Merge tag 'kvmarm-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[platform/kernel/linux-starfive.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42 #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
43
44 #define KVM_REQ_SLEEP \
45         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
46 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
47 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
48 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
49 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
50 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
51 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
52
53 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
54                                      KVM_DIRTY_LOG_INITIALLY_SET)
55
56 #define KVM_HAVE_MMU_RWLOCK
57
58 /*
59  * Mode of operation configurable with kvm-arm.mode early param.
60  * See Documentation/admin-guide/kernel-parameters.txt for more information.
61  */
62 enum kvm_mode {
63         KVM_MODE_DEFAULT,
64         KVM_MODE_PROTECTED,
65         KVM_MODE_NV,
66         KVM_MODE_NONE,
67 };
68 #ifdef CONFIG_KVM
69 enum kvm_mode kvm_get_mode(void);
70 #else
71 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
72 #endif
73
74 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
75
76 extern unsigned int __ro_after_init kvm_sve_max_vl;
77 int __init kvm_arm_init_sve(void);
78
79 u32 __attribute_const__ kvm_target_cpu(void);
80 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
81 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
82
83 struct kvm_hyp_memcache {
84         phys_addr_t head;
85         unsigned long nr_pages;
86 };
87
88 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
89                                      phys_addr_t *p,
90                                      phys_addr_t (*to_pa)(void *virt))
91 {
92         *p = mc->head;
93         mc->head = to_pa(p);
94         mc->nr_pages++;
95 }
96
97 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
98                                      void *(*to_va)(phys_addr_t phys))
99 {
100         phys_addr_t *p = to_va(mc->head);
101
102         if (!mc->nr_pages)
103                 return NULL;
104
105         mc->head = *p;
106         mc->nr_pages--;
107
108         return p;
109 }
110
111 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
112                                        unsigned long min_pages,
113                                        void *(*alloc_fn)(void *arg),
114                                        phys_addr_t (*to_pa)(void *virt),
115                                        void *arg)
116 {
117         while (mc->nr_pages < min_pages) {
118                 phys_addr_t *p = alloc_fn(arg);
119
120                 if (!p)
121                         return -ENOMEM;
122                 push_hyp_memcache(mc, p, to_pa);
123         }
124
125         return 0;
126 }
127
128 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
129                                        void (*free_fn)(void *virt, void *arg),
130                                        void *(*to_va)(phys_addr_t phys),
131                                        void *arg)
132 {
133         while (mc->nr_pages)
134                 free_fn(pop_hyp_memcache(mc, to_va), arg);
135 }
136
137 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
138 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
139
140 struct kvm_vmid {
141         atomic64_t id;
142 };
143
144 struct kvm_s2_mmu {
145         struct kvm_vmid vmid;
146
147         /*
148          * stage2 entry level table
149          *
150          * Two kvm_s2_mmu structures in the same VM can point to the same
151          * pgd here.  This happens when running a guest using a
152          * translation regime that isn't affected by its own stage-2
153          * translation, such as a non-VHE hypervisor running at vEL2, or
154          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
155          * canonical stage-2 page tables.
156          */
157         phys_addr_t     pgd_phys;
158         struct kvm_pgtable *pgt;
159
160         /* The last vcpu id that ran on each physical CPU */
161         int __percpu *last_vcpu_ran;
162
163 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
164         /*
165          * Memory cache used to split
166          * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
167          * is used to allocate stage2 page tables while splitting huge
168          * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
169          * influences both the capacity of the split page cache, and
170          * how often KVM reschedules. Be wary of raising CHUNK_SIZE
171          * too high.
172          *
173          * Protected by kvm->slots_lock.
174          */
175         struct kvm_mmu_memory_cache split_page_cache;
176         uint64_t split_page_chunk_size;
177
178         struct kvm_arch *arch;
179 };
180
181 struct kvm_arch_memory_slot {
182 };
183
184 /**
185  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
186  *
187  * @std_bmap: Bitmap of standard secure service calls
188  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
189  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
190  */
191 struct kvm_smccc_features {
192         unsigned long std_bmap;
193         unsigned long std_hyp_bmap;
194         unsigned long vendor_hyp_bmap;
195 };
196
197 typedef unsigned int pkvm_handle_t;
198
199 struct kvm_protected_vm {
200         pkvm_handle_t handle;
201         struct kvm_hyp_memcache teardown_mc;
202 };
203
204 struct kvm_arch {
205         struct kvm_s2_mmu mmu;
206
207         /* VTCR_EL2 value for this VM */
208         u64    vtcr;
209
210         /* Interrupt controller */
211         struct vgic_dist        vgic;
212
213         /* Timers */
214         struct arch_timer_vm_data timer_data;
215
216         /* Mandated version of PSCI */
217         u32 psci_version;
218
219         /* Protects VM-scoped configuration data */
220         struct mutex config_lock;
221
222         /*
223          * If we encounter a data abort without valid instruction syndrome
224          * information, report this to user space.  User space can (and
225          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
226          * supported.
