1 // SPDX-License-Identifier: GPL-2.0-only
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
10 #include <linux/bitops.h>
11 #include <linux/compiler.h>
12 #include <linux/errno.h>
13 #include <linux/filter.h>
14 #include <linux/netdevice.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/if_vlan.h>
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 #include <asm/opcodes.h>
22 #include <asm/system_info.h>
24 #include "bpf_jit_32.h"
27 * eBPF prog stack layout:
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
33 * | ... | eBPF JIT scratch space
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
37 * |RSVD | JIT scratchpad
38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
40 * | ... | Function call stack
45 * The callee saved registers depends on whether frame pointers are enabled.
46 * With frame pointers (to be compliant with the ABI):
49 * original ARM_SP => +--------------+ \
51 * current ARM_FP => +--------------+ } callee saved registers
56 * Without frame pointers:
59 * original ARM_SP => +--------------+
60 * | r4-r9,fp,lr | callee saved registers
61 * current ARM_FP => +--------------+
64 * When popping registers off the stack at the end of a BPF function, we
65 * reference them via the current ARM_FP register.
67 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
68 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
70 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
71 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
74 /* Stack layout - these are offsets from (top of stack - 4) */
95 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
96 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
97 * BPF_REG_FP and Tail call counts.
103 * Negative "register" values indicate the register is stored on the stack
104 * and are the offset from the top of the eBPF JIT scratch space.
106 #define STACK_OFFSET(k) (-4 - (k) * 4)
107 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
109 #ifdef CONFIG_FRAME_POINTER
110 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
112 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
115 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
116 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
117 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
119 #define FLAG_IMM_OVERFLOW (1 << 0)
122 * Map eBPF registers to ARM 32bit registers or stack scratch space.
124 * 1. First argument is passed using the arm 32bit registers and rest of the
125 * arguments are passed on stack scratch space.
126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
127 * arguments are mapped to scratch space on stack.
128 * 3. We need two 64 bit temp registers to do complex operations on eBPF
131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
132 * registers, we have to map each eBPF registers with two arm 32 bit regs or
133 * scratch memory space and we have to build eBPF 64 bit register from those.
136 static const s8 bpf2a32[][2] = {
137 /* return value from in-kernel function, and exit value from eBPF */
138 [BPF_REG_0] = {ARM_R1, ARM_R0},
139 /* arguments from eBPF program to in-kernel function */
140 [BPF_REG_1] = {ARM_R3, ARM_R2},
141 /* Stored on stack scratch space */
142 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
143 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
144 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
145 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
146 /* callee saved registers that in-kernel function will preserve */
147 [BPF_REG_6] = {ARM_R5, ARM_R4},
148 /* Stored on stack scratch space */
149 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
150 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
151 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
152 /* Read only Frame Pointer to access Stack */
153 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
154 /* Temporary Register for internal BPF JIT, can be used
155 * for constant blindings and others.
157 [TMP_REG_1] = {ARM_R7, ARM_R6},
158 [TMP_REG_2] = {ARM_R9, ARM_R8},
159 /* Tail call count. Stored on stack scratch space. */
160 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
161 /* temporary register for blinding constants.
162 * Stored on stack scratch space.
164 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
167 #define dst_lo dst[1]
168 #define dst_hi dst[0]
169 #define src_lo src[1]
170 #define src_hi src[0]
176 * idx : index of current last JITed instruction.
177 * prologue_bytes : bytes used in prologue.
178 * epilogue_offset : offset of epilogue starting.
179 * offsets : array of eBPF instruction offsets in
181 * target : final JITed code.
182 * epilogue_bytes : no of bytes used in epilogue.
183 * imm_count : no of immediate counts used for global
185 * imms : array of global variable addresses.
189 const struct bpf_prog *prog;
191 unsigned int prologue_bytes;
192 unsigned int epilogue_offset;
193 unsigned int cpu_architecture;
198 #if __LINUX_ARM_ARCH__ < 7
206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
207 * (where the assembly routines like __aeabi_uidiv could cause problems).
209 static u32 jit_udiv32(u32 dividend, u32 divisor)
211 return dividend / divisor;
214 static u32 jit_mod32(u32 dividend, u32 divisor)
216 return dividend % divisor;
219 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
221 inst |= (cond << 28);
222 inst = __opcode_to_mem_arm(inst);
224 if (ctx->target != NULL)
225 ctx->target[ctx->idx] = inst;
231 * Emit an instruction that will be executed unconditionally.
233 static inline void emit(u32 inst, struct jit_ctx *ctx)
235 _emit(ARM_COND_AL, inst, ctx);
239 * This is rather horrid, but necessary to convert an integer constant
240 * to an immediate operand for the opcodes, and be able to detect at
241 * build time whether the constant can't be converted (iow, usable in
244 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
245 #define const_imm8m(x) \
248 if (!(v & ~0x000000ff)) \
249 r = imm12val(v, 0); \
250 else if (!(v & ~0xc000003f)) \
251 r = imm12val(v, 2); \
252 else if (!(v & ~0xf000000f)) \
253 r = imm12val(v, 4); \
254 else if (!(v & ~0xfc000003)) \
255 r = imm12val(v, 6); \
256 else if (!(v & ~0xff000000)) \
257 r = imm12val(v, 8); \
258 else if (!(v & ~0x3fc00000)) \
259 r = imm12val(v, 10); \
260 else if (!(v & ~0x0ff00000)) \
261 r = imm12val(v, 12); \
262 else if (!(v & ~0x03fc0000)) \
263 r = imm12val(v, 14); \
264 else if (!(v & ~0x00ff0000)) \
265 r = imm12val(v, 16); \
266 else if (!(v & ~0x003fc000)) \
267 r = imm12val(v, 18); \
268 else if (!(v & ~0x000ff000)) \
269 r = imm12val(v, 20); \
270 else if (!(v & ~0x0003fc00)) \
271 r = imm12val(v, 22); \
272 else if (!(v & ~0x0000ff00)) \
273 r = imm12val(v, 24); \
274 else if (!(v & ~0x00003fc0)) \
275 r = imm12val(v, 26); \
276 else if (!(v & ~0x00000ff0)) \
277 r = imm12val(v, 28); \
278 else if (!(v & ~0x000003fc)) \
279 r = imm12val(v, 30); \
285 * Checks if immediate value can be converted to imm12(12 bits) value.
