2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
66 * Ensure that any data held in the cache is appropriately discarded
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84 * @handle: DMA address of buffer
85 * @size: size of buffer (same as passed to dma_map_page)
86 * @dir: DMA transfer direction (same as passed to dma_map_page)
88 * Unmap a page streaming mode DMA translation. The handle and size
89 * must match what was provided in the previous dma_map_page() call.
90 * All other usages are undefined.
92 * After this call, reads by the CPU to the buffer are guaranteed to see
93 * whatever the device wrote there.
95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
96 size_t size, enum dma_data_direction dir,
97 struct dma_attrs *attrs)
99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 handle & ~PAGE_MASK, size, dir);
104 static void arm_dma_sync_single_for_cpu(struct device *dev,
105 dma_addr_t handle, size_t size, enum dma_data_direction dir)
107 unsigned int offset = handle & (PAGE_SIZE - 1);
108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 if (!arch_is_coherent())
110 __dma_page_dev_to_cpu(page, offset, size, dir);
113 static void arm_dma_sync_single_for_device(struct device *dev,
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 if (!arch_is_coherent())
119 __dma_page_cpu_to_dev(page, offset, size, dir);
122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
124 struct dma_map_ops arm_dma_ops = {
125 .alloc = arm_dma_alloc,
126 .free = arm_dma_free,
127 .mmap = arm_dma_mmap,
128 .get_sgtable = arm_dma_get_sgtable,
129 .map_page = arm_dma_map_page,
130 .unmap_page = arm_dma_unmap_page,
131 .map_sg = arm_dma_map_sg,
132 .unmap_sg = arm_dma_unmap_sg,
133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
134 .sync_single_for_device = arm_dma_sync_single_for_device,
135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
136 .sync_sg_for_device = arm_dma_sync_sg_for_device,
137 .set_dma_mask = arm_dma_set_mask,
139 EXPORT_SYMBOL(arm_dma_ops);
141 static u64 get_coherent_dma_mask(struct device *dev)
143 u64 mask = (u64)arm_dma_limit;
146 mask = dev->coherent_dma_mask;
149 * Sanity check the DMA mask - it must be non-zero, and
150 * must be able to be satisfied by a DMA allocation.
153 dev_warn(dev, "coherent DMA mask is unset\n");
157 if ((~mask) & (u64)arm_dma_limit) {
158 dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 "than system GFP_DMA mask %#llx\n",
160 mask, (u64)arm_dma_limit);
168 static void __dma_clear_buffer(struct page *page, size_t size)
172 * Ensure that the allocated pages are zeroed, and that any data
173 * lurking in the kernel direct-mapped region is invalidated.
175 ptr = page_address(page);
177 memset(ptr, 0, size);
178 dmac_flush_range(ptr, ptr + size);
179 outer_flush_range(__pa(ptr), __pa(ptr) + size);
184 * Allocate a DMA buffer for 'dev' of size 'size' using the
185 * specified gfp mask. Note that 'size' must be page aligned.
187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
189 unsigned long order = get_order(size);
190 struct page *page, *p, *e;
192 page = alloc_pages(gfp, order);
197 * Now split the huge page and free the excess pages
199 split_page(page, order);
200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
203 __dma_clear_buffer(page, size);
209 * Free a DMA buffer. 'size' must be page aligned.
211 static void __dma_free_buffer(struct page *page, size_t size)
213 struct page *e = page + (size >> PAGE_SHIFT);
222 #ifdef CONFIG_HUGETLB_PAGE
223 #error ARM Coherent DMA allocator does not (yet) support huge TLB
226 static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 pgprot_t prot, struct page **ret_page);
229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 pgprot_t prot, struct page **ret_page,
234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
237 struct vm_struct *area;
241 * DMA allocation can be mapped to user space, so lets
242 * set VM_USERMAP flags too.
244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
248 addr = (unsigned long)area->addr;
249 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 vunmap((void *)addr);
258 static void __dma_free_remap(void *cpu_addr, size_t size)
260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 struct vm_struct *area = find_vm_area(cpu_addr);
262 if (!area || (area->flags & flags) != flags) {
263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
266 unmap_kernel_range((unsigned long)cpu_addr, size);
270 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
275 unsigned long *bitmap;
276 unsigned long nr_pages;
281 static struct dma_pool atomic_pool = {
282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
285 static int __init early_coherent_pool(char *p)
287 atomic_pool.size = memparse(p, &p);
290 early_param("coherent_pool", early_coherent_pool);
292 void __init init_dma_coherent_pool_size(unsigned long size)
295 * Catch any attempt to set the pool size too late.