227          */
228 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
229         /* Memory Tagging Extension enabled for the guest */
230 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
231         /* At least one vCPU has ran in the VM */
232 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
233         /* The vCPU feature set for the VM is configured */
234 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED          3
235         /* PSCI SYSTEM_SUSPEND enabled for the guest */
236 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            4
237         /* VM counter offset */
238 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 5
239         /* Timer PPIs made immutable */
240 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              6
241         /* SMCCC filter initialized for the VM */
242 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED           7
243         /* Initial ID reg values loaded */
244 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED               8
245         unsigned long flags;
246
247         /* VM-wide vCPU feature set */
248         DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
249
250         /*
251          * VM-wide PMU filter, implemented as a bitmap and big enough for
252          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
253          */
254         unsigned long *pmu_filter;
255         struct arm_pmu *arm_pmu;
256
257         cpumask_var_t supported_cpus;
258
259         /* Hypercall features firmware registers' descriptor */
260         struct kvm_smccc_features smccc_feat;
261         struct maple_tree smccc_filter;
262
263         /*
264          * Emulated CPU ID registers per VM
265          * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
266          * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
267          *
268          * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
269          * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
270          */
271 #define IDREG_IDX(id)           (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
272 #define IDREG(kvm, id)          ((kvm)->arch.id_regs[IDREG_IDX(id)])
273 #define KVM_ARM_ID_REG_NUM      (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
274         u64 id_regs[KVM_ARM_ID_REG_NUM];
275
276         /*
277          * For an untrusted host VM, 'pkvm.handle' is used to lookup
278          * the associated pKVM instance in the hypervisor.
279          */
280         struct kvm_protected_vm pkvm;
281 };
282
283 struct kvm_vcpu_fault_info {
284         u64 esr_el2;            /* Hyp Syndrom Register */
285         u64 far_el2;            /* Hyp Fault Address Register */
286         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
287         u64 disr_el1;           /* Deferred [SError] Status Register */
288 };
289
290 enum vcpu_sysreg {
291         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
292         MPIDR_EL1,      /* MultiProcessor Affinity Register */
293         CLIDR_EL1,      /* Cache Level ID Register */
294         CSSELR_EL1,     /* Cache Size Selection Register */
295         SCTLR_EL1,      /* System Control Register */
296         ACTLR_EL1,      /* Auxiliary Control Register */
297         CPACR_EL1,      /* Coprocessor Access Control */
298         ZCR_EL1,        /* SVE Control */
299         TTBR0_EL1,      /* Translation Table Base Register 0 */
300         TTBR1_EL1,      /* Translation Table Base Register 1 */
301         TCR_EL1,        /* Translation Control Register */
302         ESR_EL1,        /* Exception Syndrome Register */
303         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
304         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
305         FAR_EL1,        /* Fault Address Register */
306         MAIR_EL1,       /* Memory Attribute Indirection Register */
307         VBAR_EL1,       /* Vector Base Address Register */
308         CONTEXTIDR_EL1, /* Context ID Register */
309         TPIDR_EL0,      /* Thread ID, User R/W */
310         TPIDRRO_EL0,    /* Thread ID, User R/O */
311         TPIDR_EL1,      /* Thread ID, Privileged */
312         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
313         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
314         PAR_EL1,        /* Physical Address Register */
315         MDSCR_EL1,      /* Monitor Debug System Control Register */
316         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
317         OSLSR_EL1,      /* OS Lock Status Register */
318         DISR_EL1,       /* Deferred Interrupt Status Register */
319
320         /* Performance Monitors Registers */
321         PMCR_EL0,       /* Control Register */
322         PMSELR_EL0,     /* Event Counter Selection Register */
323         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
324         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
325         PMCCNTR_EL0,    /* Cycle Counter Register */
326         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
327         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
328         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
329         PMCNTENSET_EL0, /* Count Enable Set Register */
330         PMINTENSET_EL1, /* Interrupt Enable Set Register */
331         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
