Monitors Registers */
208         PMCR_EL0,       /* Control Register */
209         PMSELR_EL0,     /* Event Counter Selection Register */
210         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
211         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
212         PMCCNTR_EL0,    /* Cycle Counter Register */
213         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
214         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
215         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
216         PMCNTENSET_EL0, /* Count Enable Set Register */
217         PMINTENSET_EL1, /* Interrupt Enable Set Register */
218         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
219         PMUSERENR_EL0,  /* User Enable Register */
220
221         /* Pointer Authentication Registers in a strict increasing order. */
222         APIAKEYLO_EL1,
223         APIAKEYHI_EL1,
224         APIBKEYLO_EL1,
225         APIBKEYHI_EL1,
226         APDAKEYLO_EL1,
227         APDAKEYHI_EL1,
228         APDBKEYLO_EL1,
229         APDBKEYHI_EL1,
230         APGAKEYLO_EL1,
231         APGAKEYHI_EL1,
232
233         ELR_EL1,
234         SP_EL1,
235         SPSR_EL1,
236
237         CNTVOFF_EL2,
238         CNTV_CVAL_EL0,
239         CNTV_CTL_EL0,
240         CNTP_CVAL_EL0,
241         CNTP_CTL_EL0,
242
243         /* Memory Tagging Extension registers */
244         RGSR_EL1,       /* Random Allocation Tag Seed Register */
245         GCR_EL1,        /* Tag Control Register */
246         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
247         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
248
249         /* 32bit specific registers. Keep them at the end of the range */
250         DACR32_EL2,     /* Domain Access Control Register */
251         IFSR32_EL2,     /* Instruction Fault Status Register */
252         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
253         DBGVCR32_EL2,   /* Debug Vector Catch Register */
254
255         NR_SYS_REGS     /* Nothing after this line! */
256 };
257
258 struct kvm_cpu_context {
259         struct user_pt_regs regs;       /* sp = sp_el0 */
260
261         u64     spsr_abt;
262         u64     spsr_und;
263         u64     spsr_irq;
264         u64     spsr_fiq;
265
266         struct user_fpsimd_state fp_regs;
267
268         u64 sys_regs[NR_SYS_REGS];
269
270         struct kvm_vcpu *__hyp_running_vcpu;
271 };
272
273 struct kvm_host_data {
274         struct kvm_cpu_context host_ctxt;
275 };
276
277 struct kvm_host_psci_config {
278         /* PSCI version used by host. */
279         u32 version;
280
281         /* Function IDs used by host if version is v0.1. */
282         struct psci_0_1_function_ids function_ids_0_1;
283
284         bool psci_0_1_cpu_suspend_implemented;
285         bool psci_0_1_cpu_on_implemented;
286         bool psci_0_1_cpu_off_implemented;
287         bool psci_0_1_migrate_implemented;
288 };
289
290 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
291 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
292
293 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
294 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
295
296 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
297 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
298
299 struct vcpu_reset_state {
300         unsigned long   pc;
301         unsigned long   r0;
302         bool            be;
303         bool            reset;
304 };
305
306 struct kvm_vcpu_arch {
307         struct kvm_cpu_context ctxt;
308
309         /* Guest floating point state */
310         void *sve_state;
311         unsigned int sve_max_vl;
312         u64 svcr;
313
314         /* Stage 2 paging state used by the hardware on next switch */
315         struct kvm_s2_mmu *hw_mmu;
316
317         /* Values of trap registers for the guest. */
318         u64 hcr_el2;
319         u64 mdcr_el2;
320         u64 cptr_el2;
321
322         /* Values of trap registers for the host before guest entry. */
323         u64 mdcr_el2_host;
324
325         /* Exception Information */
326         struct kvm_vcpu_fault_info fault;
327
328         /* Miscellaneous vcpu state flags */
329         u64 flags;
330
331         /*
332          * We maintain more than a single set of debug registers to support
333          * debugging the guest from the host and to maintain separate host and
334          * guest state during world switches. vcpu_debug_state are the debug
335          * registers of the vcpu as the guest sees them.  host_debug_state are
336          * the host registers which are saved and restored during
337          * world switches. external_debug_state contains the debug
338          * values we want to debug the guest. This is set via the
339          * KVM_SET_GUEST_DEBUG ioctl.
340          *
341          * debug_ptr points to the set of debug registers that should be loaded
342          * onto the hardware when running the guest.
