2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
66 * Ensure that any data held in the cache is appropriately discarded
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 __dma_page_dev_to_cpu(page, offset, size, dir);
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 __dma_page_cpu_to_dev(page, offset, size, dir);
127 struct dma_map_ops arm_dma_ops = {
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
131 .get_sgtable = arm_dma_get_sgtable,
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
142 EXPORT_SYMBOL(arm_dma_ops);
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
149 struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
160 static u64 get_coherent_dma_mask(struct device *dev)
162 u64 mask = (u64)arm_dma_limit;
165 mask = dev->coherent_dma_mask;
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
172 dev_warn(dev, "coherent DMA mask is unset\n");
176 if ((~mask) & (u64)arm_dma_limit) {
177 dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
179 mask, (u64)arm_dma_limit);
187 static void __dma_clear_buffer(struct page *page, size_t size)
191 * Ensure that the allocated pages are zeroed, and that any data
192 * lurking in the kernel direct-mapped region is invalidated.
194 ptr = page_address(page);
196 memset(ptr, 0, size);
197 dmac_flush_range(ptr, ptr + size);
198 outer_flush_range(__pa(ptr), __pa(ptr) + size);
203 * Allocate a DMA buffer for 'dev' of size 'size' using the
204 * specified gfp mask. Note that 'size' must be page aligned.
206 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
208 unsigned long order = get_order(size);
209 struct page *page, *p, *e;
211 page = alloc_pages(gfp, order);
216 * Now split the huge page and free the excess pages
218 split_page(page, order);
219 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
222 __dma_clear_buffer(page, size);
228 * Free a DMA buffer. 'size' must be page aligned.
230 static void __dma_free_buffer(struct page *page, size_t size)
232 struct page *e = page + (size >> PAGE_SHIFT);
241 #ifdef CONFIG_HUGETLB_PAGE
242 #error ARM Coherent DMA allocator does not (yet) support huge TLB
245 static void *__alloc_from_contiguous(struct device *dev, size_t size,
246 pgprot_t prot, struct page **ret_page);
248 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
249 pgprot_t prot, struct page **ret_page,
253 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
256 struct vm_struct *area;
260 * DMA allocation can be mapped to user space, so lets
261 * set VM_USERMAP flags too.
263 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
267 addr = (unsigned long)area->addr;
268 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
270 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
271 vunmap((void *)addr);
277 static void __dma_free_remap(void *cpu_addr, size_t size)
279 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
280 struct vm_struct *area = find_vm_area(cpu_addr);
281 if (!area || (area->flags & flags) != flags) {
282 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
285 unmap_kernel_range((unsigned long)cpu_addr, size);
289 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
294 unsigned long *bitmap;
295 unsigned long nr_pages;
300 static struct dma_pool atomic_pool = {
301 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
304 static int __init early_coherent_pool(char *p)
306 atomic_pool.size = memparse(p, &p);
309 early_param("coherent_pool", early_coherent_pool);
311 void __init init_dma_coherent_pool_size(unsigned long size)
314 * Catch any attempt to set the pool size too late.
316 BUG_ON(atomic_pool.vaddr);
319 * Set architecture specific coherent pool size only if
320 * it has not been changed by kernel command line parameter.
322 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
323 atomic_pool.size = size;
327 * Initialise the coherent pool for atomic allocations.
329 static int __init atomic_pool_init(void)
331 struct dma_pool *pool = &atomic_pool;
332 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
333 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
334 unsigned long *bitmap;
338 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
340 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
344 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
348 if (IS_ENABLED(CONFIG_CMA))
349 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
351 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
356 for (i = 0; i < nr_pages; i++)
359 spin_lock_init(&pool->lock);
362 pool->bitmap = bitmap;
363 pool->nr_pages = nr_pages;
364 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
365 (unsigned)pool->size / 1024);
373 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
374 (unsigned)pool->size / 1024);
378 * CMA is activated by core_initcall, so we must be called after it.