287 static int imm8m(u32 x)
291 for (rot = 0; rot < 16; rot++)
292 if ((x & ~ror32(0xff, 2 * rot)) == 0)
293 return rol32(x, 2 * rot) | (rot << 8);
297 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
299 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
301 op |= rt << 12 | rn << 16;
303 op |= ARM_INST_LDST__U;
306 return op | (imm12 & ARM_INST_LDST__IMM12);
309 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
311 op |= rt << 12 | rn << 16;
313 op |= ARM_INST_LDST__U;
316 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
319 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
320 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
321 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
322 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
324 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
325 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
326 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
327 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
330 * Initializes the JIT space with undefined instructions.
332 static void jit_fill_hole(void *area, unsigned int size)
335 /* We are guaranteed to have aligned memory. */
336 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
337 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
340 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
341 /* EABI requires the stack to be aligned to 64-bit boundaries */
342 #define STACK_ALIGNMENT 8
344 /* Stack must be aligned to 32-bit boundaries */
345 #define STACK_ALIGNMENT 4
348 /* total stack size used in JITed code */
349 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
350 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
352 #if __LINUX_ARM_ARCH__ < 7
354 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
356 unsigned int i = 0, offset;
359 /* on the "fake" run we just count them (duplicates included) */
360 if (ctx->target == NULL) {
365 while ((i < ctx->imm_count) && ctx->imms[i]) {
366 if (ctx->imms[i] == k)
371 if (ctx->imms[i] == 0)
374 /* constants go just after the epilogue */
375 offset = ctx->offsets[ctx->prog->len - 1] * 4;
376 offset += ctx->prologue_bytes;
377 offset += ctx->epilogue_bytes;
380 ctx->target[offset / 4] = k;
382 /* PC in ARM mode == address of the instruction + 8 */
383 imm = offset - (8 + ctx->idx * 4);
387 * literal pool is too far, signal it into flags. we
388 * can only detect it on the second pass unfortunately.
390 ctx->flags |= FLAG_IMM_OVERFLOW;
397 #endif /* __LINUX_ARM_ARCH__ */
399 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
400 const struct jit_ctx *ctx) {
403 if (ctx->target == NULL)
405 to = ctx->offsets[bpf_to];
406 from = ctx->offsets[bpf_from];
408 return to - from - 1;
412 * Move an immediate that's not an imm8m to a core register.
414 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
416 #if __LINUX_ARM_ARCH__ < 7
417 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
419 emit(ARM_MOVW(rd, val & 0xffff), ctx);
421 emit(ARM_MOVT(rd, val >> 16), ctx);
425 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
427 int imm12 = imm8m(val);
430 emit(ARM_MOV_I(rd, imm12), ctx);
432 emit_mov_i_no8m(rd, val, ctx);
435 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
437 if (elf_hwcap & HWCAP_THUMB)
438 emit(ARM_BX(tgt_reg), ctx);
440 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
443 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
445 #if __LINUX_ARM_ARCH__ < 5
446 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
447 emit_bx_r(tgt_reg, ctx);
449 emit(ARM_BLX_R(tgt_reg), ctx);
453 static inline int epilogue_offset(const struct jit_ctx *ctx)
456 /* No need for 1st dummy run */
457 if (ctx->target == NULL)
459 to = ctx->epilogue_offset;
462 return to - from - 2;
465 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
467 const s8 *tmp = bpf2a32[TMP_REG_1];
469 #if __LINUX_ARM_ARCH__ == 7
470 if (elf_hwcap & HWCAP_IDIVA) {
472 emit(ARM_UDIV(rd, rm, rn), ctx);
474 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
475 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
482 * For BPF_ALU | BPF_DIV | BPF_K instructions
483 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
484 * function, we need to save it on caller side to save
485 * it from getting destroyed within callee.
486 * After the return from the callee, we restore ARM_R0
490 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
491 emit(ARM_MOV_R(ARM_R1, rn), ctx);
494 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
495 emit(ARM_MOV_R(ARM_R0, rm), ctx);
498 /* Call appropriate function */
499 emit_mov_i(ARM_IP, op == BPF_DIV ?
500 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
501 emit_blx_r(ARM_IP, ctx);
503 /* Save return value */
505 emit(ARM_MOV_R(rd, ARM_R0), ctx);
507 /* Restore ARM_R0 and ARM_R1 */
509 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
511 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
514 /* Is the translated BPF register on stack? */
515 static bool is_stacked(s8 reg)
520 /* If a BPF register is on the stack (stk is true), load it to the
521 * supplied temporary register and return the temporary register
522 * for subsequent operations, otherwise just use the CPU register.
524 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
526 if (is_stacked(reg)) {
527 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
533 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
536 if (is_stacked(reg[1])) {
537 if (__LINUX_ARM_ARCH__ >= 6 ||
538 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
539 emit(ARM_LDRD_I(tmp[1], ARM_FP,
540 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
542 emit(ARM_LDR_I(tmp[1], ARM_FP,
543 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
544 emit(ARM_LDR_I(tmp[0], ARM_FP,
545 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
552 /* If a BPF register is on the stack (stk is true), save the register
553 * back to the stack. If the source register is not the same, then
554 * move it into the correct register.