297 BUG_ON(atomic_pool.vaddr);
300 * Set architecture specific coherent pool size only if
301 * it has not been changed by kernel command line parameter.
303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 atomic_pool.size = size;
308 * Initialise the coherent pool for atomic allocations.
310 static int __init atomic_pool_init(void)
312 struct dma_pool *pool = &atomic_pool;
313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
314 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 unsigned long *bitmap;
319 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
321 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
325 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
329 if (IS_ENABLED(CONFIG_CMA))
330 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
332 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
337 for (i = 0; i < nr_pages; i++)
340 spin_lock_init(&pool->lock);
343 pool->bitmap = bitmap;
344 pool->nr_pages = nr_pages;
345 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
346 (unsigned)pool->size / 1024);
352 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
353 (unsigned)pool->size / 1024);
357 * CMA is activated by core_initcall, so we must be called after it.
359 postcore_initcall(atomic_pool_init);
361 struct dma_contig_early_reserve {
366 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
368 static int dma_mmu_remap_num __initdata;
370 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
372 dma_mmu_remap[dma_mmu_remap_num].base = base;
373 dma_mmu_remap[dma_mmu_remap_num].size = size;
377 void __init dma_contiguous_remap(void)
380 for (i = 0; i < dma_mmu_remap_num; i++) {
381 phys_addr_t start = dma_mmu_remap[i].base;
382 phys_addr_t end = start + dma_mmu_remap[i].size;
386 if (end > arm_lowmem_limit)
387 end = arm_lowmem_limit;
391 map.pfn = __phys_to_pfn(start);
392 map.virtual = __phys_to_virt(start);
393 map.length = end - start;
394 map.type = MT_MEMORY_DMA_READY;
397 * Clear previous low-memory mapping
399 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
401 pmd_clear(pmd_off_k(addr));
403 iotable_init(&map, 1);
407 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
410 struct page *page = virt_to_page(addr);
411 pgprot_t prot = *(pgprot_t *)data;
413 set_pte_ext(pte, mk_pte(page, prot), 0);
417 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
419 unsigned long start = (unsigned long) page_address(page);
420 unsigned end = start + size;
422 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
424 flush_tlb_kernel_range(start, end);
427 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
428 pgprot_t prot, struct page **ret_page,
433 page = __dma_alloc_buffer(dev, size, gfp);
437 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
439 __dma_free_buffer(page, size);
447 static void *__alloc_from_pool(size_t size, struct page **ret_page)
449 struct dma_pool *pool = &atomic_pool;
450 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
454 unsigned long align_mask;
457 WARN(1, "coherent pool not initialised!\n");
462 * Align the region allocation - allocations from pool are rather
463 * small, so align them to their order in pages, minimum is a page
464 * size. This helps reduce fragmentation of the DMA space.
466 align_mask = (1 << get_order(size)) - 1;
468 spin_lock_irqsave(&pool->lock, flags);
469 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
470 0, count, align_mask);
471 if (pageno < pool->nr_pages) {
472 bitmap_set(pool->bitmap, pageno, count);
473 ptr = pool->vaddr + PAGE_SIZE * pageno;
474 *ret_page = pool->pages[pageno];
476 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
477 "Please increase it with coherent_pool= kernel parameter!\n",
478 (unsigned)pool->size / 1024);
480 spin_unlock_irqrestore(&pool->lock, flags);
485 static int __free_from_pool(void *start, size_t size)
487 struct dma_pool *pool = &atomic_pool;
488 unsigned long pageno, count;
491 if (start < pool->vaddr || start > pool->vaddr + pool->size)
494 if (start + size > pool->vaddr + pool->size) {
495 WARN(1, "freeing wrong coherent size from pool\n");
499 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
500 count = size >> PAGE_SHIFT;
502 spin_lock_irqsave(&pool->lock, flags);
503 bitmap_clear(pool->bitmap, pageno, count);
504 spin_unlock_irqrestore(&pool->lock, flags);
509 static void *__alloc_from_contiguous(struct device *dev, size_t size,
510 pgprot_t prot, struct page **ret_page)
512 unsigned long order = get_order(size);
513 size_t count = size >> PAGE_SHIFT;
516 page = dma_alloc_from_contiguous(dev, count, order);