332         PMUSERENR_EL0,  /* User Enable Register */
333
334         /* Pointer Authentication Registers in a strict increasing order. */
335         APIAKEYLO_EL1,
336         APIAKEYHI_EL1,
337         APIBKEYLO_EL1,
338         APIBKEYHI_EL1,
339         APDAKEYLO_EL1,
340         APDAKEYHI_EL1,
341         APDBKEYLO_EL1,
342         APDBKEYHI_EL1,
343         APGAKEYLO_EL1,
344         APGAKEYHI_EL1,
345
346         ELR_EL1,
347         SP_EL1,
348         SPSR_EL1,
349
350         CNTVOFF_EL2,
351         CNTV_CVAL_EL0,
352         CNTV_CTL_EL0,
353         CNTP_CVAL_EL0,
354         CNTP_CTL_EL0,
355
356         /* Memory Tagging Extension registers */
357         RGSR_EL1,       /* Random Allocation Tag Seed Register */
358         GCR_EL1,        /* Tag Control Register */
359         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
360         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
361
362         /* 32bit specific registers. */
363         DACR32_EL2,     /* Domain Access Control Register */
364         IFSR32_EL2,     /* Instruction Fault Status Register */
365         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
366         DBGVCR32_EL2,   /* Debug Vector Catch Register */
367
368         /* EL2 registers */
369         VPIDR_EL2,      /* Virtualization Processor ID Register */
370         VMPIDR_EL2,     /* Virtualization Multiprocessor ID Register */
371         SCTLR_EL2,      /* System Control Register (EL2) */
372         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
373         HCR_EL2,        /* Hypervisor Configuration Register */
374         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
375         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
376         HSTR_EL2,       /* Hypervisor System Trap Register */
377         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
378         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
379         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
380         TCR_EL2,        /* Translation Control Register (EL2) */
381         VTTBR_EL2,      /* Virtualization Translation Table Base Register */
382         VTCR_EL2,       /* Virtualization Translation Control Register */
383         SPSR_EL2,       /* EL2 saved program status register */
384         ELR_EL2,        /* EL2 exception link register */
385         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
386         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
387         ESR_EL2,        /* Exception Syndrome Register (EL2) */
388         FAR_EL2,        /* Fault Address Register (EL2) */
389         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
390         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
391         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
392         VBAR_EL2,       /* Vector Base Address Register (EL2) */
393         RVBAR_EL2,      /* Reset Vector Base Address Register */
394         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
395         TPIDR_EL2,      /* EL2 Software Thread ID Register */
396         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
397         SP_EL2,         /* EL2 Stack Pointer */
398         CNTHP_CTL_EL2,
399         CNTHP_CVAL_EL2,
400         CNTHV_CTL_EL2,
401         CNTHV_CVAL_EL2,
402
403         NR_SYS_REGS     /* Nothing after this line! */
404 };
405
406 struct kvm_cpu_context {
407         struct user_pt_regs regs;       /* sp = sp_el0 */
408
409         u64     spsr_abt;
410         u64     spsr_und;
411         u64     spsr_irq;
412         u64     spsr_fiq;
413
414         struct user_fpsimd_state fp_regs;
415
416         u64 sys_regs[NR_SYS_REGS];
417
418         struct kvm_vcpu *__hyp_running_vcpu;
419 };
420
421 struct kvm_host_data {
422         struct kvm_cpu_context host_ctxt;
423 };
424
425 struct kvm_host_psci_config {
426         /* PSCI version used by host. */
427         u32 version;
428         u32 smccc_version;
429
430         /* Function IDs used by host if version is v0.1. */
431         struct psci_0_1_function_ids function_ids_0_1;
432
433         bool psci_0_1_cpu_suspend_implemented;
434         bool psci_0_1_cpu_on_implemented;
435         bool psci_0_1_cpu_off_implemented;
436         bool psci_0_1_migrate_implemented;
437 };
438
439 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
440 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
441
442 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
443 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
444
445 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
446 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
447
448 struct vcpu_reset_state {
449         unsigned long   pc;
450         unsigned long   r0;
451         bool            be;
452         bool            reset;
453 };
454
455 struct kvm_vcpu_arch {
456         struct kvm_cpu_context ctxt;
457
458         /*
459          * Guest floating point state
460          *
461          * The architecture has two main floating point extensions,
462          * the original FPSIMD and SVE.  These have overlapping
463          * register views, with the FPSIMD V registers occupying the
464          * low 128 bits of the SVE Z registers.  When the core
465          * floating point code saves the register state of a task it
466          * records which view it saved in fp_type.
