Merge tag 'powerpc-6.6-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / arch / arm / mm / fault-armv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/fault-armv.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Modifications for ARM processor (c) 1995-2002 Russell King
7  */
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/bitops.h>
12 #include <linux/vmalloc.h>
13 #include <linux/init.h>
14 #include <linux/pagemap.h>
15 #include <linux/gfp.h>
16
17 #include <asm/bugs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cachetype.h>
20 #include <asm/tlbflush.h>
21
22 #include "mm.h"
23
24 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
25
26 #if __LINUX_ARM_ARCH__ < 6
27 /*
28  * We take the easy way out of this problem - we make the
29  * PTE uncacheable.  However, we leave the write buffer on.
30  *
31  * Note that the pte lock held when calling update_mmu_cache must also
32  * guard the pte (somewhere else in the same mm) that we modify here.
33  * Therefore those configurations which might call adjust_pte (those
34  * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
35  */
36 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
37         unsigned long pfn, pte_t *ptep)
38 {
39         pte_t entry = *ptep;
40         int ret;
41
42         /*
43          * If this page is present, it's actually being shared.
44          */
45         ret = pte_present(entry);
46
47         /*
48          * If this page isn't present, or is already setup to
49          * fault (ie, is old), we can safely ignore any issues.
50          */
51         if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
52                 flush_cache_page(vma, address, pfn);
53                 outer_flush_range((pfn << PAGE_SHIFT),
54                                   (pfn << PAGE_SHIFT) + PAGE_SIZE);
55                 pte_val(entry) &= ~L_PTE_MT_MASK;
56                 pte_val(entry) |= shared_pte_mask;
57                 set_pte_at(vma->vm_mm, address, ptep, entry);
58                 flush_tlb_page(vma, address);
59         }
60
61         return ret;
62 }
63
64 #if USE_SPLIT_PTE_PTLOCKS
65 /*
66  * If we are using split PTE locks, then we need to take the page
67  * lock here.  Otherwise we are using shared mm->page_table_lock
68  * which is already locked, thus cannot take it.
69  */
70 static inline void do_pte_lock(spinlock_t *ptl)
71 {
72         /*
73          * Use nested version here to indicate that we are already
74          * holding one similar spinlock.
75          */
76         spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
77 }
78
79 static inline void do_pte_unlock(spinlock_t *ptl)
80 {
81         spin_unlock(ptl);
82 }
83 #else /* !USE_SPLIT_PTE_PTLOCKS */
84 static inline void do_pte_lock(spinlock_t *ptl) {}
85 static inline void do_pte_unlock(spinlock_t *ptl) {}
86 #endif /* USE_SPLIT_PTE_PTLOCKS */
87
88 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
89         unsigned long pfn)
90 {
91         spinlock_t *ptl;
92         pgd_t *pgd;
93         p4d_t *p4d;
94         pud_t *pud;
95         pmd_t *pmd;
96         pte_t *pte;
97         int ret;
98
99         pgd = pgd_offset(vma->vm_mm, address);
100         if (pgd_none_or_clear_bad(pgd))
101                 return 0;
102
103         p4d = p4d_offset(pgd, address);
104         if (p4d_none_or_clear_bad(p4d))
105                 return 0;
106
107         pud = pud_offset(p4d, address);
108         if (pud_none_or_clear_bad(pud))
109                 return 0;
110
111         pmd = pmd_offset(pud, address);
112         if (pmd_none_or_clear_bad(pmd))
113                 return 0;
114
115         /*
116          * This is called while another page table is mapped, so we
117          * must use the nested version.  This also means we need to
118          * open-code the spin-locking.
119          */
120         pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl);
121         if (!pte)
122                 return 0;
123
124         do_pte_lock(ptl);
125
126         ret = do_adjust_pte(vma, address, pfn, pte);
127
128         do_pte_unlock(ptl);
129         pte_unmap(pte);
130
131         return ret;
132 }
133
134 static void
135 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
136         unsigned long addr, pte_t *ptep, unsigned long pfn)
137 {
138         struct mm_struct *mm = vma->vm_mm;
139         struct vm_area_struct *mpnt;
140         unsigned long offset;
141         pgoff_t pgoff;
142         int aliases = 0;
143
144         pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
145
146         /*
147          * If we have any shared mappings that are in the same mm
148          * space, then we need to handle them specially to maintain
149          * cache coherency.