380 postcore_initcall(atomic_pool_init);
382 struct dma_contig_early_reserve {
387 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
389 static int dma_mmu_remap_num __initdata;
391 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
393 dma_mmu_remap[dma_mmu_remap_num].base = base;
394 dma_mmu_remap[dma_mmu_remap_num].size = size;
398 void __init dma_contiguous_remap(void)
401 for (i = 0; i < dma_mmu_remap_num; i++) {
402 phys_addr_t start = dma_mmu_remap[i].base;
403 phys_addr_t end = start + dma_mmu_remap[i].size;
407 if (end > arm_lowmem_limit)
408 end = arm_lowmem_limit;
412 map.pfn = __phys_to_pfn(start);
413 map.virtual = __phys_to_virt(start);
414 map.length = end - start;
415 map.type = MT_MEMORY_DMA_READY;
418 * Clear previous low-memory mapping
420 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
422 pmd_clear(pmd_off_k(addr));
424 iotable_init(&map, 1);
428 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
431 struct page *page = virt_to_page(addr);
432 pgprot_t prot = *(pgprot_t *)data;
434 set_pte_ext(pte, mk_pte(page, prot), 0);
438 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
440 unsigned long start = (unsigned long) page_address(page);
441 unsigned end = start + size;
443 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
445 flush_tlb_kernel_range(start, end);
448 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
449 pgprot_t prot, struct page **ret_page,
454 page = __dma_alloc_buffer(dev, size, gfp);
458 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
460 __dma_free_buffer(page, size);
468 static void *__alloc_from_pool(size_t size, struct page **ret_page)
470 struct dma_pool *pool = &atomic_pool;
471 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
475 unsigned long align_mask;
478 WARN(1, "coherent pool not initialised!\n");
483 * Align the region allocation - allocations from pool are rather
484 * small, so align them to their order in pages, minimum is a page
485 * size. This helps reduce fragmentation of the DMA space.
487 align_mask = (1 << get_order(size)) - 1;
489 spin_lock_irqsave(&pool->lock, flags);
490 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
491 0, count, align_mask);
492 if (pageno < pool->nr_pages) {
493 bitmap_set(pool->bitmap, pageno, count);
494 ptr = pool->vaddr + PAGE_SIZE * pageno;
495 *ret_page = pool->pages[pageno];
497 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
498 "Please increase it with coherent_pool= kernel parameter!\n",
499 (unsigned)pool->size / 1024);
501 spin_unlock_irqrestore(&pool->lock, flags);
506 static bool __in_atomic_pool(void *start, size_t size)
508 struct dma_pool *pool = &atomic_pool;
509 void *end = start + size;
510 void *pool_start = pool->vaddr;
511 void *pool_end = pool->vaddr + pool->size;
513 if (start < pool_start || start >= pool_end)
519 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
520 start, end - 1, pool_start, pool_end - 1);
525 static int __free_from_pool(void *start, size_t size)
527 struct dma_pool *pool = &atomic_pool;
528 unsigned long pageno, count;
531 if (!__in_atomic_pool(start, size))
534 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
535 count = size >> PAGE_SHIFT;
537 spin_lock_irqsave(&pool->lock, flags);
538 bitmap_clear(pool->bitmap, pageno, count);
539 spin_unlock_irqrestore(&pool->lock, flags);
544 static void *__alloc_from_contiguous(struct device *dev, size_t size,
545 pgprot_t prot, struct page **ret_page)
547 unsigned long order = get_order(size);
548 size_t count = size >> PAGE_SHIFT;
551 page = dma_alloc_from_contiguous(dev, count, order);
555 __dma_clear_buffer(page, size);
556 __dma_remap(page, size, prot);
559 return page_address(page);
562 static void __free_from_contiguous(struct device *dev, struct page *page,
565 __dma_remap(page, size, pgprot_kernel);
566 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
569 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
571 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
572 pgprot_writecombine(prot) :
573 pgprot_dmacoherent(prot);
579 #else /* !CONFIG_MMU */
583 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
584 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
585 #define __alloc_from_pool(size, ret_page) NULL
586 #define __alloc_from_contiguous(dev, size, prot, ret) NULL
587 #define __free_from_pool(cpu_addr, size) 0
588 #define __free_from_contiguous(dev, page, size) do { } while (0)
589 #define __dma_free_remap(cpu_addr, size) do { } while (0)
591 #endif /* CONFIG_MMU */
593 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
594 struct page **ret_page)
597 page = __dma_alloc_buffer(dev, size, gfp);
602 return page_address(page);
607 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
608 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
610 u64 mask = get_coherent_dma_mask(dev);
611 struct page *page = NULL;
614 #ifdef CONFIG_DMA_API_DEBUG
615 u64 limit = (mask + 1) & ~mask;
616 if (limit && size >= limit) {
617 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
626 if (mask < 0xffffffffULL)
630 * Following is a work-around (a.k.a. hack) to prevent pages
631 * with __GFP_COMP being passed to split_page() which cannot
632 * handle them. The real problem is that this flag probably
633 * should be 0 on ARM as it is not supported on this
634 * platform; see CONFIG_HUGETLBFS.
