1 // SPDX-License-Identifier: GPL-2.0-only
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
10 #include <linux/bitops.h>
11 #include <linux/compiler.h>
12 #include <linux/errno.h>
13 #include <linux/filter.h>
14 #include <linux/netdevice.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/if_vlan.h>
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 #include <asm/opcodes.h>
22 #include <asm/system_info.h>
24 #include "bpf_jit_32.h"
27 * eBPF prog stack layout:
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
33 * | ... | eBPF JIT scratch space
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
37 * |RSVD | JIT scratchpad
38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
39 * | ... | caller-saved registers
41 * | ... | arguments passed on stack
42 * ARM_SP during call => +-----|
44 * | ... | Function call stack
49 * The callee saved registers depends on whether frame pointers are enabled.
50 * With frame pointers (to be compliant with the ABI):
53 * original ARM_SP => +--------------+ \
55 * current ARM_FP => +--------------+ } callee saved registers
60 * Without frame pointers:
63 * original ARM_SP => +--------------+
64 * | r4-r9,fp,lr | callee saved registers
65 * current ARM_FP => +--------------+
68 * When popping registers off the stack at the end of a BPF function, we
69 * reference them via the current ARM_FP register.
71 * Some eBPF operations are implemented via a call to a helper function.
72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
73 * program to preserve any caller-saved ARM registers during the call. The
74 * JIT emits code to push and pop those registers onto the stack, immediately
75 * above the callee stack frame.
77 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
78 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
80 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
81 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
83 #define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
86 /* Stack layout - these are offsets from (top of stack - 4) */
107 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
108 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
109 * BPF_REG_FP and Tail call counts.
111 BPF_JIT_SCRATCH_REGS,
115 * Negative "register" values indicate the register is stored on the stack
116 * and are the offset from the top of the eBPF JIT scratch space.
118 #define STACK_OFFSET(k) (-4 - (k) * 4)
119 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
121 #ifdef CONFIG_FRAME_POINTER
122 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
124 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
127 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
128 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
129 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
131 #define FLAG_IMM_OVERFLOW (1 << 0)
134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
136 * 1. First argument is passed using the arm 32bit registers and rest of the
137 * arguments are passed on stack scratch space.
138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
139 * arguments are mapped to scratch space on stack.
140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
145 * scratch memory space and we have to build eBPF 64 bit register from those.
148 static const s8 bpf2a32[][2] = {
149 /* return value from in-kernel function, and exit value from eBPF */
150 [BPF_REG_0] = {ARM_R1, ARM_R0},
151 /* arguments from eBPF program to in-kernel function */
152 [BPF_REG_1] = {ARM_R3, ARM_R2},
153 /* Stored on stack scratch space */
154 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
155 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
156 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
157 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
158 /* callee saved registers that in-kernel function will preserve */
159 [BPF_REG_6] = {ARM_R5, ARM_R4},
160 /* Stored on stack scratch space */
161 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
162 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
163 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
164 /* Read only Frame Pointer to access Stack */
165 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
166 /* Temporary Register for internal BPF JIT, can be used
167 * for constant blindings and others.
169 [TMP_REG_1] = {ARM_R7, ARM_R6},
170 [TMP_REG_2] = {ARM_R9, ARM_R8},
171 /* Tail call count. Stored on stack scratch space. */
172 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
173 /* temporary register for blinding constants.
174 * Stored on stack scratch space.
176 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
179 #define dst_lo dst[1]
180 #define dst_hi dst[0]
181 #define src_lo src[1]
182 #define src_hi src[0]
188 * idx : index of current last JITed instruction.
189 * prologue_bytes : bytes used in prologue.
190 * epilogue_offset : offset of epilogue starting.
191 * offsets : array of eBPF instruction offsets in
193 * target : final JITed code.
194 * epilogue_bytes : no of bytes used in epilogue.
195 * imm_count : no of immediate counts used for global
197 * imms : array of global variable addresses.
201 const struct bpf_prog *prog;
203 unsigned int prologue_bytes;
204 unsigned int epilogue_offset;
205 unsigned int cpu_architecture;
210 #if __LINUX_ARM_ARCH__ < 7
218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
219 * (where the assembly routines like __aeabi_uidiv could cause problems).
221 static u32 jit_udiv32(u32 dividend, u32 divisor)
223 return dividend / divisor;
226 static u32 jit_mod32(u32 dividend, u32 divisor)
228 return dividend % divisor;
231 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
233 inst |= (cond << 28);
234 inst = __opcode_to_mem_arm(inst);
236 if (ctx->target != NULL)
237 ctx->target[ctx->idx] = inst;
243 * Emit an instruction that will be executed unconditionally.
245 static inline void emit(u32 inst, struct jit_ctx *ctx)
247 _emit(ARM_COND_AL, inst, ctx);
251 * This is rather horrid, but necessary to convert an integer constant
252 * to an immediate operand for the opcodes, and be able to detect at
253 * build time whether the constant can't be converted (iow, usable in
256 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
257 #define const_imm8m(x) \
260 if (!(v & ~0x000000ff)) \
261 r = imm12val(v, 0); \
262 else if (!(v & ~0xc000003f)) \
263 r = imm12val(v, 2); \
264 else if (!(v & ~0xf000000f)) \
265 r = imm12val(v, 4); \
266 else if (!(v & ~0xfc000003)) \
267 r = imm12val(v, 6); \
268 else if (!(v & ~0xff000000)) \
269 r = imm12val(v, 8); \
270 else if (!(v & ~0x3fc00000)) \
271 r = imm12val(v, 10); \
272 else if (!(v & ~0x0ff00000)) \
273 r = imm12val(v, 12); \
274 else if (!(v & ~0x03fc0000)) \
275 r = imm12val(v, 14); \
276 else if (!(v & ~0x00ff0000)) \
277 r = imm12val(v, 16); \
278 else if (!(v & ~0x003fc000)) \
279 r = imm12val(v, 18); \
280 else if (!(v & ~0x000ff000)) \
281 r = imm12val(v, 20); \
282 else if (!(v & ~0x0003fc00)) \
283 r = imm12val(v, 22); \
284 else if (!(v & ~0x0000ff00)) \
285 r = imm12val(v, 24); \
286 else if (!(v & ~0x00003fc0)) \
287 r = imm12val(v, 26); \
288 else if (!(v & ~0x00000ff0)) \
289 r = imm12val(v, 28); \
290 else if (!(v & ~0x000003fc)) \
291 r = imm12val(v, 30); \
297 * Checks if immediate value can be converted to imm12(12 bits) value.