343          */
344         struct kvm_guest_debug_arch *debug_ptr;
345         struct kvm_guest_debug_arch vcpu_debug_state;
346         struct kvm_guest_debug_arch external_debug_state;
347
348         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
349         struct task_struct *parent_task;
350
351         struct {
352                 /* {Break,watch}point registers */
353                 struct kvm_guest_debug_arch regs;
354                 /* Statistical profiling extension */
355                 u64 pmscr_el1;
356                 /* Self-hosted trace */
357                 u64 trfcr_el1;
358         } host_debug_state;
359
360         /* VGIC state */
361         struct vgic_cpu vgic_cpu;
362         struct arch_timer_cpu timer_cpu;
363         struct kvm_pmu pmu;
364
365         /*
366          * Anything that is not used directly from assembly code goes
367          * here.
368          */
369
370         /*
371          * Guest registers we preserve during guest debugging.
372          *
373          * These shadow registers are updated by the kvm_handle_sys_reg
374          * trap handler if the guest accesses or updates them while we
375          * are using guest debug.
376          */
377         struct {
378                 u32     mdscr_el1;
379         } guest_debug_preserved;
380
381         /* vcpu power state */
382         struct kvm_mp_state mp_state;
383
384         /* Don't run the guest (internal implementation need) */
385         bool pause;
386
387         /* Cache some mmu pages needed inside spinlock regions */
388         struct kvm_mmu_memory_cache mmu_page_cache;
389
390         /* Target CPU and feature flags */
391         int target;
392         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
393
394         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
395         u64 vsesr_el2;
396
397         /* Additional reset state */
398         struct vcpu_reset_state reset_state;
399
400         /* True when deferrable sysregs are loaded on the physical CPU,
401          * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
402         bool sysregs_loaded_on_cpu;
403
404         /* Guest PV state */
405         struct {
406                 u64 last_steal;
407                 gpa_t base;
408         } steal;
409 };
410
411 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
412 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
413                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
414
415 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
416
417 #define vcpu_sve_state_size(vcpu) ({                                    \
418         size_t __size_ret;                                              \
419         unsigned int __vcpu_vq;                                         \
420                                                                         \
421         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
422                 __size_ret = 0;                                         \
423         } else {                                                        \
424                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
425                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
426         }                                                               \
427                                                                         \
428         __size_ret;                                                     \
429 })
430
431 /* vcpu_arch flags field values: */
432 #define KVM_ARM64_DEBUG_DIRTY           (1 << 0)
433 #define KVM_ARM64_FP_ENABLED            (1 << 1) /* guest FP regs loaded */
434 #define KVM_ARM64_FP_HOST               (1 << 2) /* host FP regs loaded */
435 #define KVM_ARM64_HOST_SVE_ENABLED      (1 << 4) /* SVE enabled for EL0 */
436 #define KVM_ARM64_GUEST_HAS_SVE         (1 << 5) /* SVE exposed to guest */
437 #define KVM_ARM64_VCPU_SVE_FINALIZED    (1 << 6) /* SVE config completed */
438 #define KVM_ARM64_GUEST_HAS_PTRAUTH     (1 << 7) /* PTRAUTH exposed to guest */
439 #define KVM_ARM64_PENDING_EXCEPTION     (1 << 8) /* Exception pending */
440 /*
441  * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
442  * set together with an exception...