636 gfp &= ~(__GFP_COMP);
638 *handle = DMA_ERROR_CODE;
639 size = PAGE_ALIGN(size);
641 if (is_coherent || nommu())
642 addr = __alloc_simple_buffer(dev, size, gfp, &page);
643 else if (gfp & GFP_ATOMIC)
644 addr = __alloc_from_pool(size, &page);
645 else if (!IS_ENABLED(CONFIG_CMA))
646 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
648 addr = __alloc_from_contiguous(dev, size, prot, &page);
651 *handle = pfn_to_dma(dev, page_to_pfn(page));
657 * Allocate DMA-coherent memory space and return both the kernel remapped
658 * virtual and bus address for that space.
660 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
661 gfp_t gfp, struct dma_attrs *attrs)
663 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
666 if (dma_alloc_from_coherent(dev, size, handle, &memory))
669 return __dma_alloc(dev, size, handle, gfp, prot, false,
670 __builtin_return_address(0));
673 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
674 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
676 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
679 if (dma_alloc_from_coherent(dev, size, handle, &memory))
682 return __dma_alloc(dev, size, handle, gfp, prot, true,
683 __builtin_return_address(0));
687 * Create userspace mapping for the DMA-coherent memory.
689 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
690 void *cpu_addr, dma_addr_t dma_addr, size_t size,
691 struct dma_attrs *attrs)
695 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
696 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
697 unsigned long pfn = dma_to_pfn(dev, dma_addr);
698 unsigned long off = vma->vm_pgoff;
700 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
702 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
705 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706 ret = remap_pfn_range(vma, vma->vm_start,
708 vma->vm_end - vma->vm_start,
711 #endif /* CONFIG_MMU */
717 * Free a buffer as defined by the above mapping.
719 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
720 dma_addr_t handle, struct dma_attrs *attrs,
723 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
725 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
728 size = PAGE_ALIGN(size);
730 if (is_coherent || nommu()) {
731 __dma_free_buffer(page, size);
732 } else if (__free_from_pool(cpu_addr, size)) {
734 } else if (!IS_ENABLED(CONFIG_CMA)) {
735 __dma_free_remap(cpu_addr, size);
736 __dma_free_buffer(page, size);
739 * Non-atomic allocations cannot be freed with IRQs disabled
741 WARN_ON(irqs_disabled());
742 __free_from_contiguous(dev, page, size);
746 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 dma_addr_t handle, struct dma_attrs *attrs)
749 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
752 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
753 dma_addr_t handle, struct dma_attrs *attrs)
755 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
758 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
759 void *cpu_addr, dma_addr_t handle, size_t size,
760 struct dma_attrs *attrs)
762 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
765 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
769 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
773 static void dma_cache_maint_page(struct page *page, unsigned long offset,
774 size_t size, enum dma_data_direction dir,
775 void (*op)(const void *, size_t, int))
778 * A single sg entry may refer to multiple physically contiguous
779 * pages. But we still need to process highmem pages individually.
780 * If highmem is not configured then the bulk of this loop gets
788 if (PageHighMem(page)) {
789 if (len + offset > PAGE_SIZE) {
790 if (offset >= PAGE_SIZE) {
791 page += offset / PAGE_SIZE;
794 len = PAGE_SIZE - offset;
796 vaddr = kmap_high_get(page);
801 } else if (cache_is_vipt()) {
802 /* unmapped pages might still be cached */
803 vaddr = kmap_atomic(page);
804 op(vaddr + offset, len, dir);
805 kunmap_atomic(vaddr);
808 vaddr = page_address(page) + offset;
818 * Make an area consistent for devices.