299 static int imm8m(u32 x)
303 for (rot = 0; rot < 16; rot++)
304 if ((x & ~ror32(0xff, 2 * rot)) == 0)
305 return rol32(x, 2 * rot) | (rot << 8);
309 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
311 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
313 op |= rt << 12 | rn << 16;
315 op |= ARM_INST_LDST__U;
318 return op | (imm12 & ARM_INST_LDST__IMM12);
321 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
323 op |= rt << 12 | rn << 16;
325 op |= ARM_INST_LDST__U;
328 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
331 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
332 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
333 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
334 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
336 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
337 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
338 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
339 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
342 * Initializes the JIT space with undefined instructions.
344 static void jit_fill_hole(void *area, unsigned int size)
347 /* We are guaranteed to have aligned memory. */
348 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
349 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
352 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
353 /* EABI requires the stack to be aligned to 64-bit boundaries */
354 #define STACK_ALIGNMENT 8
356 /* Stack must be aligned to 32-bit boundaries */
357 #define STACK_ALIGNMENT 4
360 /* total stack size used in JITed code */
361 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
362 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
364 #if __LINUX_ARM_ARCH__ < 7
366 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
368 unsigned int i = 0, offset;
371 /* on the "fake" run we just count them (duplicates included) */
372 if (ctx->target == NULL) {
377 while ((i < ctx->imm_count) && ctx->imms[i]) {
378 if (ctx->imms[i] == k)
383 if (ctx->imms[i] == 0)
386 /* constants go just after the epilogue */
387 offset = ctx->offsets[ctx->prog->len - 1] * 4;
388 offset += ctx->prologue_bytes;
389 offset += ctx->epilogue_bytes;
392 ctx->target[offset / 4] = k;
394 /* PC in ARM mode == address of the instruction + 8 */
395 imm = offset - (8 + ctx->idx * 4);
399 * literal pool is too far, signal it into flags. we
400 * can only detect it on the second pass unfortunately.
402 ctx->flags |= FLAG_IMM_OVERFLOW;
409 #endif /* __LINUX_ARM_ARCH__ */
411 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
412 const struct jit_ctx *ctx) {
415 if (ctx->target == NULL)
417 to = ctx->offsets[bpf_to];
418 from = ctx->offsets[bpf_from];
420 return to - from - 1;
424 * Move an immediate that's not an imm8m to a core register.
426 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
428 #if __LINUX_ARM_ARCH__ < 7
429 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
431 emit(ARM_MOVW(rd, val & 0xffff), ctx);
433 emit(ARM_MOVT(rd, val >> 16), ctx);
437 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
439 int imm12 = imm8m(val);
442 emit(ARM_MOV_I(rd, imm12), ctx);
444 emit_mov_i_no8m(rd, val, ctx);
447 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
449 if (elf_hwcap & HWCAP_THUMB)
450 emit(ARM_BX(tgt_reg), ctx);
452 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
455 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
457 #if __LINUX_ARM_ARCH__ < 5
458 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
459 emit_bx_r(tgt_reg, ctx);
461 emit(ARM_BLX_R(tgt_reg), ctx);
465 static inline int epilogue_offset(const struct jit_ctx *ctx)
468 /* No need for 1st dummy run */
469 if (ctx->target == NULL)
471 to = ctx->epilogue_offset;
474 return to - from - 2;
477 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
479 const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
480 const s8 *tmp = bpf2a32[TMP_REG_1];
482 #if __LINUX_ARM_ARCH__ == 7
483 if (elf_hwcap & HWCAP_IDIVA) {
485 emit(ARM_UDIV(rd, rm, rn), ctx);
487 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
488 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
495 * For BPF_ALU | BPF_DIV | BPF_K instructions
496 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
497 * function, we need to save it on caller side to save
498 * it from getting destroyed within callee.
499 * After the return from the callee, we restore ARM_R0
503 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
504 emit(ARM_MOV_R(ARM_R1, rn), ctx);
507 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
508 emit(ARM_MOV_R(ARM_R0, rm), ctx);
511 /* Push caller-saved registers on stack */
512 emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
514 /* Call appropriate function */
515 emit_mov_i(ARM_IP, op == BPF_DIV ?
516 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
517 emit_blx_r(ARM_IP, ctx);
519 /* Restore caller-saved registers from stack */
520 emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
522 /* Save return value */
524 emit(ARM_MOV_R(rd, ARM_R0), ctx);
526 /* Restore ARM_R0 and ARM_R1 */
528 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
530 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
533 /* Is the translated BPF register on stack? */
534 static bool is_stacked(s8 reg)
539 /* If a BPF register is on the stack (stk is true), load it to the
540 * supplied temporary register and return the temporary register
541 * for subsequent operations, otherwise just use the CPU register.
543 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
545 if (is_stacked(reg)) {
546 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
552 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
555 if (is_stacked(reg[1])) {
556 if (__LINUX_ARM_ARCH__ >= 6 ||
557 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
558 emit(ARM_LDRD_I(tmp[1], ARM_FP,
559 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
561 emit(ARM_LDR_I(tmp[1], ARM_FP,
562 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
563 emit(ARM_LDR_I(tmp[0], ARM_FP,
564 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
571 /* If a BPF register is on the stack (stk is true), save the register
572 * back to the stack. If the source register is not the same, then
573 * move it into the correct register.