443  */
444 #define KVM_ARM64_INCREMENT_PC          (1 << 9) /* Increment PC */
445 #define KVM_ARM64_EXCEPT_MASK           (7 << 9) /* Target EL/MODE */
446 /*
447  * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
448  * take the following values:
449  *
450  * For AArch32 EL1:
451  */
452 #define KVM_ARM64_EXCEPT_AA32_UND       (0 << 9)
453 #define KVM_ARM64_EXCEPT_AA32_IABT      (1 << 9)
454 #define KVM_ARM64_EXCEPT_AA32_DABT      (2 << 9)
455 /* For AArch64: */
456 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC  (0 << 9)
457 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ   (1 << 9)
458 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ   (2 << 9)
459 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR  (3 << 9)
460 #define KVM_ARM64_EXCEPT_AA64_EL1       (0 << 11)
461 #define KVM_ARM64_EXCEPT_AA64_EL2       (1 << 11)
462
463 #define KVM_ARM64_DEBUG_STATE_SAVE_SPE  (1 << 12) /* Save SPE context if active  */
464 #define KVM_ARM64_DEBUG_STATE_SAVE_TRBE (1 << 13) /* Save TRBE context if active  */
465 #define KVM_ARM64_FP_FOREIGN_FPSTATE    (1 << 14)
466 #define KVM_ARM64_ON_UNSUPPORTED_CPU    (1 << 15) /* Physical CPU not in supported_cpus */
467 #define KVM_ARM64_HOST_SME_ENABLED      (1 << 16) /* SME enabled for EL0 */
468 #define KVM_ARM64_WFIT                  (1 << 17) /* WFIT instruction trapped */
469
470 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
471                                  KVM_GUESTDBG_USE_SW_BP | \
472                                  KVM_GUESTDBG_USE_HW | \
473                                  KVM_GUESTDBG_SINGLESTEP)
474
475 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
476                             ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
477
478 #ifdef CONFIG_ARM64_PTR_AUTH
479 #define vcpu_has_ptrauth(vcpu)                                          \
480         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
481           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
482          (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
483 #else
484 #define vcpu_has_ptrauth(vcpu)          false
485 #endif
486
487 #define vcpu_on_unsupported_cpu(vcpu)                                   \
488         ((vcpu)->arch.flags & KVM_ARM64_ON_UNSUPPORTED_CPU)
489
490 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
491         ((vcpu)->arch.flags |= KVM_ARM64_ON_UNSUPPORTED_CPU)
492
493 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
494         ((vcpu)->arch.flags &= ~KVM_ARM64_ON_UNSUPPORTED_CPU)
495
496 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
497
498 /*
499  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
500  * memory backed version of a register, and not the one most recently
501  * accessed by a running VCPU.  For example, for userspace access or
502  * for system registers that are never context switched, but only
503  * emulated.
504  */
505 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
506
507 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
508
509 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
510
511 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
512 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
513
514 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
515 {
516         /*
517          * *** VHE ONLY ***
518          *
519          * System registers listed in the switch are not saved on every
520          * exit from the guest but are only saved on vcpu_put.
521          *
522          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
523          * should never be listed below, because the guest cannot modify its
524          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
525          * thread when emulating cross-VCPU communication.
526          */
527         if (!has_vhe())
528                 return false;
529
530         switch (reg) {
531         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
532         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
533         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
534         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
535         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
536         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
537         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
538         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
539         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
540         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
541         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
542         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
543         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
544         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
545         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
546         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
547         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
548         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
549         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
550         case PAR_EL1:           *val = read_sysreg_par();               break;
551         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
552         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
553         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
554         default:                return false;
555         }
556
557         return true;
558 }
559
560 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
561 {
562         /*
563          * *** VHE ONLY ***
564          *
565          * System registers listed in the switch are not restored on every
566          * entry to the guest but are only restored on vcpu_load.
567          *
568          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
569          * should never be listed below, because the MPIDR should only be set
570          * once, before running the VCPU, and never changed later.
571          */
572         if (!has_vhe())
573                 return false;
574
575         switch (reg) {
576         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
577         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
578         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
579         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
580         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
581         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
582         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
583         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
584         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
585         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
586         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
587         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
588         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
589         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
590         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
591         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
592         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
593         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
594         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
595         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
596         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
597         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
598         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
599         default:                return false;
600         }
601
602         return true;
603 }
604
605 struct kvm_vm_stat {
606         struct kvm_vm_stat_generic generic;
607 };
608
609 struct kvm_vcpu_stat {
610         struct kvm_vcpu_stat_generic generic;
611         u64 hvc_exit_stat;
612         u64 wfe_exit_stat;
613         u64 wfi_exit_stat;
614         u64 mmio_exit_user;
615         u64 mmio_exit_kernel;
616         u64 signal_exits;
617         u64 exits;
618 };
619
620 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
621 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
622 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
623 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
624 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
625
626 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
627 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
628 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
629 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
630
631 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
632                               struct kvm_vcpu_events *events);
633
634 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
635                               struct kvm_vcpu_events *events);
636
637 #define KVM_ARCH_WANT_MMU_NOTIFIER
638
639 void kvm_arm_halt_guest(struct kvm *kvm);
640 void kvm_arm_resume_guest(struct kvm *kvm);
641
642 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
643
644 #ifndef __KVM_NVHE_HYPERVISOR__
645 #define kvm_call_hyp_nvhe(f, ...)                                               \
646         ({                                                              \
647                 struct arm_smccc_res res;                               \
648                                                                         \
649                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
650                                   ##__VA_ARGS__, &res);                 \
651                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
652                                                                         \
653                 res.a1;                                                 \
654         })
655
656 /*
657  * The couple of isb() below are there to guarantee the same behaviour
658  * on VHE as on !VHE, where the eret to EL1 acts as a context
659  * synchronization event.