819 * Note: Drivers should NOT use this function directly, as it will break
820 * platforms with CONFIG_DMABOUNCE.
821 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
823 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
824 size_t size, enum dma_data_direction dir)
828 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
830 paddr = page_to_phys(page) + off;
831 if (dir == DMA_FROM_DEVICE) {
832 outer_inv_range(paddr, paddr + size);
834 outer_clean_range(paddr, paddr + size);
836 /* FIXME: non-speculating: flush on bidirectional mappings? */
839 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
840 size_t size, enum dma_data_direction dir)
842 unsigned long paddr = page_to_phys(page) + off;
844 /* FIXME: non-speculating: not required */
845 /* don't bother invalidating if DMA to device */
846 if (dir != DMA_TO_DEVICE)
847 outer_inv_range(paddr, paddr + size);
849 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
852 * Mark the D-cache clean for this page to avoid extra flushing.
854 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
855 set_bit(PG_dcache_clean, &page->flags);
859 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
860 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
861 * @sg: list of buffers
862 * @nents: number of buffers to map
863 * @dir: DMA transfer direction
865 * Map a set of buffers described by scatterlist in streaming mode for DMA.
866 * This is the scatter-gather version of the dma_map_single interface.
867 * Here the scatter gather list elements are each tagged with the
868 * appropriate dma address and length. They are obtained via
869 * sg_dma_{address,length}.
871 * Device ownership issues as mentioned for dma_map_single are the same
874 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
875 enum dma_data_direction dir, struct dma_attrs *attrs)
877 struct dma_map_ops *ops = get_dma_ops(dev);
878 struct scatterlist *s;
881 for_each_sg(sg, s, nents, i) {
882 #ifdef CONFIG_NEED_SG_DMA_LENGTH
883 s->dma_length = s->length;
885 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
886 s->length, dir, attrs);
887 if (dma_mapping_error(dev, s->dma_address))
893 for_each_sg(sg, s, i, j)
894 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
899 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
900 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
901 * @sg: list of buffers
902 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
903 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
905 * Unmap a set of streaming mode DMA translations. Again, CPU access
906 * rules concerning calls here are the same as for dma_unmap_single().
908 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
909 enum dma_data_direction dir, struct dma_attrs *attrs)
911 struct dma_map_ops *ops = get_dma_ops(dev);
912 struct scatterlist *s;
916 for_each_sg(sg, s, nents, i)
917 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
921 * arm_dma_sync_sg_for_cpu
922 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
923 * @sg: list of buffers
924 * @nents: number of buffers to map (returned from dma_map_sg)
925 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
927 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
928 int nents, enum dma_data_direction dir)
930 struct dma_map_ops *ops = get_dma_ops(dev);
931 struct scatterlist *s;
934 for_each_sg(sg, s, nents, i)
935 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
940 * arm_dma_sync_sg_for_device
941 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
942 * @sg: list of buffers
943 * @nents: number of buffers to map (returned from dma_map_sg)
944 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
946 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
947 int nents, enum dma_data_direction dir)
949 struct dma_map_ops *ops = get_dma_ops(dev);
950 struct scatterlist *s;
953 for_each_sg(sg, s, nents, i)
954 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
959 * Return whether the given device DMA address mask can be supported
960 * properly. For example, if your device can only drive the low 24-bits
961 * during bus mastering, then you would pass 0x00ffffff as the mask
964 int dma_supported(struct device *dev, u64 mask)
966 if (mask < (u64)arm_dma_limit)
970 EXPORT_SYMBOL(dma_supported);
972 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
974 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
977 *dev->dma_mask = dma_mask;
982 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
984 static int __init dma_debug_do_init(void)
986 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
989 fs_initcall(dma_debug_do_init);
991 #ifdef CONFIG_ARM_DMA_USE_IOMMU
995 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
998 unsigned int order = get_order(size);
999 unsigned int align = 0;
1000 unsigned int count, start;
1001 unsigned long flags;
1003 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1004 (1 << mapping->order) - 1) >> mapping->order;
1006 if (order > mapping->order)
1007 align = (1 << (order - mapping->order)) - 1;
1009 spin_lock_irqsave(&mapping->lock, flags);
1010 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1012 if (start > mapping->bits) {
1013 spin_unlock_irqrestore(&mapping->lock, flags);
1014 return DMA_ERROR_CODE;
1017 bitmap_set(mapping->bitmap, start, count);
1018 spin_unlock_irqrestore(&mapping->lock, flags);
1020 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1023 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1024 dma_addr_t addr, size_t size)
1026 unsigned int start = (addr - mapping->base) >>
1027 (mapping->order + PAGE_SHIFT);
1028 unsigned int count = ((size >> PAGE_SHIFT) +