556 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
559 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
561 emit(ARM_MOV_R(reg, src), ctx);
564 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
567 if (is_stacked(reg[1])) {
568 if (__LINUX_ARM_ARCH__ >= 6 ||
569 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
570 emit(ARM_STRD_I(src[1], ARM_FP,
571 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
573 emit(ARM_STR_I(src[1], ARM_FP,
574 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
575 emit(ARM_STR_I(src[0], ARM_FP,
576 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
579 if (reg[1] != src[1])
580 emit(ARM_MOV_R(reg[1], src[1]), ctx);
581 if (reg[0] != src[0])
582 emit(ARM_MOV_R(reg[0], src[0]), ctx);
586 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
589 const s8 *tmp = bpf2a32[TMP_REG_1];
591 if (is_stacked(dst)) {
592 emit_mov_i(tmp[1], val, ctx);
593 arm_bpf_put_reg32(dst, tmp[1], ctx);
595 emit_mov_i(dst, val, ctx);
599 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
601 const s8 *tmp = bpf2a32[TMP_REG_1];
602 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
604 emit_mov_i(rd[1], (u32)val, ctx);
605 emit_mov_i(rd[0], val >> 32, ctx);
607 arm_bpf_put_reg64(dst, rd, ctx);
610 /* Sign extended move */
611 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
612 const u32 val, struct jit_ctx *ctx) {
615 if (is64 && (val & (1<<31)))
616 val64 |= 0xffffffff00000000ULL;
617 emit_a32_mov_i64(dst, val64, ctx);
620 static inline void emit_a32_add_r(const u8 dst, const u8 src,
621 const bool is64, const bool hi,
622 struct jit_ctx *ctx) {
624 * adds dst_lo, dst_lo, src_lo
625 * adc dst_hi, dst_hi, src_hi
627 * add dst_lo, dst_lo, src_lo
630 emit(ARM_ADDS_R(dst, dst, src), ctx);
632 emit(ARM_ADC_R(dst, dst, src), ctx);
634 emit(ARM_ADD_R(dst, dst, src), ctx);
637 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
638 const bool is64, const bool hi,
639 struct jit_ctx *ctx) {
641 * subs dst_lo, dst_lo, src_lo
642 * sbc dst_hi, dst_hi, src_hi
644 * sub dst_lo, dst_lo, src_lo
647 emit(ARM_SUBS_R(dst, dst, src), ctx);
649 emit(ARM_SBC_R(dst, dst, src), ctx);
651 emit(ARM_SUB_R(dst, dst, src), ctx);
654 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
655 const bool hi, const u8 op, struct jit_ctx *ctx){
656 switch (BPF_OP(op)) {
657 /* dst = dst + src */
659 emit_a32_add_r(dst, src, is64, hi, ctx);
661 /* dst = dst - src */
663 emit_a32_sub_r(dst, src, is64, hi, ctx);
665 /* dst = dst | src */
667 emit(ARM_ORR_R(dst, dst, src), ctx);
669 /* dst = dst & src */
671 emit(ARM_AND_R(dst, dst, src), ctx);
673 /* dst = dst ^ src */
675 emit(ARM_EOR_R(dst, dst, src), ctx);
677 /* dst = dst * src */
679 emit(ARM_MUL(dst, dst, src), ctx);
681 /* dst = dst << src */
683 emit(ARM_LSL_R(dst, dst, src), ctx);
685 /* dst = dst >> src */
687 emit(ARM_LSR_R(dst, dst, src), ctx);
689 /* dst = dst >> src (signed)*/
691 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
696 /* ALU operation (32 bit)
699 static inline void emit_a32_alu_r(const s8 dst, const s8 src,
700 struct jit_ctx *ctx, const bool is64,
701 const bool hi, const u8 op) {
702 const s8 *tmp = bpf2a32[TMP_REG_1];
705 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
706 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
708 emit_alu_r(rd, rn, is64, hi, op, ctx);
709 arm_bpf_put_reg32(dst, rd, ctx);
712 /* ALU operation (64 bit) */
713 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
714 const s8 src[], struct jit_ctx *ctx,
716 const s8 *tmp = bpf2a32[TMP_REG_1];
717 const s8 *tmp2 = bpf2a32[TMP_REG_2];
720 rd = arm_bpf_get_reg64(dst, tmp, ctx);
724 rs = arm_bpf_get_reg64(src, tmp2, ctx);
727 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
728 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
732 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
735 emit_alu_r(rd[1], rs, true, false, op, ctx);
736 if (!ctx->prog->aux->verifier_zext)
737 emit_a32_mov_i(rd[0], 0, ctx);
740 arm_bpf_put_reg64(dst, rd, ctx);
743 /* dst = src (4 bytes)*/
744 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
745 struct jit_ctx *ctx) {
746 const s8 *tmp = bpf2a32[TMP_REG_1];
749 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
750 arm_bpf_put_reg32(dst, rt, ctx);
754 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
756 struct jit_ctx *ctx) {
758 emit_a32_mov_r(dst_lo, src_lo, ctx);
759 if (!ctx->prog->aux->verifier_zext)
760 /* Zero out high 4 bytes */
761 emit_a32_mov_i(dst_hi, 0, ctx);
762 } else if (__LINUX_ARM_ARCH__ < 6 &&
763 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
764 /* complete 8 byte move */
765 emit_a32_mov_r(dst_lo, src_lo, ctx);
766 emit_a32_mov_r(dst_hi, src_hi, ctx);
767 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
768 const u8 *tmp = bpf2a32[TMP_REG_1];
770 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
771 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
772 } else if (is_stacked(src_lo)) {
773 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
774 } else if (is_stacked(dst_lo)) {
775 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
777 emit(ARM_MOV_R(dst[0], src[0]), ctx);
778 emit(ARM_MOV_R(dst[1], src[1]), ctx);
782 /* Shift operations */
783 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
784 struct jit_ctx *ctx, const u8 op) {
785 const s8 *tmp = bpf2a32[TMP_REG_1];
788 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
790 /* Do shift operation */
793 emit(ARM_LSL_I(rd, rd, val), ctx);
796 emit(ARM_LSR_I(rd, rd, val), ctx);
799 emit(ARM_ASR_I(rd, rd, val), ctx);
802 emit(ARM_RSB_I(rd, rd, val), ctx);
806 arm_bpf_put_reg32(dst, rd, ctx);
809 /* dst = ~dst (64 bit) */
810 static inline void emit_a32_neg64(const s8 dst[],
811 struct jit_ctx *ctx){
812 const s8 *tmp = bpf2a32[TMP_REG_1];
816 rd = arm_bpf_get_reg64(dst, tmp, ctx);
818 /* Do Negate Operation */
819 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
820 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
822 arm_bpf_put_reg64(dst, rd, ctx);
825 /* dst = dst << src */
826 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
827 struct jit_ctx *ctx) {
828 const s8 *tmp = bpf2a32[TMP_REG_1];
829 const s8 *tmp2 = bpf2a32[TMP_REG_2];
834 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
835 rd = arm_bpf_get_reg64(dst, tmp, ctx);
837 /* Do LSH operation */
838 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
839 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
840 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
841 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
842 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
843 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
845 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
846 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
849 /* dst = dst >> src (signed)*/
850 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
851 struct jit_ctx *ctx) {
852 const s8 *tmp = bpf2a32[TMP_REG_1];
853 const s8 *tmp2 = bpf2a32[TMP_REG_2];
858 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
859 rd = arm_bpf_get_reg64(dst, tmp, ctx);
861 /* Do the ARSH operation */
862 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
863 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
864 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
865 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
867 ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
868 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
870 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
871 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
874 /* dst = dst >> src */
875 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
876 struct jit_ctx *ctx) {