150          */
151         flush_dcache_mmap_lock(mapping);
152         vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
153                 /*
154                  * If this VMA is not in our MM, we can ignore it.
155                  * Note that we intentionally mask out the VMA
156                  * that we are fixing up.
157                  */
158                 if (mpnt->vm_mm != mm || mpnt == vma)
159                         continue;
160                 if (!(mpnt->vm_flags & VM_MAYSHARE))
161                         continue;
162                 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
163                 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
164         }
165         flush_dcache_mmap_unlock(mapping);
166         if (aliases)
167                 do_adjust_pte(vma, addr, pfn, ptep);
168 }
169
170 /*
171  * Take care of architecture specific things when placing a new PTE into
172  * a page table, or changing an existing PTE.  Basically, there are two
173  * things that we need to take care of:
174  *
175  *  1. If PG_dcache_clean is not set for the page, we need to ensure
176  *     that any cache entries for the kernels virtual memory
177  *     range are written back to the page.
178  *  2. If we have multiple shared mappings of the same space in
179  *     an object, we need to deal with the cache aliasing issues.
180  *
181  * Note that the pte lock will be held.
182  */
183 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
184                 unsigned long addr, pte_t *ptep, unsigned int nr)
185 {
186         unsigned long pfn = pte_pfn(*ptep);
187         struct address_space *mapping;
188         struct folio *folio;
189
190         if (!pfn_valid(pfn))
191                 return;
192
193         /*
194          * The zero page is never written to, so never has any dirty
195          * cache lines, and therefore never needs to be flushed.
196          */
197         if (is_zero_pfn(pfn))
198                 return;
199
200         folio = page_folio(pfn_to_page(pfn));
201         mapping = folio_flush_mapping(folio);
202         if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
203                 __flush_dcache_folio(mapping, folio);
204         if (mapping) {
205                 if (cache_is_vivt())
206                         make_coherent(mapping, vma, addr, ptep, pfn);
207                 else if (vma->vm_flags & VM_EXEC)
208                         __flush_icache_all();
209         }
210 }
211 #endif  /* __LINUX_ARM_ARCH__ < 6 */
212
213 /*
214  * Check whether the write buffer has physical address aliasing
215  * issues.  If it has, we need to avoid them for the case where
216  * we have several shared mappings of the same object in user
217  * space.
218  */
219 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
220 {
221         register unsigned long zero = 0, one = 1, val;
222
223         local_irq_disable();
224         mb();
225         *p1 = one;
226         mb();
227         *p2 = zero;
228         mb();
229         val = *p1;
230         mb();
231         local_irq_enable();
232         return val != zero;
233 }
234
235 void __init check_writebuffer_bugs(void)
236 {
237         struct page *page;
238         const char *reason;
239         unsigned long v = 1;
240
241         pr_info("CPU: Testing write buffer coherency: ");
242
243         page = alloc_page(GFP_KERNEL);
244         if (page) {
245                 unsigned long *p1, *p2;
246                 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
247                                         L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
248
249                 p1 = vmap(&page, 1, VM_IOREMAP, prot);
250                 p2 = vmap(&page, 1, VM_IOREMAP, prot);
251
252                 if (p1 && p2) {
253                         v = check_writebuffer(p1, p2);
254                         reason = "enabling work-around";
255                 } else {
256                         reason = "unable to map memory\n";
257                 }
258
259                 vunmap(p1);
260                 vunmap(p2);
261                 put_page(page);
262         } else {
263                 reason = "unable to grab page\n";
264         }
265
266         if (v) {
267                 pr_cont("failed, %s\n", reason);
268                 shared_pte_mask = L_PTE_MT_UNCACHED;
269         } else {
270                 pr_cont("ok\n");
271         }
272 }