1029 (1 << mapping->order) - 1) >> mapping->order;
1030 unsigned long flags;
1032 spin_lock_irqsave(&mapping->lock, flags);
1033 bitmap_clear(mapping->bitmap, start, count);
1034 spin_unlock_irqrestore(&mapping->lock, flags);
1037 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1038 gfp_t gfp, struct dma_attrs *attrs)
1040 struct page **pages;
1041 int count = size >> PAGE_SHIFT;
1042 int array_size = count * sizeof(struct page *);
1045 if (array_size <= PAGE_SIZE)
1046 pages = kzalloc(array_size, gfp);
1048 pages = vzalloc(array_size);
1052 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1054 unsigned long order = get_order(size);
1057 page = dma_alloc_from_contiguous(dev, count, order);
1061 __dma_clear_buffer(page, size);
1063 for (i = 0; i < count; i++)
1064 pages[i] = page + i;
1070 int j, order = __fls(count);
1072 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1073 while (!pages[i] && order)
1074 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1079 split_page(pages[i], order);
1082 pages[i + j] = pages[i] + j;
1085 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1087 count -= 1 << order;
1094 __free_pages(pages[i], 0);
1095 if (array_size <= PAGE_SIZE)
1102 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1103 size_t size, struct dma_attrs *attrs)
1105 int count = size >> PAGE_SHIFT;
1106 int array_size = count * sizeof(struct page *);
1109 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1110 dma_release_from_contiguous(dev, pages[0], count);
1112 for (i = 0; i < count; i++)
1114 __free_pages(pages[i], 0);
1117 if (array_size <= PAGE_SIZE)
1125 * Create a CPU mapping for a specified pages
1128 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1131 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1132 struct vm_struct *area;
1135 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1140 area->pages = pages;
1141 area->nr_pages = nr_pages;
1142 p = (unsigned long)area->addr;
1144 for (i = 0; i < nr_pages; i++) {
1145 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1146 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1152 unmap_kernel_range((unsigned long)area->addr, size);
1158 * Create a mapping in device IO address space for specified pages
1161 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1163 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1164 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1165 dma_addr_t dma_addr, iova;
1166 int i, ret = DMA_ERROR_CODE;
1168 dma_addr = __alloc_iova(mapping, size);
1169 if (dma_addr == DMA_ERROR_CODE)
1173 for (i = 0; i < count; ) {
1174 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1175 phys_addr_t phys = page_to_phys(pages[i]);
1176 unsigned int len, j;
1178 for (j = i + 1; j < count; j++, next_pfn++)
1179 if (page_to_pfn(pages[j]) != next_pfn)
1182 len = (j - i) << PAGE_SHIFT;
1183 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1191 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1192 __free_iova(mapping, dma_addr, size);
1193 return DMA_ERROR_CODE;
1196 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1198 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1201 * add optional in-page offset from iova to size and align
1202 * result to page size
1204 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1207 iommu_unmap(mapping->domain, iova, size);
1208 __free_iova(mapping, iova, size);
1212 static struct page **__atomic_get_pages(void *addr)
1214 struct dma_pool *pool = &atomic_pool;
1215 struct page **pages = pool->pages;
1216 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1218 return pages + offs;
1221 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1223 struct vm_struct *area;
1225 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1226 return __atomic_get_pages(cpu_addr);
1228 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1231 area = find_vm_area(cpu_addr);
1232 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1237 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1243 addr = __alloc_from_pool(size, &page);
1247 *handle = __iommu_create_mapping(dev, &page, size);
1248 if (*handle == DMA_ERROR_CODE)
1254 __free_from_pool(addr, size);
1258 static void __iommu_free_atomic(struct device *dev, struct page **pages,
1259 dma_addr_t handle, size_t size)
1261 __iommu_remove_mapping(dev, handle, size);
1262 __free_from_pool(page_address(pages[0]), size);
1265 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1266 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1268 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1269 struct page **pages;
1272 *handle = DMA_ERROR_CODE;
1273 size = PAGE_ALIGN(size);
1275 if (gfp & GFP_ATOMIC)
1276 return __iommu_alloc_atomic(dev, size, handle);
1278 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1282 *handle = __iommu_create_mapping(dev, pages, size);
1283 if (*handle == DMA_ERROR_CODE)
1286 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1289 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1290 __builtin_return_address(0));
1297 __iommu_remove_mapping(dev, *handle, size);
1299 __iommu_free_buffer(dev, pages, size, attrs);
1303 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1304 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1305 struct dma_attrs *attrs)
1307 unsigned long uaddr = vma->vm_start;
1308 unsigned long usize = vma->vm_end - vma->vm_start;
1309 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1311 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1317 int ret = vm_insert_page(vma, uaddr, *pages++);
1319 pr_err("Remapping memory failed: %d\n", ret);
1324 } while (usize > 0);
1330 * free a page as defined by the above mapping.