877 const s8 *tmp = bpf2a32[TMP_REG_1];
878 const s8 *tmp2 = bpf2a32[TMP_REG_2];
883 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
884 rd = arm_bpf_get_reg64(dst, tmp, ctx);
886 /* Do RSH operation */
887 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
888 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
889 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
890 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
891 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
892 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
894 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
895 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
898 /* dst = dst << val */
899 static inline void emit_a32_lsh_i64(const s8 dst[],
900 const u32 val, struct jit_ctx *ctx){
901 const s8 *tmp = bpf2a32[TMP_REG_1];
902 const s8 *tmp2 = bpf2a32[TMP_REG_2];
906 rd = arm_bpf_get_reg64(dst, tmp, ctx);
908 /* Do LSH operation */
910 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
911 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
912 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
915 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
917 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
918 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
921 arm_bpf_put_reg64(dst, rd, ctx);
924 /* dst = dst >> val */
925 static inline void emit_a32_rsh_i64(const s8 dst[],
926 const u32 val, struct jit_ctx *ctx) {
927 const s8 *tmp = bpf2a32[TMP_REG_1];
928 const s8 *tmp2 = bpf2a32[TMP_REG_2];
932 rd = arm_bpf_get_reg64(dst, tmp, ctx);
934 /* Do LSR operation */
936 /* An immediate value of 0 encodes a shift amount of 32
937 * for LSR. To shift by 0, don't do anything.
939 } else if (val < 32) {
940 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
941 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
942 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
943 } else if (val == 32) {
944 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
945 emit(ARM_MOV_I(rd[0], 0), ctx);
947 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
948 emit(ARM_MOV_I(rd[0], 0), ctx);
951 arm_bpf_put_reg64(dst, rd, ctx);
954 /* dst = dst >> val (signed) */
955 static inline void emit_a32_arsh_i64(const s8 dst[],
956 const u32 val, struct jit_ctx *ctx){
957 const s8 *tmp = bpf2a32[TMP_REG_1];
958 const s8 *tmp2 = bpf2a32[TMP_REG_2];
962 rd = arm_bpf_get_reg64(dst, tmp, ctx);
964 /* Do ARSH operation */
966 /* An immediate value of 0 encodes a shift amount of 32
967 * for ASR. To shift by 0, don't do anything.
969 } else if (val < 32) {
970 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
971 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
972 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
973 } else if (val == 32) {
974 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
975 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
977 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
978 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
981 arm_bpf_put_reg64(dst, rd, ctx);
984 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
985 struct jit_ctx *ctx) {
986 const s8 *tmp = bpf2a32[TMP_REG_1];
987 const s8 *tmp2 = bpf2a32[TMP_REG_2];
990 /* Setup operands for multiplication */
991 rd = arm_bpf_get_reg64(dst, tmp, ctx);
992 rt = arm_bpf_get_reg64(src, tmp2, ctx);
994 /* Do Multiplication */
995 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
996 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
997 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
999 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1000 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1002 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1003 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1006 static bool is_ldst_imm(s16 off, const u8 size)
1019 /* Need to make sure off+4 does not overflow. */
1020 off_max = 0xfff - 4;
1023 return -off_max <= off && off <= off_max;
1026 /* *(size *)(dst + off) = src */
1027 static inline void emit_str_r(const s8 dst, const s8 src[],
1028 s16 off, struct jit_ctx *ctx, const u8 sz){
1029 const s8 *tmp = bpf2a32[TMP_REG_1];
1032 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1034 if (!is_ldst_imm(off, sz)) {
1035 emit_a32_mov_i(tmp[0], off, ctx);
1036 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1043 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1046 /* Store a HalfWord */
1047 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1051 emit(ARM_STR_I(src_lo, rd, off), ctx);
1054 /* Store a Double Word */
1055 emit(ARM_STR_I(src_lo, rd, off), ctx);
1056 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1061 /* dst = *(size*)(src + off) */
1062 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1063 s16 off, struct jit_ctx *ctx, const u8 sz){
1064 const s8 *tmp = bpf2a32[TMP_REG_1];
1065 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1068 if (!is_ldst_imm(off, sz)) {
1069 emit_a32_mov_i(tmp[0], off, ctx);
1070 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1073 } else if (rd[1] == rm) {
1074 emit(ARM_MOV_R(tmp[0], rm), ctx);
1080 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1081 if (!ctx->prog->aux->verifier_zext)
1082 emit_a32_mov_i(rd[0], 0, ctx);
1085 /* Load a HalfWord */
1086 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1087 if (!ctx->prog->aux->verifier_zext)
1088 emit_a32_mov_i(rd[0], 0, ctx);
1092 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1093 if (!ctx->prog->aux->verifier_zext)
1094 emit_a32_mov_i(rd[0], 0, ctx);
1097 /* Load a Double Word */
1098 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1099 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1102 arm_bpf_put_reg64(dst, rd, ctx);
1105 /* Arithmatic Operation */
1106 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1107 const u8 rn, struct jit_ctx *ctx, u8 op,
1112 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1113 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1114 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1116 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1126 emit(ARM_CMP_R(rd, rm), ctx);
1127 /* Only compare low halve if high halve are equal. */
1128 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1130 emit(ARM_CMP_R(rt, rn), ctx);
1135 emit(ARM_CMP_R(rn, rt), ctx);
1137 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1141 emit(ARM_CMP_R(rt, rn), ctx);
1143 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1148 static int out_offset = -1; /* initialized on the first pass of build_body() */
1149 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1152 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1153 const s8 *r2 = bpf2a32[BPF_REG_2];
1154 const s8 *r3 = bpf2a32[BPF_REG_3];
1155 const s8 *tmp = bpf2a32[TMP_REG_1];
1156 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1157 const s8 *tcc = bpf2a32[TCALL_CNT];
1159 const int idx0 = ctx->idx;
1160 #define cur_offset (ctx->idx - idx0)
1161 #define jmp_offset (out_offset - (cur_offset) - 2)
1163 s8 r_array, r_index;
1166 /* if (index >= array->map.max_entries)
1169 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1170 ARM_INST_LDST__IMM12);
1171 off = offsetof(struct bpf_array, map.max_entries);
1172 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1173 /* index is 32-bit for arrays */
1174 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1175 /* array->map.max_entries */
1176 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1177 /* index >= array->map.max_entries */
1178 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1179 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1181 /* tmp2[0] = array, tmp2[1] = index */