520 __dma_clear_buffer(page, size);
521 __dma_remap(page, size, prot);
524 return page_address(page);
527 static void __free_from_contiguous(struct device *dev, struct page *page,
530 __dma_remap(page, size, pgprot_kernel);
531 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
534 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
536 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
537 pgprot_writecombine(prot) :
538 pgprot_dmacoherent(prot);
544 #else /* !CONFIG_MMU */
548 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
549 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
550 #define __alloc_from_pool(size, ret_page) NULL
551 #define __alloc_from_contiguous(dev, size, prot, ret) NULL
552 #define __free_from_pool(cpu_addr, size) 0
553 #define __free_from_contiguous(dev, page, size) do { } while (0)
554 #define __dma_free_remap(cpu_addr, size) do { } while (0)
556 #endif /* CONFIG_MMU */
558 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
559 struct page **ret_page)
562 page = __dma_alloc_buffer(dev, size, gfp);
567 return page_address(page);
572 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
573 gfp_t gfp, pgprot_t prot, const void *caller)
575 u64 mask = get_coherent_dma_mask(dev);
579 #ifdef CONFIG_DMA_API_DEBUG
580 u64 limit = (mask + 1) & ~mask;
581 if (limit && size >= limit) {
582 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
591 if (mask < 0xffffffffULL)
595 * Following is a work-around (a.k.a. hack) to prevent pages
596 * with __GFP_COMP being passed to split_page() which cannot
597 * handle them. The real problem is that this flag probably
598 * should be 0 on ARM as it is not supported on this
599 * platform; see CONFIG_HUGETLBFS.
601 gfp &= ~(__GFP_COMP);
603 *handle = DMA_ERROR_CODE;
604 size = PAGE_ALIGN(size);
606 if (arch_is_coherent() || nommu())
607 addr = __alloc_simple_buffer(dev, size, gfp, &page);
608 else if (gfp & GFP_ATOMIC)
609 addr = __alloc_from_pool(size, &page);
610 else if (!IS_ENABLED(CONFIG_CMA))
611 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
613 addr = __alloc_from_contiguous(dev, size, prot, &page);
616 *handle = pfn_to_dma(dev, page_to_pfn(page));
622 * Allocate DMA-coherent memory space and return both the kernel remapped
623 * virtual and bus address for that space.
625 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
626 gfp_t gfp, struct dma_attrs *attrs)
628 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
631 if (dma_alloc_from_coherent(dev, size, handle, &memory))
634 return __dma_alloc(dev, size, handle, gfp, prot,
635 __builtin_return_address(0));
639 * Create userspace mapping for the DMA-coherent memory.
641 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
642 void *cpu_addr, dma_addr_t dma_addr, size_t size,
643 struct dma_attrs *attrs)
647 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
648 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
649 unsigned long pfn = dma_to_pfn(dev, dma_addr);
650 unsigned long off = vma->vm_pgoff;
652 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
654 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
657 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
658 ret = remap_pfn_range(vma, vma->vm_start,
660 vma->vm_end - vma->vm_start,
663 #endif /* CONFIG_MMU */
669 * Free a buffer as defined by the above mapping.
671 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
672 dma_addr_t handle, struct dma_attrs *attrs)
674 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
676 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
679 size = PAGE_ALIGN(size);
681 if (arch_is_coherent() || nommu()) {
682 __dma_free_buffer(page, size);
683 } else if (__free_from_pool(cpu_addr, size)) {
685 } else if (!IS_ENABLED(CONFIG_CMA)) {
686 __dma_free_remap(cpu_addr, size);
687 __dma_free_buffer(page, size);
690 * Non-atomic allocations cannot be freed with IRQs disabled
692 WARN_ON(irqs_disabled());
693 __free_from_contiguous(dev, page, size);
697 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
698 void *cpu_addr, dma_addr_t handle, size_t size,
699 struct dma_attrs *attrs)
701 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
704 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
708 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
712 static void dma_cache_maint_page(struct page *page, unsigned long offset,
713 size_t size, enum dma_data_direction dir,
714 void (*op)(const void *, size_t, int))
717 * A single sg entry may refer to multiple physically contiguous
718 * pages. But we still need to process highmem pages individually.