467          */
468         void *sve_state;
469         enum fp_type fp_type;
470         unsigned int sve_max_vl;
471         u64 svcr;
472
473         /* Stage 2 paging state used by the hardware on next switch */
474         struct kvm_s2_mmu *hw_mmu;
475
476         /* Values of trap registers for the guest. */
477         u64 hcr_el2;
478         u64 mdcr_el2;
479         u64 cptr_el2;
480
481         /* Values of trap registers for the host before guest entry. */
482         u64 mdcr_el2_host;
483
484         /* Exception Information */
485         struct kvm_vcpu_fault_info fault;
486
487         /* Ownership of the FP regs */
488         enum {
489                 FP_STATE_FREE,
490                 FP_STATE_HOST_OWNED,
491                 FP_STATE_GUEST_OWNED,
492         } fp_state;
493
494         /* Configuration flags, set once and for all before the vcpu can run */
495         u8 cflags;
496
497         /* Input flags to the hypervisor code, potentially cleared after use */
498         u8 iflags;
499
500         /* State flags for kernel bookkeeping, unused by the hypervisor code */
501         u8 sflags;
502
503         /*
504          * Don't run the guest (internal implementation need).
505          *
506          * Contrary to the flags above, this is set/cleared outside of
507          * a vcpu context, and thus cannot be mixed with the flags
508          * themselves (or the flag accesses need to be made atomic).
509          */
510         bool pause;
511
512         /*
513          * We maintain more than a single set of debug registers to support
514          * debugging the guest from the host and to maintain separate host and
515          * guest state during world switches. vcpu_debug_state are the debug
516          * registers of the vcpu as the guest sees them.  host_debug_state are
517          * the host registers which are saved and restored during
518          * world switches. external_debug_state contains the debug
519          * values we want to debug the guest. This is set via the
520          * KVM_SET_GUEST_DEBUG ioctl.
521          *
522          * debug_ptr points to the set of debug registers that should be loaded
523          * onto the hardware when running the guest.
524          */
525         struct kvm_guest_debug_arch *debug_ptr;
526         struct kvm_guest_debug_arch vcpu_debug_state;
527         struct kvm_guest_debug_arch external_debug_state;
528
529         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
530         struct task_struct *parent_task;
531
532         struct {
533                 /* {Break,watch}point registers */
534                 struct kvm_guest_debug_arch regs;
535                 /* Statistical profiling extension */
536                 u64 pmscr_el1;
537                 /* Self-hosted trace */
538                 u64 trfcr_el1;
539         } host_debug_state;
540
541         /* VGIC state */
542         struct vgic_cpu vgic_cpu;
543         struct arch_timer_cpu timer_cpu;
544         struct kvm_pmu pmu;
545
546         /*
547          * Guest registers we preserve during guest debugging.
548          *
549          * These shadow registers are updated by the kvm_handle_sys_reg
550          * trap handler if the guest accesses or updates them while we
551          * are using guest debug.
552          */
553         struct {
554                 u32     mdscr_el1;
555                 bool    pstate_ss;
556         } guest_debug_preserved;
557
558         /* vcpu power state */
559         struct kvm_mp_state mp_state;
560         spinlock_t mp_state_lock;
561
562         /* Cache some mmu pages needed inside spinlock regions */
563         struct kvm_mmu_memory_cache mmu_page_cache;
564
565         /* Target CPU and feature flags */
566         int target;
567         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
568
569         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
570         u64 vsesr_el2;
571
572         /* Additional reset state */
573         struct vcpu_reset_state reset_state;
574
575         /* Guest PV state */
576         struct {
577                 u64 last_steal;
578                 gpa_t base;
579         } steal;
580
581         /* Per-vcpu CCSIDR override or NULL */
582         u32 *ccsidr;
583 };
584
585 /*
586  * Each 'flag' is composed of a comma-separated triplet:
587  *
588  * - the flag-set it belongs to in the vcpu->arch structure
589  * - the value for that flag
590  * - the mask for that flag
591  *
592  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
593  * unpack_vcpu_flag() extract the flag value from the triplet for
594  * direct use outside of the flag accessors.