660  */
661 #define kvm_call_hyp(f, ...)                                            \
662         do {                                                            \
663                 if (has_vhe()) {                                        \
664                         f(__VA_ARGS__);                                 \
665                         isb();                                          \
666                 } else {                                                \
667                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
668                 }                                                       \
669         } while(0)
670
671 #define kvm_call_hyp_ret(f, ...)                                        \
672         ({                                                              \
673                 typeof(f(__VA_ARGS__)) ret;                             \
674                                                                         \
675                 if (has_vhe()) {                                        \
676                         ret = f(__VA_ARGS__);                           \
677                         isb();                                          \
678                 } else {                                                \
679                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
680                 }                                                       \
681                                                                         \
682                 ret;                                                    \
683         })
684 #else /* __KVM_NVHE_HYPERVISOR__ */
685 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
686 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
687 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
688 #endif /* __KVM_NVHE_HYPERVISOR__ */
689
690 void force_vm_exit(const cpumask_t *mask);
691
692 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
693 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
694
695 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
696 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
697 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
698 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
699 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
700 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
701 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
702
703 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
704
705 int kvm_sys_reg_table_init(void);
706
707 /* MMIO helpers */
708 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
709 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
710
711 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
712 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
713
714 /*
715  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
716  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
717  * loaded is considered to be "in guest".
718  */
719 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
720 {
721         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
722 }
723
724 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
725 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
726 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
727
728 bool kvm_arm_pvtime_supported(void);
729 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
730                             struct kvm_device_attr *attr);
731 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
732                             struct kvm_device_attr *attr);
733 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
734                             struct kvm_device_attr *attr);
735
736 extern unsigned int kvm_arm_vmid_bits;
737 int kvm_arm_vmid_alloc_init(void);
738 void kvm_arm_vmid_alloc_free(void);
739 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
740 void kvm_arm_vmid_clear_active(void);
741
742 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
743 {
744         vcpu_arch->steal.base = GPA_INVALID;
745 }
746
747 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
748 {
749         return (vcpu_arch->steal.base != GPA_INVALID);
750 }
751
752 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
753
754 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
755
756 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
757
758 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
759 {
760         /* The host's MPIDR is immutable, so let's set it up at boot time */
761         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
762 }
763
764 static inline bool kvm_system_needs_idmapped_vectors(void)
765 {
766         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
767 }
768
769 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
770
771 static inline void kvm_arch_hardware_unsetup(void) {}
772 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
773 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
774
775 void kvm_arm_init_debug(void);
776 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
777 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
778 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
779 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
780
781 #define kvm_vcpu_os_lock_enabled(vcpu)          \
782         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
783
784 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
785                                struct kvm_device_attr *attr);
786 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
787                                struct kvm_device_attr *attr);
788 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
789                                struct kvm_device_attr *attr);
790
791 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
792                                 struct kvm_arm_copy_mte_tags *copy_tags);
793
794 /* Guest/host FPSIMD coordination helpers */
795 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
796 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
797 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
798 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
799 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
800 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
801
802 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
803 {
804         return (!has_vhe() && attr->exclude_host);
805 }
806
807 /* Flags for host debug state */
808 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
809 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
810
811 #ifdef CONFIG_KVM
812 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
813 void kvm_clr_pmu_events(u32 clr);
814 #else
815 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
816 static inline void kvm_clr_pmu_events(u32 clr) {}
817 #endif
818
819 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
820 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
821
822 int kvm_set_ipa_limit(void);
823
824 #define __KVM_HAVE_ARCH_VM_ALLOC
825 struct kvm *kvm_arch_alloc_vm(void);
826
827 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
828
829 static inline bool kvm_vm_is_protected(struct kvm *kvm)
830 {
831         return false;
832 }
833
834 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
835
836 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
837 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
838
839 #define kvm_arm_vcpu_sve_finalized(vcpu) \
840         ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
841
842 #define kvm_has_mte(kvm)                                        \
843         (system_supports_mte() &&                               \
844          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
845
846 int kvm_trng_call(struct kvm_vcpu *vcpu);
847 #ifdef CONFIG_KVM
848 extern phys_addr_t hyp_mem_base;
849 extern phys_addr_t hyp_mem_size;
850 void __init kvm_hyp_reserve(void);
851 #else
852 static inline void kvm_hyp_reserve(void) { }
853 #endif
854
855 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
856 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
857
858 #endif /* __ARM64_KVM_HOST_H__ */