575 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
578 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
580 emit(ARM_MOV_R(reg, src), ctx);
583 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
586 if (is_stacked(reg[1])) {
587 if (__LINUX_ARM_ARCH__ >= 6 ||
588 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
589 emit(ARM_STRD_I(src[1], ARM_FP,
590 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
592 emit(ARM_STR_I(src[1], ARM_FP,
593 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
594 emit(ARM_STR_I(src[0], ARM_FP,
595 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
598 if (reg[1] != src[1])
599 emit(ARM_MOV_R(reg[1], src[1]), ctx);
600 if (reg[0] != src[0])
601 emit(ARM_MOV_R(reg[0], src[0]), ctx);
605 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
608 const s8 *tmp = bpf2a32[TMP_REG_1];
610 if (is_stacked(dst)) {
611 emit_mov_i(tmp[1], val, ctx);
612 arm_bpf_put_reg32(dst, tmp[1], ctx);
614 emit_mov_i(dst, val, ctx);
618 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
620 const s8 *tmp = bpf2a32[TMP_REG_1];
621 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
623 emit_mov_i(rd[1], (u32)val, ctx);
624 emit_mov_i(rd[0], val >> 32, ctx);
626 arm_bpf_put_reg64(dst, rd, ctx);
629 /* Sign extended move */
630 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
631 const u32 val, struct jit_ctx *ctx) {
634 if (is64 && (val & (1<<31)))
635 val64 |= 0xffffffff00000000ULL;
636 emit_a32_mov_i64(dst, val64, ctx);
639 static inline void emit_a32_add_r(const u8 dst, const u8 src,
640 const bool is64, const bool hi,
641 struct jit_ctx *ctx) {
643 * adds dst_lo, dst_lo, src_lo
644 * adc dst_hi, dst_hi, src_hi
646 * add dst_lo, dst_lo, src_lo
649 emit(ARM_ADDS_R(dst, dst, src), ctx);
651 emit(ARM_ADC_R(dst, dst, src), ctx);
653 emit(ARM_ADD_R(dst, dst, src), ctx);
656 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
657 const bool is64, const bool hi,
658 struct jit_ctx *ctx) {
660 * subs dst_lo, dst_lo, src_lo
661 * sbc dst_hi, dst_hi, src_hi
663 * sub dst_lo, dst_lo, src_lo
666 emit(ARM_SUBS_R(dst, dst, src), ctx);
668 emit(ARM_SBC_R(dst, dst, src), ctx);
670 emit(ARM_SUB_R(dst, dst, src), ctx);
673 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
674 const bool hi, const u8 op, struct jit_ctx *ctx){
675 switch (BPF_OP(op)) {
676 /* dst = dst + src */
678 emit_a32_add_r(dst, src, is64, hi, ctx);
680 /* dst = dst - src */
682 emit_a32_sub_r(dst, src, is64, hi, ctx);
684 /* dst = dst | src */
686 emit(ARM_ORR_R(dst, dst, src), ctx);
688 /* dst = dst & src */
690 emit(ARM_AND_R(dst, dst, src), ctx);
692 /* dst = dst ^ src */
694 emit(ARM_EOR_R(dst, dst, src), ctx);
696 /* dst = dst * src */
698 emit(ARM_MUL(dst, dst, src), ctx);
700 /* dst = dst << src */
702 emit(ARM_LSL_R(dst, dst, src), ctx);
704 /* dst = dst >> src */
706 emit(ARM_LSR_R(dst, dst, src), ctx);
708 /* dst = dst >> src (signed)*/
710 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
715 /* ALU operation (32 bit)
718 static inline void emit_a32_alu_r(const s8 dst, const s8 src,
719 struct jit_ctx *ctx, const bool is64,
720 const bool hi, const u8 op) {
721 const s8 *tmp = bpf2a32[TMP_REG_1];
724 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
725 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
727 emit_alu_r(rd, rn, is64, hi, op, ctx);
728 arm_bpf_put_reg32(dst, rd, ctx);
731 /* ALU operation (64 bit) */
732 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
733 const s8 src[], struct jit_ctx *ctx,
735 const s8 *tmp = bpf2a32[TMP_REG_1];
736 const s8 *tmp2 = bpf2a32[TMP_REG_2];
739 rd = arm_bpf_get_reg64(dst, tmp, ctx);
743 rs = arm_bpf_get_reg64(src, tmp2, ctx);
746 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
747 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
751 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
754 emit_alu_r(rd[1], rs, true, false, op, ctx);
755 if (!ctx->prog->aux->verifier_zext)
756 emit_a32_mov_i(rd[0], 0, ctx);
759 arm_bpf_put_reg64(dst, rd, ctx);
762 /* dst = src (4 bytes)*/
763 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
764 struct jit_ctx *ctx) {
765 const s8 *tmp = bpf2a32[TMP_REG_1];
768 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
769 arm_bpf_put_reg32(dst, rt, ctx);
773 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
775 struct jit_ctx *ctx) {
777 emit_a32_mov_r(dst_lo, src_lo, ctx);
778 if (!ctx->prog->aux->verifier_zext)
779 /* Zero out high 4 bytes */
780 emit_a32_mov_i(dst_hi, 0, ctx);
781 } else if (__LINUX_ARM_ARCH__ < 6 &&
782 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
783 /* complete 8 byte move */
784 emit_a32_mov_r(dst_lo, src_lo, ctx);
785 emit_a32_mov_r(dst_hi, src_hi, ctx);
786 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
787 const u8 *tmp = bpf2a32[TMP_REG_1];
789 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
790 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
791 } else if (is_stacked(src_lo)) {
792 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
793 } else if (is_stacked(dst_lo)) {
794 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
796 emit(ARM_MOV_R(dst[0], src[0]), ctx);
797 emit(ARM_MOV_R(dst[1], src[1]), ctx);
801 /* Shift operations */
802 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
803 struct jit_ctx *ctx, const u8 op) {
804 const s8 *tmp = bpf2a32[TMP_REG_1];
807 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
809 /* Do shift operation */
812 emit(ARM_LSL_I(rd, rd, val), ctx);
815 emit(ARM_LSR_I(rd, rd, val), ctx);
818 emit(ARM_ASR_I(rd, rd, val), ctx);
821 emit(ARM_RSB_I(rd, rd, val), ctx);
825 arm_bpf_put_reg32(dst, rd, ctx);
828 /* dst = ~dst (64 bit) */
829 static inline void emit_a32_neg64(const s8 dst[],
830 struct jit_ctx *ctx){
831 const s8 *tmp = bpf2a32[TMP_REG_1];
835 rd = arm_bpf_get_reg64(dst, tmp, ctx);
837 /* Do Negate Operation */
838 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
839 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
841 arm_bpf_put_reg64(dst, rd, ctx);
844 /* dst = dst << src */
845 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
846 struct jit_ctx *ctx) {
847 const s8 *tmp = bpf2a32[TMP_REG_1];
848 const s8 *tmp2 = bpf2a32[TMP_REG_2];
853 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
854 rd = arm_bpf_get_reg64(dst, tmp, ctx);
856 /* Do LSH operation */
857 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
858 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
859 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
860 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
861 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
862 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
864 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
865 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
868 /* dst = dst >> src (signed)*/
869 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
870 struct jit_ctx *ctx) {
871 const s8 *tmp = bpf2a32[TMP_REG_1];
872 const s8 *tmp2 = bpf2a32[TMP_REG_2];
877 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
878 rd = arm_bpf_get_reg64(dst, tmp, ctx);
880 /* Do the ARSH operation */
881 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
882 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
883 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
884 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
886 ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
887 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
889 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
890 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
893 /* dst = dst >> src */
894 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
895 struct jit_ctx *ctx) {
896 const s8 *tmp = bpf2a32[TMP_REG_1];