1183 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1187 lo = (u32)MAX_TAIL_CALL_CNT;
1188 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1189 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1190 emit(ARM_CMP_I(tc[0], hi), ctx);
1191 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1192 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1193 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1194 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1195 arm_bpf_put_reg64(tcc, tmp, ctx);
1197 /* prog = array->ptrs[index]
1201 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1202 off = imm8m(offsetof(struct bpf_array, ptrs));
1203 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1204 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1205 emit(ARM_CMP_I(tmp[1], 0), ctx);
1206 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1208 /* goto *(prog->bpf_func + prologue_size); */
1209 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1210 ARM_INST_LDST__IMM12);
1211 off = offsetof(struct bpf_prog, bpf_func);
1212 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1213 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1214 emit_bx_r(tmp[1], ctx);
1217 if (out_offset == -1)
1218 out_offset = cur_offset;
1219 if (cur_offset != out_offset) {
1220 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1221 cur_offset, out_offset);
1229 /* 0xabcd => 0xcdab */
1230 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1232 #if __LINUX_ARM_ARCH__ < 6
1233 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1235 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1236 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1237 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1238 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1240 emit(ARM_REV16(rd, rn), ctx);
1244 /* 0xabcdefgh => 0xghefcdab */
1245 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1247 #if __LINUX_ARM_ARCH__ < 6
1248 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1250 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1251 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1252 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1254 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1255 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1256 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1257 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1258 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1259 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1260 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1263 emit(ARM_REV(rd, rn), ctx);
1267 // push the scratch stack register on top of the stack
1268 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1270 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1274 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1276 reg_set = (1 << rt[1]) | (1 << rt[0]);
1277 emit(ARM_PUSH(reg_set), ctx);
1280 static void build_prologue(struct jit_ctx *ctx)
1282 const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1283 const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1284 const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1285 const s8 *tcc = bpf2a32[TCALL_CNT];
1287 /* Save callee saved registers. */
1288 #ifdef CONFIG_FRAME_POINTER
1289 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1290 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1291 emit(ARM_PUSH(reg_set), ctx);
1292 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1294 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1295 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1298 /* sub r2, sp, #SCRATCH_SIZE */
1299 emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1300 emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1302 ctx->stack_size = imm8m(STACK_SIZE);
1304 /* Set up function call stack */
1305 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1307 /* Set up BPF prog stack base register */
1308 emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1310 /* Initialize Tail Count */
1311 emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1312 emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1314 /* Move BPF_CTX to BPF_R1 */
1315 emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1317 /* end of prologue */
1320 /* restore callee saved registers. */
1321 static void build_epilogue(struct jit_ctx *ctx)
1323 #ifdef CONFIG_FRAME_POINTER
1324 /* When using frame pointers, some additional registers need to
1326 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1327 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1328 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1330 /* Restore callee saved registers. */
1331 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1332 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1337 * Convert an eBPF instruction to native instruction, i.e
1338 * JITs an eBPF instruction.
1340 * 0 - Successfully JITed an 8-byte eBPF instruction
1341 * >0 - Successfully JITed a 16-byte eBPF instruction
1342 * <0 - Failed to JIT.
1344 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1346 const u8 code = insn->code;
1347 const s8 *dst = bpf2a32[insn->dst_reg];
1348 const s8 *src = bpf2a32[insn->src_reg];
1349 const s8 *tmp = bpf2a32[TMP_REG_1];
1350 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1351 const s16 off = insn->off;
1352 const s32 imm = insn->imm;
1353 const int i = insn - ctx->prog->insnsi;
1354 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1356 s8 rd_lo, rt, rm, rn;
1359 #define check_imm(bits, imm) do { \
1360 if ((imm) >= (1 << ((bits) - 1)) || \
1361 (imm) < -(1 << ((bits) - 1))) { \
1362 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1367 #define check_imm24(imm) check_imm(24, imm)
1370 /* ALU operations */
1373 case BPF_ALU | BPF_MOV | BPF_K:
1374 case BPF_ALU | BPF_MOV | BPF_X:
1375 case BPF_ALU64 | BPF_MOV | BPF_K:
1376 case BPF_ALU64 | BPF_MOV | BPF_X:
1377 switch (BPF_SRC(code)) {
1380 /* Special mov32 for zext */
1381 emit_a32_mov_i(dst_hi, 0, ctx);
1384 emit_a32_mov_r64(is64, dst, src, ctx);
1387 /* Sign-extend immediate value to destination reg */
1388 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1392 /* dst = dst + src/imm */
1393 /* dst = dst - src/imm */
1394 /* dst = dst | src/imm */
1395 /* dst = dst & src/imm */
1396 /* dst = dst ^ src/imm */
1397 /* dst = dst * src/imm */
1398 /* dst = dst << src */
1399 /* dst = dst >> src */
1400 case BPF_ALU | BPF_ADD | BPF_K:
1401 case BPF_ALU | BPF_ADD | BPF_X:
1402 case BPF_ALU | BPF_SUB | BPF_K:
1403 case BPF_ALU | BPF_SUB | BPF_X:
1404 case BPF_ALU | BPF_OR | BPF_K:
1405 case BPF_ALU | BPF_OR | BPF_X:
1406 case BPF_ALU | BPF_AND | BPF_K:
1407 case BPF_ALU | BPF_AND | BPF_X:
1408 case BPF_ALU | BPF_XOR | BPF_K:
1409 case BPF_ALU | BPF_XOR | BPF_X:
1410 case BPF_ALU | BPF_MUL | BPF_K:
1411 case BPF_ALU | BPF_MUL | BPF_X:
1412 case BPF_ALU | BPF_LSH | BPF_X:
1413 case BPF_ALU | BPF_RSH | BPF_X:
1414 case BPF_ALU | BPF_ARSH | BPF_X:
1415 case BPF_ALU64 | BPF_ADD | BPF_K:
1416 case BPF_ALU64 | BPF_ADD | BPF_X:
1417 case BPF_ALU64 | BPF_SUB | BPF_K:
1418 case BPF_ALU64 | BPF_SUB | BPF_X:
1419 case BPF_ALU64 | BPF_OR | BPF_K:
1420 case BPF_ALU64 | BPF_OR | BPF_X:
1421 case BPF_ALU64 | BPF_AND | BPF_K:
1422 case BPF_ALU64 | BPF_AND | BPF_X:
1423 case BPF_ALU64 | BPF_XOR | BPF_K:
1424 case BPF_ALU64 | BPF_XOR | BPF_X:
1425 switch (BPF_SRC(code)) {
1427 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1430 /* Move immediate value to the temporary register
1431 * and then do the ALU operation on the temporary
1432 * register as this will sign-extend the immediate
1433 * value into temporary reg and then it would be
1434 * safe to do the operation on it.