1331 * Must not be called with IRQs disabled.
1333 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1334 dma_addr_t handle, struct dma_attrs *attrs)
1336 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1337 size = PAGE_ALIGN(size);
1340 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1344 if (__in_atomic_pool(cpu_addr, size)) {
1345 __iommu_free_atomic(dev, pages, handle, size);
1349 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1350 unmap_kernel_range((unsigned long)cpu_addr, size);
1354 __iommu_remove_mapping(dev, handle, size);
1355 __iommu_free_buffer(dev, pages, size, attrs);
1358 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1359 void *cpu_addr, dma_addr_t dma_addr,
1360 size_t size, struct dma_attrs *attrs)
1362 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1363 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1368 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1373 * Map a part of the scatter-gather list into contiguous io address space
1375 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1376 size_t size, dma_addr_t *handle,
1377 enum dma_data_direction dir, struct dma_attrs *attrs,
1380 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1381 dma_addr_t iova, iova_base;
1384 struct scatterlist *s;
1386 size = PAGE_ALIGN(size);
1387 *handle = DMA_ERROR_CODE;
1389 iova_base = iova = __alloc_iova(mapping, size);
1390 if (iova == DMA_ERROR_CODE)
1393 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1394 phys_addr_t phys = page_to_phys(sg_page(s));
1395 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1398 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1399 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1401 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1404 count += len >> PAGE_SHIFT;
1407 *handle = iova_base;
1411 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1412 __free_iova(mapping, iova_base, size);
1416 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1417 enum dma_data_direction dir, struct dma_attrs *attrs,
1420 struct scatterlist *s = sg, *dma = sg, *start = sg;
1422 unsigned int offset = s->offset;
1423 unsigned int size = s->offset + s->length;
1424 unsigned int max = dma_get_max_seg_size(dev);
1426 for (i = 1; i < nents; i++) {
1429 s->dma_address = DMA_ERROR_CODE;
1432 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1433 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1434 dir, attrs, is_coherent) < 0)
1437 dma->dma_address += offset;
1438 dma->dma_length = size - offset;
1440 size = offset = s->offset;
1447 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1451 dma->dma_address += offset;
1452 dma->dma_length = size - offset;
1457 for_each_sg(sg, s, count, i)
1458 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1463 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1464 * @dev: valid struct device pointer
1465 * @sg: list of buffers
1466 * @nents: number of buffers to map
1467 * @dir: DMA transfer direction
1469 * Map a set of i/o coherent buffers described by scatterlist in streaming
1470 * mode for DMA. The scatter gather list elements are merged together (if
1471 * possible) and tagged with the appropriate dma address and length. They are
1472 * obtained via sg_dma_{address,length}.
1474 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1475 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1477 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1481 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1482 * @dev: valid struct device pointer
1483 * @sg: list of buffers
1484 * @nents: number of buffers to map
1485 * @dir: DMA transfer direction
1487 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1488 * The scatter gather list elements are merged together (if possible) and
1489 * tagged with the appropriate dma address and length. They are obtained via
1490 * sg_dma_{address,length}.