897 const s8 *tmp2 = bpf2a32[TMP_REG_2];
902 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
903 rd = arm_bpf_get_reg64(dst, tmp, ctx);
905 /* Do RSH operation */
906 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
907 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
908 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
909 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
910 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
911 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
913 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
914 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
917 /* dst = dst << val */
918 static inline void emit_a32_lsh_i64(const s8 dst[],
919 const u32 val, struct jit_ctx *ctx){
920 const s8 *tmp = bpf2a32[TMP_REG_1];
921 const s8 *tmp2 = bpf2a32[TMP_REG_2];
925 rd = arm_bpf_get_reg64(dst, tmp, ctx);
927 /* Do LSH operation */
929 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
930 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
931 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
934 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
936 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
937 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
940 arm_bpf_put_reg64(dst, rd, ctx);
943 /* dst = dst >> val */
944 static inline void emit_a32_rsh_i64(const s8 dst[],
945 const u32 val, struct jit_ctx *ctx) {
946 const s8 *tmp = bpf2a32[TMP_REG_1];
947 const s8 *tmp2 = bpf2a32[TMP_REG_2];
951 rd = arm_bpf_get_reg64(dst, tmp, ctx);
953 /* Do LSR operation */
955 /* An immediate value of 0 encodes a shift amount of 32
956 * for LSR. To shift by 0, don't do anything.
958 } else if (val < 32) {
959 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
960 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
961 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
962 } else if (val == 32) {
963 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
964 emit(ARM_MOV_I(rd[0], 0), ctx);
966 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
967 emit(ARM_MOV_I(rd[0], 0), ctx);
970 arm_bpf_put_reg64(dst, rd, ctx);
973 /* dst = dst >> val (signed) */
974 static inline void emit_a32_arsh_i64(const s8 dst[],
975 const u32 val, struct jit_ctx *ctx){
976 const s8 *tmp = bpf2a32[TMP_REG_1];
977 const s8 *tmp2 = bpf2a32[TMP_REG_2];
981 rd = arm_bpf_get_reg64(dst, tmp, ctx);
983 /* Do ARSH operation */
985 /* An immediate value of 0 encodes a shift amount of 32
986 * for ASR. To shift by 0, don't do anything.
988 } else if (val < 32) {
989 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
990 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
991 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
992 } else if (val == 32) {
993 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
994 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
996 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
997 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1000 arm_bpf_put_reg64(dst, rd, ctx);
1003 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1004 struct jit_ctx *ctx) {
1005 const s8 *tmp = bpf2a32[TMP_REG_1];
1006 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1009 /* Setup operands for multiplication */
1010 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1011 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1013 /* Do Multiplication */
1014 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1015 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1016 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1018 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1019 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1021 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1022 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1025 static bool is_ldst_imm(s16 off, const u8 size)
1038 /* Need to make sure off+4 does not overflow. */
1039 off_max = 0xfff - 4;
1042 return -off_max <= off && off <= off_max;
1045 /* *(size *)(dst + off) = src */
1046 static inline void emit_str_r(const s8 dst, const s8 src[],
1047 s16 off, struct jit_ctx *ctx, const u8 sz){
1048 const s8 *tmp = bpf2a32[TMP_REG_1];
1051 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1053 if (!is_ldst_imm(off, sz)) {
1054 emit_a32_mov_i(tmp[0], off, ctx);
1055 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1062 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1065 /* Store a HalfWord */
1066 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1070 emit(ARM_STR_I(src_lo, rd, off), ctx);
1073 /* Store a Double Word */
1074 emit(ARM_STR_I(src_lo, rd, off), ctx);
1075 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1080 /* dst = *(size*)(src + off) */
1081 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1082 s16 off, struct jit_ctx *ctx, const u8 sz){
1083 const s8 *tmp = bpf2a32[TMP_REG_1];
1084 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1087 if (!is_ldst_imm(off, sz)) {
1088 emit_a32_mov_i(tmp[0], off, ctx);
1089 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1092 } else if (rd[1] == rm) {
1093 emit(ARM_MOV_R(tmp[0], rm), ctx);
1099 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1100 if (!ctx->prog->aux->verifier_zext)
1101 emit_a32_mov_i(rd[0], 0, ctx);
1104 /* Load a HalfWord */
1105 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1106 if (!ctx->prog->aux->verifier_zext)
1107 emit_a32_mov_i(rd[0], 0, ctx);
1111 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1112 if (!ctx->prog->aux->verifier_zext)
1113 emit_a32_mov_i(rd[0], 0, ctx);
1116 /* Load a Double Word */
1117 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1118 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1121 arm_bpf_put_reg64(dst, rd, ctx);
1124 /* Arithmatic Operation */
1125 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1126 const u8 rn, struct jit_ctx *ctx, u8 op,
1131 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1132 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1133 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1135 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1145 emit(ARM_CMP_R(rd, rm), ctx);
1146 /* Only compare low halve if high halve are equal. */
1147 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1149 emit(ARM_CMP_R(rt, rn), ctx);
1154 emit(ARM_CMP_R(rn, rt), ctx);
1156 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1160 emit(ARM_CMP_R(rt, rn), ctx);
1162 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1167 static int out_offset = -1; /* initialized on the first pass of build_body() */
1168 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1171 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1172 const s8 *r2 = bpf2a32[BPF_REG_2];
1173 const s8 *r3 = bpf2a32[BPF_REG_3];
1174 const s8 *tmp = bpf2a32[TMP_REG_1];
1175 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1176 const s8 *tcc = bpf2a32[TCALL_CNT];
1178 const int idx0 = ctx->idx;
1179 #define cur_offset (ctx->idx - idx0)
1180 #define jmp_offset (out_offset - (cur_offset) - 2)
1182 s8 r_array, r_index;
1185 /* if (index >= array->map.max_entries)
1188 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1189 ARM_INST_LDST__IMM12);
1190 off = offsetof(struct bpf_array, map.max_entries);
1191 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1192 /* index is 32-bit for arrays */
1193 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1194 /* array->map.max_entries */
1195 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1196 /* index >= array->map.max_entries */
1197 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1198 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1200 /* tmp2[0] = array, tmp2[1] = index */