595  */
596 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
597
598 #define __unpack_flag(_set, _f, _m)     _f
599 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
600
601 #define __build_check_flag(v, flagset, f, m)                    \
602         do {                                                    \
603                 typeof(v->arch.flagset) *_fset;                 \
604                                                                 \
605                 /* Check that the flags fit in the mask */      \
606                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
607                 /* Check that the flags fit in the type */      \
608                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
609         } while (0)
610
611 #define __vcpu_get_flag(v, flagset, f, m)                       \
612         ({                                                      \
613                 __build_check_flag(v, flagset, f, m);           \
614                                                                 \
615                 READ_ONCE(v->arch.flagset) & (m);               \
616         })
617
618 /*
619  * Note that the set/clear accessors must be preempt-safe in order to
620  * avoid nesting them with load/put which also manipulate flags...
621  */
622 #ifdef __KVM_NVHE_HYPERVISOR__
623 /* the nVHE hypervisor is always non-preemptible */
624 #define __vcpu_flags_preempt_disable()
625 #define __vcpu_flags_preempt_enable()
626 #else
627 #define __vcpu_flags_preempt_disable()  preempt_disable()
628 #define __vcpu_flags_preempt_enable()   preempt_enable()
629 #endif
630
631 #define __vcpu_set_flag(v, flagset, f, m)                       \
632         do {                                                    \
633                 typeof(v->arch.flagset) *fset;                  \
634                                                                 \
635                 __build_check_flag(v, flagset, f, m);           \
636                                                                 \
637                 fset = &v->arch.flagset;                        \
638                 __vcpu_flags_preempt_disable();                 \
639                 if (HWEIGHT(m) > 1)                             \
640                         *fset &= ~(m);                          \
641                 *fset |= (f);                                   \
642                 __vcpu_flags_preempt_enable();                  \
643         } while (0)
644
645 #define __vcpu_clear_flag(v, flagset, f, m)                     \
646         do {                                                    \
647                 typeof(v->arch.flagset) *fset;                  \
648                                                                 \
649                 __build_check_flag(v, flagset, f, m);           \
650                                                                 \
651                 fset = &v->arch.flagset;                        \
652                 __vcpu_flags_preempt_disable();                 \
653                 *fset &= ~(m);                                  \
654                 __vcpu_flags_preempt_enable();                  \
655         } while (0)
656
657 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
658 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
659 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
660
661 /* SVE exposed to guest */
662 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
663 /* SVE config completed */
664 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
665 /* PTRAUTH exposed to guest */
666 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
667
668 /* Exception pending */
669 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
670 /*
671  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
672  * be set together with an exception...
673  */
674 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
675 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
676 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
677
678 /* Helpers to encode exceptions with minimum fuss */
679 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
680 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
681 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
682
683 /*
684  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
685  * values:
686  *
687  * For AArch32 EL1:
688  */
689 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
690 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
691 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
692 /* For AArch64: */
693 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
694 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
695 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
696 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
697 /* For AArch64 with NV: */
698 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
699 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
700 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
701 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
702 /* Guest debug is live */
703 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
704 /* Save SPE context if active  */
705 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
706 /* Save TRBE context if active  */
707 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
708 /* vcpu running in HYP context */
709 #define VCPU_HYP_CONTEXT        __vcpu_single_flag(iflags, BIT(7))
710
711 /* SVE enabled for host EL0 */
712 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
713 /* SME enabled for EL0 */
714 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
715 /* Physical CPU not in supported_cpus */
716 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
717 /* WFIT instruction trapped */
718 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
719 /* vcpu system registers loaded on physical CPU */
720 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
721 /* Software step state is Active-pending */
722 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
723 /* PMUSERENR for the guest EL0 is on physical CPU */
724 #define PMUSERENR_ON_CPU        __vcpu_single_flag(sflags, BIT(6))
725
726
727 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
728 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
729                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
730
731 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
732
733 #define vcpu_sve_state_size(vcpu) ({                                    \
734         size_t __size_ret;                                              \
735         unsigned int __vcpu_vq;                                         \
736                                                                         \
737         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
738                 __size_ret = 0;                                         \
739         } else {                                                        \
740                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
741                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
742         }                                                               \
743                                                                         \
744         __size_ret;                                                     \
745 })
746
747 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
748                                  KVM_GUESTDBG_USE_SW_BP | \
749                                  KVM_GUESTDBG_USE_HW | \
750                                  KVM_GUESTDBG_SINGLESTEP)
751
752 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
753                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
754
755 #ifdef CONFIG_ARM64_PTR_AUTH
756 #define vcpu_has_ptrauth(vcpu)                                          \
757         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
758           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
759           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
760 #else
761 #define vcpu_has_ptrauth(vcpu)          false
762 #endif
763
764 #define vcpu_on_unsupported_cpu(vcpu)                                   \
765         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
766
767 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
768         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
769
770 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
771         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
772
773 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
774
775 /*
776  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
777  * memory backed version of a register, and not the one most recently
778  * accessed by a running VCPU.  For example, for userspace access or
779  * for system registers that are never context switched, but only
780  * emulated.