1492 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1493 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1495 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1498 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1499 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1502 struct scatterlist *s;
1505 for_each_sg(sg, s, nents, i) {
1507 __iommu_remove_mapping(dev, sg_dma_address(s),
1510 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1511 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1517 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1518 * @dev: valid struct device pointer
1519 * @sg: list of buffers
1520 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1521 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1523 * Unmap a set of streaming mode DMA translations. Again, CPU access
1524 * rules concerning calls here are the same as for dma_unmap_single().
1526 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1527 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1529 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1533 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1534 * @dev: valid struct device pointer
1535 * @sg: list of buffers
1536 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1537 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1539 * Unmap a set of streaming mode DMA translations. Again, CPU access
1540 * rules concerning calls here are the same as for dma_unmap_single().
1542 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1543 enum dma_data_direction dir, struct dma_attrs *attrs)
1545 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1549 * arm_iommu_sync_sg_for_cpu
1550 * @dev: valid struct device pointer
1551 * @sg: list of buffers
1552 * @nents: number of buffers to map (returned from dma_map_sg)
1553 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1555 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1556 int nents, enum dma_data_direction dir)
1558 struct scatterlist *s;
1561 for_each_sg(sg, s, nents, i)
1562 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1567 * arm_iommu_sync_sg_for_device
1568 * @dev: valid struct device pointer
1569 * @sg: list of buffers
1570 * @nents: number of buffers to map (returned from dma_map_sg)
1571 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1573 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1574 int nents, enum dma_data_direction dir)
1576 struct scatterlist *s;
1579 for_each_sg(sg, s, nents, i)
1580 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1585 * arm_coherent_iommu_map_page
1586 * @dev: valid struct device pointer
1587 * @page: page that buffer resides in
1588 * @offset: offset into page for start of buffer
1589 * @size: size of buffer to map
1590 * @dir: DMA transfer direction
1592 * Coherent IOMMU aware version of arm_dma_map_page()
1594 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1595 unsigned long offset, size_t size, enum dma_data_direction dir,
1596 struct dma_attrs *attrs)
1598 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1599 dma_addr_t dma_addr;
1600 int ret, len = PAGE_ALIGN(size + offset);
1602 dma_addr = __alloc_iova(mapping, len);
1603 if (dma_addr == DMA_ERROR_CODE)
1606 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1610 return dma_addr + offset;
1612 __free_iova(mapping, dma_addr, len);
1613 return DMA_ERROR_CODE;
1617 * arm_iommu_map_page
1618 * @dev: valid struct device pointer
1619 * @page: page that buffer resides in
1620 * @offset: offset into page for start of buffer
1621 * @size: size of buffer to map
1622 * @dir: DMA transfer direction
1624 * IOMMU aware version of arm_dma_map_page()
1626 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1627 unsigned long offset, size_t size, enum dma_data_direction dir,
1628 struct dma_attrs *attrs)
1630 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1631 __dma_page_cpu_to_dev(page, offset, size, dir);
1633 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1637 * arm_coherent_iommu_unmap_page
1638 * @dev: valid struct device pointer
1639 * @handle: DMA address of buffer
1640 * @size: size of buffer (same as passed to dma_map_page)
1641 * @dir: DMA transfer direction (same as passed to dma_map_page)
1643 * Coherent IOMMU aware version of arm_dma_unmap_page()
1645 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1646 size_t size, enum dma_data_direction dir,
1647 struct dma_attrs *attrs)
1649 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1650 dma_addr_t iova = handle & PAGE_MASK;
1651 int offset = handle & ~PAGE_MASK;
1652 int len = PAGE_ALIGN(size + offset);
1657 iommu_unmap(mapping->domain, iova, len);
1658 __free_iova(mapping, iova, len);
1662 * arm_iommu_unmap_page
1663 * @dev: valid struct device pointer
1664 * @handle: DMA address of buffer