1202 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1206 lo = (u32)MAX_TAIL_CALL_CNT;
1207 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1208 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1209 emit(ARM_CMP_I(tc[0], hi), ctx);
1210 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1211 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1212 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1213 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1214 arm_bpf_put_reg64(tcc, tmp, ctx);
1216 /* prog = array->ptrs[index]
1220 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1221 off = imm8m(offsetof(struct bpf_array, ptrs));
1222 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1223 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1224 emit(ARM_CMP_I(tmp[1], 0), ctx);
1225 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1227 /* goto *(prog->bpf_func + prologue_size); */
1228 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1229 ARM_INST_LDST__IMM12);
1230 off = offsetof(struct bpf_prog, bpf_func);
1231 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1232 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1233 emit_bx_r(tmp[1], ctx);
1236 if (out_offset == -1)
1237 out_offset = cur_offset;
1238 if (cur_offset != out_offset) {
1239 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1240 cur_offset, out_offset);
1248 /* 0xabcd => 0xcdab */
1249 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1251 #if __LINUX_ARM_ARCH__ < 6
1252 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1254 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1255 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1256 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1257 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1259 emit(ARM_REV16(rd, rn), ctx);
1263 /* 0xabcdefgh => 0xghefcdab */
1264 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1266 #if __LINUX_ARM_ARCH__ < 6
1267 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1269 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1270 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1271 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1273 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1274 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1275 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1276 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1277 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1278 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1279 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1282 emit(ARM_REV(rd, rn), ctx);
1286 // push the scratch stack register on top of the stack
1287 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1289 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1293 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1295 reg_set = (1 << rt[1]) | (1 << rt[0]);
1296 emit(ARM_PUSH(reg_set), ctx);
1299 static void build_prologue(struct jit_ctx *ctx)
1301 const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1302 const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1303 const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1304 const s8 *tcc = bpf2a32[TCALL_CNT];
1306 /* Save callee saved registers. */
1307 #ifdef CONFIG_FRAME_POINTER
1308 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1309 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1310 emit(ARM_PUSH(reg_set), ctx);
1311 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1313 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1314 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1317 /* sub r2, sp, #SCRATCH_SIZE */
1318 emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1319 emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1321 ctx->stack_size = imm8m(STACK_SIZE);
1323 /* Set up function call stack */
1324 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1326 /* Set up BPF prog stack base register */
1327 emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1329 /* Initialize Tail Count */
1330 emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1331 emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1333 /* Move BPF_CTX to BPF_R1 */
1334 emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1336 /* end of prologue */
1339 /* restore callee saved registers. */
1340 static void build_epilogue(struct jit_ctx *ctx)
1342 #ifdef CONFIG_FRAME_POINTER
1343 /* When using frame pointers, some additional registers need to
1345 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1346 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1347 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1349 /* Restore callee saved registers. */
1350 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1351 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1356 * Convert an eBPF instruction to native instruction, i.e
1357 * JITs an eBPF instruction.
1359 * 0 - Successfully JITed an 8-byte eBPF instruction
1360 * >0 - Successfully JITed a 16-byte eBPF instruction
1361 * <0 - Failed to JIT.
1363 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1365 const u8 code = insn->code;
1366 const s8 *dst = bpf2a32[insn->dst_reg];
1367 const s8 *src = bpf2a32[insn->src_reg];
1368 const s8 *tmp = bpf2a32[TMP_REG_1];
1369 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1370 const s16 off = insn->off;
1371 const s32 imm = insn->imm;
1372 const int i = insn - ctx->prog->insnsi;
1373 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1375 s8 rd_lo, rt, rm, rn;
1378 #define check_imm(bits, imm) do { \
1379 if ((imm) >= (1 << ((bits) - 1)) || \
1380 (imm) < -(1 << ((bits) - 1))) { \
1381 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1386 #define check_imm24(imm) check_imm(24, imm)
1389 /* ALU operations */
1392 case BPF_ALU | BPF_MOV | BPF_K:
1393 case BPF_ALU | BPF_MOV | BPF_X:
1394 case BPF_ALU64 | BPF_MOV | BPF_K:
1395 case BPF_ALU64 | BPF_MOV | BPF_X:
1396 switch (BPF_SRC(code)) {
1399 /* Special mov32 for zext */
1400 emit_a32_mov_i(dst_hi, 0, ctx);
1403 emit_a32_mov_r64(is64, dst, src, ctx);
1406 /* Sign-extend immediate value to destination reg */
1407 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1411 /* dst = dst + src/imm */
1412 /* dst = dst - src/imm */
1413 /* dst = dst | src/imm */
1414 /* dst = dst & src/imm */
1415 /* dst = dst ^ src/imm */
1416 /* dst = dst * src/imm */
1417 /* dst = dst << src */
1418 /* dst = dst >> src */
1419 case BPF_ALU | BPF_ADD | BPF_K:
1420 case BPF_ALU | BPF_ADD | BPF_X:
1421 case BPF_ALU | BPF_SUB | BPF_K:
1422 case BPF_ALU | BPF_SUB | BPF_X:
1423 case BPF_ALU | BPF_OR | BPF_K:
1424 case BPF_ALU | BPF_OR | BPF_X:
1425 case BPF_ALU | BPF_AND | BPF_K:
1426 case BPF_ALU | BPF_AND | BPF_X:
1427 case BPF_ALU | BPF_XOR | BPF_K:
1428 case BPF_ALU | BPF_XOR | BPF_X:
1429 case BPF_ALU | BPF_MUL | BPF_K:
1430 case BPF_ALU | BPF_MUL | BPF_X:
1431 case BPF_ALU | BPF_LSH | BPF_X:
1432 case BPF_ALU | BPF_RSH | BPF_X:
1433 case BPF_ALU | BPF_ARSH | BPF_X:
1434 case BPF_ALU64 | BPF_ADD | BPF_K:
1435 case BPF_ALU64 | BPF_ADD | BPF_X:
1436 case BPF_ALU64 | BPF_SUB | BPF_K:
1437 case BPF_ALU64 | BPF_SUB | BPF_X:
1438 case BPF_ALU64 | BPF_OR | BPF_K:
1439 case BPF_ALU64 | BPF_OR | BPF_X:
1440 case BPF_ALU64 | BPF_AND | BPF_K:
1441 case BPF_ALU64 | BPF_AND | BPF_X:
1442 case BPF_ALU64 | BPF_XOR | BPF_K:
1443 case BPF_ALU64 | BPF_XOR | BPF_X:
1444 switch (BPF_SRC(code)) {
1446 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1449 /* Move immediate value to the temporary register
1450 * and then do the ALU operation on the temporary
1451 * register as this will sign-extend the immediate
1452 * value into temporary reg and then it would be
1453 * safe to do the operation on it.