1436 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1437 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1441 /* dst = dst / src(imm) */
1442 /* dst = dst % src(imm) */
1443 case BPF_ALU | BPF_DIV | BPF_K:
1444 case BPF_ALU | BPF_DIV | BPF_X:
1445 case BPF_ALU | BPF_MOD | BPF_K:
1446 case BPF_ALU | BPF_MOD | BPF_X:
1447 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1448 switch (BPF_SRC(code)) {
1450 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1454 emit_a32_mov_i(rt, imm, ctx);
1460 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1461 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1462 if (!ctx->prog->aux->verifier_zext)
1463 emit_a32_mov_i(dst_hi, 0, ctx);
1465 case BPF_ALU64 | BPF_DIV | BPF_K:
1466 case BPF_ALU64 | BPF_DIV | BPF_X:
1467 case BPF_ALU64 | BPF_MOD | BPF_K:
1468 case BPF_ALU64 | BPF_MOD | BPF_X:
1470 /* dst = dst << imm */
1471 /* dst = dst >> imm */
1472 /* dst = dst >> imm (signed) */
1473 case BPF_ALU | BPF_LSH | BPF_K:
1474 case BPF_ALU | BPF_RSH | BPF_K:
1475 case BPF_ALU | BPF_ARSH | BPF_K:
1476 if (unlikely(imm > 31))
1479 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1480 if (!ctx->prog->aux->verifier_zext)
1481 emit_a32_mov_i(dst_hi, 0, ctx);
1483 /* dst = dst << imm */
1484 case BPF_ALU64 | BPF_LSH | BPF_K:
1485 if (unlikely(imm > 63))
1487 emit_a32_lsh_i64(dst, imm, ctx);
1489 /* dst = dst >> imm */
1490 case BPF_ALU64 | BPF_RSH | BPF_K:
1491 if (unlikely(imm > 63))
1493 emit_a32_rsh_i64(dst, imm, ctx);
1495 /* dst = dst << src */
1496 case BPF_ALU64 | BPF_LSH | BPF_X:
1497 emit_a32_lsh_r64(dst, src, ctx);
1499 /* dst = dst >> src */
1500 case BPF_ALU64 | BPF_RSH | BPF_X:
1501 emit_a32_rsh_r64(dst, src, ctx);
1503 /* dst = dst >> src (signed) */
1504 case BPF_ALU64 | BPF_ARSH | BPF_X:
1505 emit_a32_arsh_r64(dst, src, ctx);
1507 /* dst = dst >> imm (signed) */
1508 case BPF_ALU64 | BPF_ARSH | BPF_K:
1509 if (unlikely(imm > 63))
1511 emit_a32_arsh_i64(dst, imm, ctx);
1514 case BPF_ALU | BPF_NEG:
1515 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1516 if (!ctx->prog->aux->verifier_zext)
1517 emit_a32_mov_i(dst_hi, 0, ctx);
1519 /* dst = ~dst (64 bit) */
1520 case BPF_ALU64 | BPF_NEG:
1521 emit_a32_neg64(dst, ctx);
1523 /* dst = dst * src/imm */
1524 case BPF_ALU64 | BPF_MUL | BPF_X:
1525 case BPF_ALU64 | BPF_MUL | BPF_K:
1526 switch (BPF_SRC(code)) {
1528 emit_a32_mul_r64(dst, src, ctx);
1531 /* Move immediate value to the temporary register
1532 * and then do the multiplication on it as this
1533 * will sign-extend the immediate value into temp
1534 * reg then it would be safe to do the operation
1537 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1538 emit_a32_mul_r64(dst, tmp2, ctx);
1542 /* dst = htole(dst) */
1543 /* dst = htobe(dst) */
1544 case BPF_ALU | BPF_END | BPF_FROM_LE:
1545 case BPF_ALU | BPF_END | BPF_FROM_BE:
1546 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1547 if (BPF_SRC(code) == BPF_FROM_LE)
1548 goto emit_bswap_uxt;
1551 emit_rev16(rd[1], rd[1], ctx);
1552 goto emit_bswap_uxt;
1554 emit_rev32(rd[1], rd[1], ctx);
1555 goto emit_bswap_uxt;
1557 emit_rev32(ARM_LR, rd[1], ctx);
1558 emit_rev32(rd[1], rd[0], ctx);
1559 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1566 /* zero-extend 16 bits into 64 bits */
1567 #if __LINUX_ARM_ARCH__ < 6
1568 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1569 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1571 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1573 if (!ctx->prog->aux->verifier_zext)
1574 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1577 /* zero-extend 32 bits into 64 bits */
1578 if (!ctx->prog->aux->verifier_zext)
1579 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1586 arm_bpf_put_reg64(dst, rd, ctx);
1589 case BPF_LD | BPF_IMM | BPF_DW:
1591 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1593 emit_a32_mov_i64(dst, val, ctx);
1597 /* LDX: dst = *(size *)(src + off) */
1598 case BPF_LDX | BPF_MEM | BPF_W:
1599 case BPF_LDX | BPF_MEM | BPF_H:
1600 case BPF_LDX | BPF_MEM | BPF_B:
1601 case BPF_LDX | BPF_MEM | BPF_DW:
1602 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1603 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1605 /* speculation barrier */
1606 case BPF_ST | BPF_NOSPEC:
1608 /* ST: *(size *)(dst + off) = imm */
1609 case BPF_ST | BPF_MEM | BPF_W:
1610 case BPF_ST | BPF_MEM | BPF_H:
1611 case BPF_ST | BPF_MEM | BPF_B:
1612 case BPF_ST | BPF_MEM | BPF_DW:
1613 switch (BPF_SIZE(code)) {
1615 /* Sign-extend immediate value into temp reg */
1616 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1621 emit_a32_mov_i(tmp2[1], imm, ctx);
1624 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1627 case BPF_STX | BPF_ATOMIC | BPF_W:
1628 case BPF_STX | BPF_ATOMIC | BPF_DW:
1630 /* STX: *(size *)(dst + off) = src */
1631 case BPF_STX | BPF_MEM | BPF_W:
1632 case BPF_STX | BPF_MEM | BPF_H:
1633 case BPF_STX | BPF_MEM | BPF_B:
1634 case BPF_STX | BPF_MEM | BPF_DW:
1635 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1636 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1638 /* PC += off if dst == src */
1639 /* PC += off if dst > src */
1640 /* PC += off if dst >= src */
1641 /* PC += off if dst < src */
1642 /* PC += off if dst <= src */
1643 /* PC += off if dst != src */
1644 /* PC += off if dst > src (signed) */
1645 /* PC += off if dst >= src (signed) */
1646 /* PC += off if dst < src (signed) */
1647 /* PC += off if dst <= src (signed) */
1648 /* PC += off if dst & src */
1649 case BPF_JMP | BPF_JEQ | BPF_X:
1650 case BPF_JMP | BPF_JGT | BPF_X:
1651 case BPF_JMP | BPF_JGE | BPF_X:
1652 case BPF_JMP | BPF_JNE | BPF_X:
1653 case BPF_JMP | BPF_JSGT | BPF_X:
1654 case BPF_JMP | BPF_JSGE | BPF_X:
1655 case BPF_JMP | BPF_JSET | BPF_X:
1656 case BPF_JMP | BPF_JLE | BPF_X:
1657 case BPF_JMP | BPF_JLT | BPF_X:
1658 case BPF_JMP | BPF_JSLT | BPF_X:
1659 case BPF_JMP | BPF_JSLE | BPF_X:
1660 case BPF_JMP32 | BPF_JEQ | BPF_X:
1661 case BPF_JMP32 | BPF_JGT | BPF_X:
1662 case BPF_JMP32 | BPF_JGE | BPF_X:
1663 case BPF_JMP32 | BPF_JNE | BPF_X:
1664 case BPF_JMP32 | BPF_JSGT | BPF_X:
1665 case BPF_JMP32 | BPF_JSGE | BPF_X:
1666 case BPF_JMP32 | BPF_JSET | BPF_X:
1667 case BPF_JMP32 | BPF_JLE | BPF_X:
1668 case BPF_JMP32 | BPF_JLT | BPF_X:
1669 case BPF_JMP32 | BPF_JSLT | BPF_X:
1670 case BPF_JMP32 | BPF_JSLE | BPF_X:
1671 /* Setup source registers */
1672 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1673 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1675 /* PC += off if dst == imm */
1676 /* PC += off if dst > imm */
1677 /* PC += off if dst >= imm */
1678 /* PC += off if dst < imm */
1679 /* PC += off if dst <= imm */
1680 /* PC += off if dst != imm */
1681 /* PC += off if dst > imm (signed) */
1682 /* PC += off if dst >= imm (signed) */
1683 /* PC += off if dst < imm (signed) */
1684 /* PC += off if dst <= imm (signed) */
1685 /* PC += off if dst & imm */
1686 case BPF_JMP | BPF_JEQ | BPF_K:
1687 case BPF_JMP | BPF_JGT | BPF_K:
1688 case BPF_JMP | BPF_JGE | BPF_K:
1689 case BPF_JMP | BPF_JNE | BPF_K:
1690 case BPF_JMP | BPF_JSGT | BPF_K:
1691 case BPF_JMP | BPF_JSGE | BPF_K:
1692 case BPF_JMP | BPF_JSET | BPF_K:
1693 case BPF_JMP | BPF_JLT | BPF_K:
1694 case BPF_JMP | BPF_JLE | BPF_K:
1695 case BPF_JMP | BPF_JSLT | BPF_K:
1696 case BPF_JMP | BPF_JSLE | BPF_K:
1697 case BPF_JMP32 | BPF_JEQ | BPF_K:
1698 case BPF_JMP32 | BPF_JGT | BPF_K:
1699 case BPF_JMP32 | BPF_JGE | BPF_K:
1700 case BPF_JMP32 | BPF_JNE | BPF_K:
1701 case BPF_JMP32 | BPF_JSGT | BPF_K:
1702 case BPF_JMP32 | BPF_JSGE | BPF_K:
1703 case BPF_JMP32 | BPF_JSET | BPF_K:
1704 case BPF_JMP32 | BPF_JLT | BPF_K:
1705 case BPF_JMP32 | BPF_JLE | BPF_K:
1706 case BPF_JMP32 | BPF_JSLT | BPF_K:
1707 case BPF_JMP32 | BPF_JSLE | BPF_K:
1712 /* Sign-extend immediate value */
1713 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1715 /* Setup destination register */
1716 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1718 /* Check for the condition */
1719 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1720 BPF_CLASS(code) == BPF_JMP);
1722 /* Setup JUMP instruction */
1723 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1724 switch (BPF_OP(code)) {
1727 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1730 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1733 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1736 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1739 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1742 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1745 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1748 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1751 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1754 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1759 case BPF_JMP | BPF_JA:
1763 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1764 check_imm24(jmp_offset);
1765 emit(ARM_B(jmp_offset), ctx);
1769 case BPF_JMP | BPF_TAIL_CALL:
1770 if (emit_bpf_tail_call(ctx))
1774 case BPF_JMP | BPF_CALL:
1776 const s8 *r0 = bpf2a32[BPF_REG_0];
1777 const s8 *r1 = bpf2a32[BPF_REG_1];
1778 const s8 *r2 = bpf2a32[BPF_REG_2];
1779 const s8 *r3 = bpf2a32[BPF_REG_3];
1780 const s8 *r4 = bpf2a32[BPF_REG_4];
1781 const s8 *r5 = bpf2a32[BPF_REG_5];
1782 const u32 func = (u32)__bpf_call_base + (u32)imm;
1784 emit_a32_mov_r64(true, r0, r1, ctx);
1785 emit_a32_mov_r64(true, r1, r2, ctx);
1786 emit_push_r64(r5, ctx);
1787 emit_push_r64(r4, ctx);
1788 emit_push_r64(r3, ctx);
1790 emit_a32_mov_i(tmp[1], func, ctx);
1791 emit_blx_r(tmp[1], ctx);
1793 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1796 /* function return */
1797 case BPF_JMP | BPF_EXIT:
1798 /* Optimization: when last instruction is EXIT
1799 * simply fallthrough to epilogue.