1665 * @size: size of buffer (same as passed to dma_map_page)
1666 * @dir: DMA transfer direction (same as passed to dma_map_page)
1668 * IOMMU aware version of arm_dma_unmap_page()
1670 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1671 size_t size, enum dma_data_direction dir,
1672 struct dma_attrs *attrs)
1674 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1675 dma_addr_t iova = handle & PAGE_MASK;
1676 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1677 int offset = handle & ~PAGE_MASK;
1678 int len = PAGE_ALIGN(size + offset);
1683 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1684 __dma_page_dev_to_cpu(page, offset, size, dir);
1686 iommu_unmap(mapping->domain, iova, len);
1687 __free_iova(mapping, iova, len);
1690 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1691 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1693 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1694 dma_addr_t iova = handle & PAGE_MASK;
1695 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1696 unsigned int offset = handle & ~PAGE_MASK;
1701 __dma_page_dev_to_cpu(page, offset, size, dir);
1704 static void arm_iommu_sync_single_for_device(struct device *dev,
1705 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1707 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1708 dma_addr_t iova = handle & PAGE_MASK;
1709 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1710 unsigned int offset = handle & ~PAGE_MASK;
1715 __dma_page_cpu_to_dev(page, offset, size, dir);
1718 struct dma_map_ops iommu_ops = {
1719 .alloc = arm_iommu_alloc_attrs,
1720 .free = arm_iommu_free_attrs,
1721 .mmap = arm_iommu_mmap_attrs,
1722 .get_sgtable = arm_iommu_get_sgtable,
1724 .map_page = arm_iommu_map_page,
1725 .unmap_page = arm_iommu_unmap_page,
1726 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1727 .sync_single_for_device = arm_iommu_sync_single_for_device,
1729 .map_sg = arm_iommu_map_sg,
1730 .unmap_sg = arm_iommu_unmap_sg,
1731 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1732 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1735 struct dma_map_ops iommu_coherent_ops = {
1736 .alloc = arm_iommu_alloc_attrs,
1737 .free = arm_iommu_free_attrs,
1738 .mmap = arm_iommu_mmap_attrs,
1739 .get_sgtable = arm_iommu_get_sgtable,
1741 .map_page = arm_coherent_iommu_map_page,
1742 .unmap_page = arm_coherent_iommu_unmap_page,
1744 .map_sg = arm_coherent_iommu_map_sg,
1745 .unmap_sg = arm_coherent_iommu_unmap_sg,
1749 * arm_iommu_create_mapping
1750 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1751 * @base: start address of the valid IO address space
1752 * @size: size of the valid IO address space
1753 * @order: accuracy of the IO addresses allocations
1755 * Creates a mapping structure which holds information about used/unused
1756 * IO address ranges, which is required to perform memory allocation and
1757 * mapping with IOMMU aware functions.
1759 * The client device need to be attached to the mapping with
1760 * arm_iommu_attach_device function.
1762 struct dma_iommu_mapping *
1763 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1766 unsigned int count = size >> (PAGE_SHIFT + order);
1767 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1768 struct dma_iommu_mapping *mapping;
1772 return ERR_PTR(-EINVAL);
1774 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1778 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1779 if (!mapping->bitmap)
1782 mapping->base = base;
1783 mapping->bits = BITS_PER_BYTE * bitmap_size;
1784 mapping->order = order;
1785 spin_lock_init(&mapping->lock);
1787 mapping->domain = iommu_domain_alloc(bus);
1788 if (!mapping->domain)
1791 kref_init(&mapping->kref);
1794 kfree(mapping->bitmap);
1798 return ERR_PTR(err);
1801 static void release_iommu_mapping(struct kref *kref)
1803 struct dma_iommu_mapping *mapping =
1804 container_of(kref, struct dma_iommu_mapping, kref);
1806 iommu_domain_free(mapping->domain);
1807 kfree(mapping->bitmap);
1811 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1814 kref_put(&mapping->kref, release_iommu_mapping);
1818 * arm_iommu_attach_device
1819 * @dev: valid struct device pointer
1820 * @mapping: io address space mapping structure (returned from
1821 * arm_iommu_create_mapping)
1823 * Attaches specified io address space mapping to the provided device,
1824 * this replaces the dma operations (dma_map_ops pointer) with the
1825 * IOMMU aware version. More than one client might be attached to
1826 * the same io address space mapping.
1828 int arm_iommu_attach_device(struct device *dev,
1829 struct dma_iommu_mapping *mapping)
1833 err = iommu_attach_device(mapping->domain, dev);
1837 kref_get(&mapping->kref);
1838 dev->archdata.mapping = mapping;
1839 set_dma_ops(dev, &iommu_ops);
1841 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));