1455 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1456 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1460 /* dst = dst / src(imm) */
1461 /* dst = dst % src(imm) */
1462 case BPF_ALU | BPF_DIV | BPF_K:
1463 case BPF_ALU | BPF_DIV | BPF_X:
1464 case BPF_ALU | BPF_MOD | BPF_K:
1465 case BPF_ALU | BPF_MOD | BPF_X:
1466 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1467 switch (BPF_SRC(code)) {
1469 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1473 emit_a32_mov_i(rt, imm, ctx);
1479 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1480 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1481 if (!ctx->prog->aux->verifier_zext)
1482 emit_a32_mov_i(dst_hi, 0, ctx);
1484 case BPF_ALU64 | BPF_DIV | BPF_K:
1485 case BPF_ALU64 | BPF_DIV | BPF_X:
1486 case BPF_ALU64 | BPF_MOD | BPF_K:
1487 case BPF_ALU64 | BPF_MOD | BPF_X:
1489 /* dst = dst << imm */
1490 /* dst = dst >> imm */
1491 /* dst = dst >> imm (signed) */
1492 case BPF_ALU | BPF_LSH | BPF_K:
1493 case BPF_ALU | BPF_RSH | BPF_K:
1494 case BPF_ALU | BPF_ARSH | BPF_K:
1495 if (unlikely(imm > 31))
1498 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1499 if (!ctx->prog->aux->verifier_zext)
1500 emit_a32_mov_i(dst_hi, 0, ctx);
1502 /* dst = dst << imm */
1503 case BPF_ALU64 | BPF_LSH | BPF_K:
1504 if (unlikely(imm > 63))
1506 emit_a32_lsh_i64(dst, imm, ctx);
1508 /* dst = dst >> imm */
1509 case BPF_ALU64 | BPF_RSH | BPF_K:
1510 if (unlikely(imm > 63))
1512 emit_a32_rsh_i64(dst, imm, ctx);
1514 /* dst = dst << src */
1515 case BPF_ALU64 | BPF_LSH | BPF_X:
1516 emit_a32_lsh_r64(dst, src, ctx);
1518 /* dst = dst >> src */
1519 case BPF_ALU64 | BPF_RSH | BPF_X:
1520 emit_a32_rsh_r64(dst, src, ctx);
1522 /* dst = dst >> src (signed) */
1523 case BPF_ALU64 | BPF_ARSH | BPF_X:
1524 emit_a32_arsh_r64(dst, src, ctx);
1526 /* dst = dst >> imm (signed) */
1527 case BPF_ALU64 | BPF_ARSH | BPF_K:
1528 if (unlikely(imm > 63))
1530 emit_a32_arsh_i64(dst, imm, ctx);
1533 case BPF_ALU | BPF_NEG:
1534 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1535 if (!ctx->prog->aux->verifier_zext)
1536 emit_a32_mov_i(dst_hi, 0, ctx);
1538 /* dst = ~dst (64 bit) */
1539 case BPF_ALU64 | BPF_NEG:
1540 emit_a32_neg64(dst, ctx);
1542 /* dst = dst * src/imm */
1543 case BPF_ALU64 | BPF_MUL | BPF_X:
1544 case BPF_ALU64 | BPF_MUL | BPF_K:
1545 switch (BPF_SRC(code)) {
1547 emit_a32_mul_r64(dst, src, ctx);
1550 /* Move immediate value to the temporary register
1551 * and then do the multiplication on it as this
1552 * will sign-extend the immediate value into temp
1553 * reg then it would be safe to do the operation
1556 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1557 emit_a32_mul_r64(dst, tmp2, ctx);
1561 /* dst = htole(dst) */
1562 /* dst = htobe(dst) */
1563 case BPF_ALU | BPF_END | BPF_FROM_LE:
1564 case BPF_ALU | BPF_END | BPF_FROM_BE:
1565 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1566 if (BPF_SRC(code) == BPF_FROM_LE)
1567 goto emit_bswap_uxt;
1570 emit_rev16(rd[1], rd[1], ctx);
1571 goto emit_bswap_uxt;
1573 emit_rev32(rd[1], rd[1], ctx);
1574 goto emit_bswap_uxt;
1576 emit_rev32(ARM_LR, rd[1], ctx);
1577 emit_rev32(rd[1], rd[0], ctx);
1578 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1585 /* zero-extend 16 bits into 64 bits */
1586 #if __LINUX_ARM_ARCH__ < 6
1587 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1588 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1590 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1592 if (!ctx->prog->aux->verifier_zext)
1593 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1596 /* zero-extend 32 bits into 64 bits */
1597 if (!ctx->prog->aux->verifier_zext)
1598 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1605 arm_bpf_put_reg64(dst, rd, ctx);
1608 case BPF_LD | BPF_IMM | BPF_DW:
1610 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1612 emit_a32_mov_i64(dst, val, ctx);
1616 /* LDX: dst = *(size *)(src + off) */
1617 case BPF_LDX | BPF_MEM | BPF_W:
1618 case BPF_LDX | BPF_MEM | BPF_H:
1619 case BPF_LDX | BPF_MEM | BPF_B:
1620 case BPF_LDX | BPF_MEM | BPF_DW:
1621 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1622 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1624 /* speculation barrier */
1625 case BPF_ST | BPF_NOSPEC:
1627 /* ST: *(size *)(dst + off) = imm */
1628 case BPF_ST | BPF_MEM | BPF_W:
1629 case BPF_ST | BPF_MEM | BPF_H:
1630 case BPF_ST | BPF_MEM | BPF_B:
1631 case BPF_ST | BPF_MEM | BPF_DW:
1632 switch (BPF_SIZE(code)) {
1634 /* Sign-extend immediate value into temp reg */
1635 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1640 emit_a32_mov_i(tmp2[1], imm, ctx);
1643 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1646 case BPF_STX | BPF_ATOMIC | BPF_W:
1647 case BPF_STX | BPF_ATOMIC | BPF_DW:
1649 /* STX: *(size *)(dst + off) = src */
1650 case BPF_STX | BPF_MEM | BPF_W:
1651 case BPF_STX | BPF_MEM | BPF_H:
1652 case BPF_STX | BPF_MEM | BPF_B:
1653 case BPF_STX | BPF_MEM | BPF_DW:
1654 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1655 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1657 /* PC += off if dst == src */
1658 /* PC += off if dst > src */
1659 /* PC += off if dst >= src */
1660 /* PC += off if dst < src */
1661 /* PC += off if dst <= src */
1662 /* PC += off if dst != src */
1663 /* PC += off if dst > src (signed) */
1664 /* PC += off if dst >= src (signed) */
1665 /* PC += off if dst < src (signed) */
1666 /* PC += off if dst <= src (signed) */
1667 /* PC += off if dst & src */
1668 case BPF_JMP | BPF_JEQ | BPF_X:
1669 case BPF_JMP | BPF_JGT | BPF_X:
1670 case BPF_JMP | BPF_JGE | BPF_X:
1671 case BPF_JMP | BPF_JNE | BPF_X:
1672 case BPF_JMP | BPF_JSGT | BPF_X:
1673 case BPF_JMP | BPF_JSGE | BPF_X:
1674 case BPF_JMP | BPF_JSET | BPF_X:
1675 case BPF_JMP | BPF_JLE | BPF_X:
1676 case BPF_JMP | BPF_JLT | BPF_X:
1677 case BPF_JMP | BPF_JSLT | BPF_X:
1678 case BPF_JMP | BPF_JSLE | BPF_X:
1679 case BPF_JMP32 | BPF_JEQ | BPF_X:
1680 case BPF_JMP32 | BPF_JGT | BPF_X:
1681 case BPF_JMP32 | BPF_JGE | BPF_X:
1682 case BPF_JMP32 | BPF_JNE | BPF_X:
1683 case BPF_JMP32 | BPF_JSGT | BPF_X:
1684 case BPF_JMP32 | BPF_JSGE | BPF_X:
1685 case BPF_JMP32 | BPF_JSET | BPF_X:
1686 case BPF_JMP32 | BPF_JLE | BPF_X:
1687 case BPF_JMP32 | BPF_JLT | BPF_X:
1688 case BPF_JMP32 | BPF_JSLT | BPF_X:
1689 case BPF_JMP32 | BPF_JSLE | BPF_X:
1690 /* Setup source registers */
1691 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1692 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1694 /* PC += off if dst == imm */
1695 /* PC += off if dst > imm */
1696 /* PC += off if dst >= imm */
1697 /* PC += off if dst < imm */
1698 /* PC += off if dst <= imm */
1699 /* PC += off if dst != imm */
1700 /* PC += off if dst > imm (signed) */
1701 /* PC += off if dst >= imm (signed) */
1702 /* PC += off if dst < imm (signed) */
1703 /* PC += off if dst <= imm (signed) */
1704 /* PC += off if dst & imm */
1705 case BPF_JMP | BPF_JEQ | BPF_K:
1706 case BPF_JMP | BPF_JGT | BPF_K:
1707 case BPF_JMP | BPF_JGE | BPF_K:
1708 case BPF_JMP | BPF_JNE | BPF_K:
1709 case BPF_JMP | BPF_JSGT | BPF_K:
1710 case BPF_JMP | BPF_JSGE | BPF_K:
1711 case BPF_JMP | BPF_JSET | BPF_K:
1712 case BPF_JMP | BPF_JLT | BPF_K:
1713 case BPF_JMP | BPF_JLE | BPF_K:
1714 case BPF_JMP | BPF_JSLT | BPF_K:
1715 case BPF_JMP | BPF_JSLE | BPF_K:
1716 case BPF_JMP32 | BPF_JEQ | BPF_K:
1717 case BPF_JMP32 | BPF_JGT | BPF_K:
1718 case BPF_JMP32 | BPF_JGE | BPF_K:
1719 case BPF_JMP32 | BPF_JNE | BPF_K:
1720 case BPF_JMP32 | BPF_JSGT | BPF_K:
1721 case BPF_JMP32 | BPF_JSGE | BPF_K:
1722 case BPF_JMP32 | BPF_JSET | BPF_K:
1723 case BPF_JMP32 | BPF_JLT | BPF_K:
1724 case BPF_JMP32 | BPF_JLE | BPF_K:
1725 case BPF_JMP32 | BPF_JSLT | BPF_K:
1726 case BPF_JMP32 | BPF_JSLE | BPF_K:
1731 /* Sign-extend immediate value */
1732 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1734 /* Setup destination register */
1735 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1737 /* Check for the condition */
1738 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1739 BPF_CLASS(code) == BPF_JMP);
1741 /* Setup JUMP instruction */
1742 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1743 switch (BPF_OP(code)) {
1746 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1749 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1752 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1755 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1758 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1761 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1764 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1767 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1770 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1773 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1778 case BPF_JMP | BPF_JA:
1782 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1783 check_imm24(jmp_offset);
1784 emit(ARM_B(jmp_offset), ctx);
1788 case BPF_JMP | BPF_TAIL_CALL:
1789 if (emit_bpf_tail_call(ctx))
1793 case BPF_JMP | BPF_CALL:
1795 const s8 *r0 = bpf2a32[BPF_REG_0];
1796 const s8 *r1 = bpf2a32[BPF_REG_1];
1797 const s8 *r2 = bpf2a32[BPF_REG_2];
1798 const s8 *r3 = bpf2a32[BPF_REG_3];
1799 const s8 *r4 = bpf2a32[BPF_REG_4];
1800 const s8 *r5 = bpf2a32[BPF_REG_5];
1801 const u32 func = (u32)__bpf_call_base + (u32)imm;
1803 emit_a32_mov_r64(true, r0, r1, ctx);
1804 emit_a32_mov_r64(true, r1, r2, ctx);
1805 emit_push_r64(r5, ctx);
1806 emit_push_r64(r4, ctx);
1807 emit_push_r64(r3, ctx);
1809 emit_a32_mov_i(tmp[1], func, ctx);
1810 emit_blx_r(tmp[1], ctx);
1812 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1815 /* function return */
1816 case BPF_JMP | BPF_EXIT:
1817 /* Optimization: when last instruction is EXIT
1818 * simply fallthrough to epilogue.