781  */
782 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
783
784 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
785
786 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
787
788 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
789 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
790
791 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
792 {
793         /*
794          * *** VHE ONLY ***
795          *
796          * System registers listed in the switch are not saved on every
797          * exit from the guest but are only saved on vcpu_put.
798          *
799          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
800          * should never be listed below, because the guest cannot modify its
801          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
802          * thread when emulating cross-VCPU communication.
803          */
804         if (!has_vhe())
805                 return false;
806
807         switch (reg) {
808         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
809         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
810         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
811         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
812         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
813         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
814         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
815         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
816         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
817         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
818         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
819         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
820         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
821         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
822         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
823         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
824         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
825         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
826         case PAR_EL1:           *val = read_sysreg_par();               break;
827         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
828         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
829         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
830         default:                return false;
831         }
832
833         return true;
834 }
835
836 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
837 {
838         /*
839          * *** VHE ONLY ***
840          *
841          * System registers listed in the switch are not restored on every
842          * entry to the guest but are only restored on vcpu_load.
843          *
844          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
845          * should never be listed below, because the MPIDR should only be set
846          * once, before running the VCPU, and never changed later.
847          */
848         if (!has_vhe())
849                 return false;
850
851         switch (reg) {
852         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
853         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
854         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
855         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
856         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
857         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
858         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
859         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
860         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
861         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
862         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
863         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
864         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
865         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
866         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
867         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
868         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
869         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
870         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
871         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
872         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
873         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
874         default:                return false;
875         }
876
877         return true;
878 }
879
880 struct kvm_vm_stat {
881         struct kvm_vm_stat_generic generic;
882 };
883
884 struct kvm_vcpu_stat {
885         struct kvm_vcpu_stat_generic generic;
886         u64 hvc_exit_stat;
887         u64 wfe_exit_stat;
888         u64 wfi_exit_stat;
889         u64 mmio_exit_user;
890         u64 mmio_exit_kernel;
891         u64 signal_exits;
892         u64 exits;
893 };
894
895 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
896 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
897 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
898 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
899 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
900
901 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
902 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
903
904 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
905                               struct kvm_vcpu_events *events);
906
907 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
908                               struct kvm_vcpu_events *events);
909
910 #define KVM_ARCH_WANT_MMU_NOTIFIER
911
912 void kvm_arm_halt_guest(struct kvm *kvm);
913 void kvm_arm_resume_guest(struct kvm *kvm);
914
915 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
916
917 #ifndef __KVM_NVHE_HYPERVISOR__
918 #define kvm_call_hyp_nvhe(f, ...)                                               \
919         ({                                                              \
920                 struct arm_smccc_res res;                               \
921                                                                         \
922                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
923                                   ##__VA_ARGS__, &res);                 \
924                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
925                                                                         \
926                 res.a1;                                                 \
927         })
928
929 /*
930  * The couple of isb() below are there to guarantee the same behaviour
931  * on VHE as on !VHE, where the eret to EL1 acts as a context
932  * synchronization event.