719 * If highmem is not configured then the bulk of this loop gets
727 if (PageHighMem(page)) {
728 if (len + offset > PAGE_SIZE) {
729 if (offset >= PAGE_SIZE) {
730 page += offset / PAGE_SIZE;
733 len = PAGE_SIZE - offset;
735 vaddr = kmap_high_get(page);
740 } else if (cache_is_vipt()) {
741 /* unmapped pages might still be cached */
742 vaddr = kmap_atomic(page);
743 op(vaddr + offset, len, dir);
744 kunmap_atomic(vaddr);
747 vaddr = page_address(page) + offset;
757 * Make an area consistent for devices.
758 * Note: Drivers should NOT use this function directly, as it will break
759 * platforms with CONFIG_DMABOUNCE.
760 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
762 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
763 size_t size, enum dma_data_direction dir)
767 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
769 paddr = page_to_phys(page) + off;
770 if (dir == DMA_FROM_DEVICE) {
771 outer_inv_range(paddr, paddr + size);
773 outer_clean_range(paddr, paddr + size);
775 /* FIXME: non-speculating: flush on bidirectional mappings? */
778 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
779 size_t size, enum dma_data_direction dir)
781 unsigned long paddr = page_to_phys(page) + off;
783 /* FIXME: non-speculating: not required */
784 /* don't bother invalidating if DMA to device */
785 if (dir != DMA_TO_DEVICE)
786 outer_inv_range(paddr, paddr + size);
788 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
791 * Mark the D-cache clean for this page to avoid extra flushing.
793 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
794 set_bit(PG_dcache_clean, &page->flags);
798 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
799 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
800 * @sg: list of buffers
801 * @nents: number of buffers to map
802 * @dir: DMA transfer direction
804 * Map a set of buffers described by scatterlist in streaming mode for DMA.
805 * This is the scatter-gather version of the dma_map_single interface.
806 * Here the scatter gather list elements are each tagged with the
807 * appropriate dma address and length. They are obtained via
808 * sg_dma_{address,length}.
810 * Device ownership issues as mentioned for dma_map_single are the same
813 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
814 enum dma_data_direction dir, struct dma_attrs *attrs)
816 struct dma_map_ops *ops = get_dma_ops(dev);
817 struct scatterlist *s;
820 for_each_sg(sg, s, nents, i) {
821 #ifdef CONFIG_NEED_SG_DMA_LENGTH
822 s->dma_length = s->length;
824 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
825 s->length, dir, attrs);
826 if (dma_mapping_error(dev, s->dma_address))
832 for_each_sg(sg, s, i, j)
833 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
838 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
839 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
840 * @sg: list of buffers
841 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
842 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
844 * Unmap a set of streaming mode DMA translations. Again, CPU access
845 * rules concerning calls here are the same as for dma_unmap_single().
847 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
848 enum dma_data_direction dir, struct dma_attrs *attrs)
850 struct dma_map_ops *ops = get_dma_ops(dev);
851 struct scatterlist *s;
855 for_each_sg(sg, s, nents, i)
856 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
860 * arm_dma_sync_sg_for_cpu
861 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
862 * @sg: list of buffers
863 * @nents: number of buffers to map (returned from dma_map_sg)
864 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
866 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
867 int nents, enum dma_data_direction dir)
869 struct dma_map_ops *ops = get_dma_ops(dev);
870 struct scatterlist *s;
873 for_each_sg(sg, s, nents, i)
874 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
879 * arm_dma_sync_sg_for_device
880 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
881 * @sg: list of buffers
882 * @nents: number of buffers to map (returned from dma_map_sg)
883 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
885 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
886 int nents, enum dma_data_direction dir)
888 struct dma_map_ops *ops = get_dma_ops(dev);
889 struct scatterlist *s;
892 for_each_sg(sg, s, nents, i)
893 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
898 * Return whether the given device DMA address mask can be supported
899 * properly. For example, if your device can only drive the low 24-bits
900 * during bus mastering, then you would pass 0x00ffffff as the mask
903 int dma_supported(struct device *dev, u64 mask)
905 if (mask < (u64)arm_dma_limit)
909 EXPORT_SYMBOL(dma_supported);
911 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
913 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
916 *dev->dma_mask = dma_mask;
921 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
923 static int __init dma_debug_do_init(void)
925 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
928 fs_initcall(dma_debug_do_init);
930 #ifdef CONFIG_ARM_DMA_USE_IOMMU
934 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