1820 if (i == ctx->prog->len - 1)
1822 jmp_offset = epilogue_offset(ctx);
1823 check_imm24(jmp_offset);
1824 emit(ARM_B(jmp_offset), ctx);
1827 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1830 pr_err_once("unknown opcode %02x\n", code);
1834 if (ctx->flags & FLAG_IMM_OVERFLOW)
1836 * this instruction generated an overflow when
1837 * trying to access the literal pool, so
1838 * delegate this filter to the kernel interpreter.
1844 static int build_body(struct jit_ctx *ctx)
1846 const struct bpf_prog *prog = ctx->prog;
1849 for (i = 0; i < prog->len; i++) {
1850 const struct bpf_insn *insn = &(prog->insnsi[i]);
1853 ret = build_insn(insn, ctx);
1855 /* It's used with loading the 64 bit immediate value. */
1858 if (ctx->target == NULL)
1859 ctx->offsets[i] = ctx->idx;
1863 if (ctx->target == NULL)
1864 ctx->offsets[i] = ctx->idx;
1866 /* If unsuccesfull, return with error code */
1873 static int validate_code(struct jit_ctx *ctx)
1877 for (i = 0; i < ctx->idx; i++) {
1878 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1885 void bpf_jit_compile(struct bpf_prog *prog)
1887 /* Nothing to do here. We support Internal BPF. */
1890 bool bpf_jit_needs_zext(void)
1895 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1897 struct bpf_prog *tmp, *orig_prog = prog;
1898 struct bpf_binary_header *header;
1899 bool tmp_blinded = false;
1901 unsigned int tmp_idx;
1902 unsigned int image_size;
1905 /* If BPF JIT was not enabled then we must fall back to
1908 if (!prog->jit_requested)
1911 /* If constant blinding was enabled and we failed during blinding
1912 * then we must fall back to the interpreter. Otherwise, we save
1913 * the new JITed code.
1915 tmp = bpf_jit_blind_constants(prog);
1924 memset(&ctx, 0, sizeof(ctx));
1926 ctx.cpu_architecture = cpu_architecture();
1928 /* Not able to allocate memory for offsets[] , then
1929 * we must fall back to the interpreter
1931 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1932 if (ctx.offsets == NULL) {
1937 /* 1) fake pass to find in the length of the JITed code,
1938 * to compute ctx->offsets and other context variables
1939 * needed to compute final JITed code.
1940 * Also, calculate random starting pointer/start of JITed code
1941 * which is prefixed by random number of fault instructions.
1943 * If the first pass fails then there is no chance of it
1944 * being successful in the second pass, so just fall back
1945 * to the interpreter.
1947 if (build_body(&ctx)) {
1953 build_prologue(&ctx);
1954 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1956 ctx.epilogue_offset = ctx.idx;
1958 #if __LINUX_ARM_ARCH__ < 7
1960 build_epilogue(&ctx);
1961 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1963 ctx.idx += ctx.imm_count;
1964 if (ctx.imm_count) {
1965 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1966 if (ctx.imms == NULL) {
1972 /* there's nothing about the epilogue on ARMv7 */
1973 build_epilogue(&ctx);
1975 /* Now we can get the actual image size of the JITed arm code.
1976 * Currently, we are not considering the THUMB-2 instructions
1977 * for jit, although it can decrease the size of the image.
1979 * As each arm instruction is of length 32bit, we are translating
1980 * number of JITed intructions into the size required to store these
1983 image_size = sizeof(u32) * ctx.idx;
1985 /* Now we know the size of the structure to make */
1986 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1987 sizeof(u32), jit_fill_hole);
1988 /* Not able to allocate memory for the structure then
1989 * we must fall back to the interpretation
1991 if (header == NULL) {
1996 /* 2.) Actual pass to generate final JIT code */
1997 ctx.target = (u32 *) image_ptr;
2000 build_prologue(&ctx);
2002 /* If building the body of the JITed code fails somehow,
2003 * we fall back to the interpretation.
2005 if (build_body(&ctx) < 0) {
2007 bpf_jit_binary_free(header);
2011 build_epilogue(&ctx);
2013 /* 3.) Extra pass to validate JITed Code */
2014 if (validate_code(&ctx)) {
2016 bpf_jit_binary_free(header);
2020 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2022 if (bpf_jit_enable > 1)
2023 /* there are 2 passes here */
2024 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2026 bpf_jit_binary_lock_ro(header);
2027 prog->bpf_func = (void *)ctx.target;
2029 prog->jited_len = image_size;
2032 #if __LINUX_ARM_ARCH__ < 7
2040 bpf_jit_prog_release_other(prog, prog == orig_prog ?