933  */
934 #define kvm_call_hyp(f, ...)                                            \
935         do {                                                            \
936                 if (has_vhe()) {                                        \
937                         f(__VA_ARGS__);                                 \
938                         isb();                                          \
939                 } else {                                                \
940                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
941                 }                                                       \
942         } while(0)
943
944 #define kvm_call_hyp_ret(f, ...)                                        \
945         ({                                                              \
946                 typeof(f(__VA_ARGS__)) ret;                             \
947                                                                         \
948                 if (has_vhe()) {                                        \
949                         ret = f(__VA_ARGS__);                           \
950                         isb();                                          \
951                 } else {                                                \
952                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
953                 }                                                       \
954                                                                         \
955                 ret;                                                    \
956         })
957 #else /* __KVM_NVHE_HYPERVISOR__ */
958 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
959 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
960 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
961 #endif /* __KVM_NVHE_HYPERVISOR__ */
962
963 void force_vm_exit(const cpumask_t *mask);
964
965 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
966 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
967
968 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
969 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
970 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
971 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
972 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
973 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
974 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
975
976 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
977
978 int __init kvm_sys_reg_table_init(void);
979
980 bool lock_all_vcpus(struct kvm *kvm);
981 void unlock_all_vcpus(struct kvm *kvm);
982
983 /* MMIO helpers */
984 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
985 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
986
987 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
988 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
989
990 /*
991  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
992  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
993  * loaded is considered to be "in guest".
994  */
995 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
996 {
997         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
998 }
999
1000 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1001 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1002 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1003
1004 bool kvm_arm_pvtime_supported(void);
1005 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1006                             struct kvm_device_attr *attr);
1007 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1008                             struct kvm_device_attr *attr);
1009 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1010                             struct kvm_device_attr *attr);
1011
1012 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1013 int __init kvm_arm_vmid_alloc_init(void);
1014 void __init kvm_arm_vmid_alloc_free(void);
1015 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1016 void kvm_arm_vmid_clear_active(void);
1017
1018 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1019 {
1020         vcpu_arch->steal.base = INVALID_GPA;
1021 }
1022
1023 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1024 {
1025         return (vcpu_arch->steal.base != INVALID_GPA);
1026 }
1027
1028 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1029
1030 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1031
1032 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1033
1034 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1035 {
1036         /* The host's MPIDR is immutable, so let's set it up at boot time */
1037         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1038 }
1039
1040 static inline bool kvm_system_needs_idmapped_vectors(void)
1041 {
1042         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1043 }
1044
1045 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1046
1047 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1048 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1049
1050 void kvm_arm_init_debug(void);
1051 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1052 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1053 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1054 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1055
1056 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1057         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
1058
1059 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1060                                struct kvm_device_attr *attr);
1061 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1062                                struct kvm_device_attr *attr);
1063 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1064                                struct kvm_device_attr *attr);
1065
1066 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1067                                struct kvm_arm_copy_mte_tags *copy_tags);
1068 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1069                                     struct kvm_arm_counter_offset *offset);
1070
1071 /* Guest/host FPSIMD coordination helpers */
1072 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1073 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1074 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1075 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1076 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1077 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1078
1079 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1080 {
1081         return (!has_vhe() && attr->exclude_host);
1082 }
1083
1084 /* Flags for host debug state */
1085 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1086 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1087
1088 #ifdef CONFIG_KVM
1089 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1090 void kvm_clr_pmu_events(u32 clr);
1091 bool kvm_set_pmuserenr(u64 val);
1092 #else
1093 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1094 static inline void kvm_clr_pmu_events(u32 clr) {}
1095 static inline bool kvm_set_pmuserenr(u64 val)
1096 {
1097         return false;
1098 }
1099 #endif
1100
1101 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1102 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1103
1104 int __init kvm_set_ipa_limit(void);
1105
1106 #define __KVM_HAVE_ARCH_VM_ALLOC
1107 struct kvm *kvm_arch_alloc_vm(void);
1108
1109 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1110 {
1111         return false;
1112 }
1113
1114 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1115
1116 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1117 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1118
1119 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1120
1121 #define kvm_has_mte(kvm)                                        \
1122         (system_supports_mte() &&                               \
1123          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1124
1125 #define kvm_supports_32bit_el0()                                \
1126         (system_supports_32bit_el0() &&                         \
1127          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1128
1129 #define kvm_vm_has_ran_once(kvm)                                        \
1130         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1131
1132 int kvm_trng_call(struct kvm_vcpu *vcpu);
1133 #ifdef CONFIG_KVM
1134 extern phys_addr_t hyp_mem_base;
1135 extern phys_addr_t hyp_mem_size;
1136 void __init kvm_hyp_reserve(void);
1137 #else
1138 static inline void kvm_hyp_reserve(void) { }
1139 #endif
1140
1141 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1142 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1143
1144 #endif /* __ARM64_KVM_HOST_H__ */