1801 if (i == ctx->prog->len - 1)
1803 jmp_offset = epilogue_offset(ctx);
1804 check_imm24(jmp_offset);
1805 emit(ARM_B(jmp_offset), ctx);
1808 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1811 pr_err_once("unknown opcode %02x\n", code);
1815 if (ctx->flags & FLAG_IMM_OVERFLOW)
1817 * this instruction generated an overflow when
1818 * trying to access the literal pool, so
1819 * delegate this filter to the kernel interpreter.
1825 static int build_body(struct jit_ctx *ctx)
1827 const struct bpf_prog *prog = ctx->prog;
1830 for (i = 0; i < prog->len; i++) {
1831 const struct bpf_insn *insn = &(prog->insnsi[i]);
1834 ret = build_insn(insn, ctx);
1836 /* It's used with loading the 64 bit immediate value. */
1839 if (ctx->target == NULL)
1840 ctx->offsets[i] = ctx->idx;
1844 if (ctx->target == NULL)
1845 ctx->offsets[i] = ctx->idx;
1847 /* If unsuccesfull, return with error code */
1854 static int validate_code(struct jit_ctx *ctx)
1858 for (i = 0; i < ctx->idx; i++) {
1859 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1866 void bpf_jit_compile(struct bpf_prog *prog)
1868 /* Nothing to do here. We support Internal BPF. */
1871 bool bpf_jit_needs_zext(void)
1876 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1878 struct bpf_prog *tmp, *orig_prog = prog;
1879 struct bpf_binary_header *header;
1880 bool tmp_blinded = false;
1882 unsigned int tmp_idx;
1883 unsigned int image_size;
1886 /* If BPF JIT was not enabled then we must fall back to
1889 if (!prog->jit_requested)
1892 /* If constant blinding was enabled and we failed during blinding
1893 * then we must fall back to the interpreter. Otherwise, we save
1894 * the new JITed code.
1896 tmp = bpf_jit_blind_constants(prog);
1905 memset(&ctx, 0, sizeof(ctx));
1907 ctx.cpu_architecture = cpu_architecture();
1909 /* Not able to allocate memory for offsets[] , then
1910 * we must fall back to the interpreter
1912 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1913 if (ctx.offsets == NULL) {
1918 /* 1) fake pass to find in the length of the JITed code,
1919 * to compute ctx->offsets and other context variables
1920 * needed to compute final JITed code.
1921 * Also, calculate random starting pointer/start of JITed code
1922 * which is prefixed by random number of fault instructions.
1924 * If the first pass fails then there is no chance of it
1925 * being successful in the second pass, so just fall back
1926 * to the interpreter.
1928 if (build_body(&ctx)) {
1934 build_prologue(&ctx);
1935 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1937 ctx.epilogue_offset = ctx.idx;
1939 #if __LINUX_ARM_ARCH__ < 7
1941 build_epilogue(&ctx);
1942 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1944 ctx.idx += ctx.imm_count;
1945 if (ctx.imm_count) {
1946 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1947 if (ctx.imms == NULL) {
1953 /* there's nothing about the epilogue on ARMv7 */
1954 build_epilogue(&ctx);
1956 /* Now we can get the actual image size of the JITed arm code.
1957 * Currently, we are not considering the THUMB-2 instructions
1958 * for jit, although it can decrease the size of the image.
1960 * As each arm instruction is of length 32bit, we are translating
1961 * number of JITed intructions into the size required to store these
1964 image_size = sizeof(u32) * ctx.idx;
1966 /* Now we know the size of the structure to make */
1967 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1968 sizeof(u32), jit_fill_hole);
1969 /* Not able to allocate memory for the structure then
1970 * we must fall back to the interpretation
1972 if (header == NULL) {
1977 /* 2.) Actual pass to generate final JIT code */
1978 ctx.target = (u32 *) image_ptr;
1981 build_prologue(&ctx);
1983 /* If building the body of the JITed code fails somehow,
1984 * we fall back to the interpretation.
1986 if (build_body(&ctx) < 0) {
1988 bpf_jit_binary_free(header);
1992 build_epilogue(&ctx);
1994 /* 3.) Extra pass to validate JITed Code */
1995 if (validate_code(&ctx)) {
1997 bpf_jit_binary_free(header);
2001 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2003 if (bpf_jit_enable > 1)
2004 /* there are 2 passes here */
2005 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2007 bpf_jit_binary_lock_ro(header);
2008 prog->bpf_func = (void *)ctx.target;
2010 prog->jited_len = image_size;
2013 #if __LINUX_ARM_ARCH__ < 7
2021 bpf_jit_prog_release_other(prog, prog == orig_prog ?