937 unsigned int order = get_order(size);
938 unsigned int align = 0;
939 unsigned int count, start;
942 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
943 (1 << mapping->order) - 1) >> mapping->order;
945 if (order > mapping->order)
946 align = (1 << (order - mapping->order)) - 1;
948 spin_lock_irqsave(&mapping->lock, flags);
949 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
951 if (start > mapping->bits) {
952 spin_unlock_irqrestore(&mapping->lock, flags);
953 return DMA_ERROR_CODE;
956 bitmap_set(mapping->bitmap, start, count);
957 spin_unlock_irqrestore(&mapping->lock, flags);
959 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
962 static inline void __free_iova(struct dma_iommu_mapping *mapping,
963 dma_addr_t addr, size_t size)
965 unsigned int start = (addr - mapping->base) >>
966 (mapping->order + PAGE_SHIFT);
967 unsigned int count = ((size >> PAGE_SHIFT) +
968 (1 << mapping->order) - 1) >> mapping->order;
971 spin_lock_irqsave(&mapping->lock, flags);
972 bitmap_clear(mapping->bitmap, start, count);
973 spin_unlock_irqrestore(&mapping->lock, flags);
976 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
979 int count = size >> PAGE_SHIFT;
980 int array_size = count * sizeof(struct page *);
983 if (array_size <= PAGE_SIZE)
984 pages = kzalloc(array_size, gfp);
986 pages = vzalloc(array_size);
991 int j, order = __fls(count);
993 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
994 while (!pages[i] && order)
995 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1000 split_page(pages[i], order);
1003 pages[i + j] = pages[i] + j;
1005 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1007 count -= 1 << order;
1014 __free_pages(pages[i], 0);
1015 if (array_size <= PAGE_SIZE)
1022 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1024 int count = size >> PAGE_SHIFT;
1025 int array_size = count * sizeof(struct page *);
1027 for (i = 0; i < count; i++)
1029 __free_pages(pages[i], 0);
1030 if (array_size <= PAGE_SIZE)
1038 * Create a CPU mapping for a specified pages
1041 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1044 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1045 struct vm_struct *area;
1048 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1053 area->pages = pages;
1054 area->nr_pages = nr_pages;
1055 p = (unsigned long)area->addr;
1057 for (i = 0; i < nr_pages; i++) {
1058 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1059 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1065 unmap_kernel_range((unsigned long)area->addr, size);
1071 * Create a mapping in device IO address space for specified pages
1074 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1076 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1077 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1078 dma_addr_t dma_addr, iova;
1079 int i, ret = DMA_ERROR_CODE;
1081 dma_addr = __alloc_iova(mapping, size);
1082 if (dma_addr == DMA_ERROR_CODE)
1086 for (i = 0; i < count; ) {
1087 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1088 phys_addr_t phys = page_to_phys(pages[i]);
1089 unsigned int len, j;
1091 for (j = i + 1; j < count; j++, next_pfn++)
1092 if (page_to_pfn(pages[j]) != next_pfn)
1095 len = (j - i) << PAGE_SHIFT;
1096 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1104 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1105 __free_iova(mapping, dma_addr, size);
1106 return DMA_ERROR_CODE;
1109 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1111 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1114 * add optional in-page offset from iova to size and align
1115 * result to page size
1117 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1120 iommu_unmap(mapping->domain, iova, size);
1121 __free_iova(mapping, iova, size);
1125 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1127 struct vm_struct *area;
1129 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1132 area = find_vm_area(cpu_addr);
1133 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1138 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1139 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1141 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1142 struct page **pages;
1145 *handle = DMA_ERROR_CODE;
1146 size = PAGE_ALIGN(size);
1148 pages = __iommu_alloc_buffer(dev, size, gfp);
1152 *handle = __iommu_create_mapping(dev, pages, size);
1153 if (*handle == DMA_ERROR_CODE)
1156 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1159 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1160 __builtin_return_address(0));
1167 __iommu_remove_mapping(dev, *handle, size);
1169 __iommu_free_buffer(dev, pages, size);
1173 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1174 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1175 struct dma_attrs *attrs)
1177 unsigned long uaddr = vma->vm_start;
1178 unsigned long usize = vma->vm_end - vma->vm_start;
1179 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1181 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1187 int ret = vm_insert_page(vma, uaddr, *pages++);
1189 pr_err("Remapping memory failed: %d\n", ret);
1194 } while (usize > 0);
1200 * free a page as defined by the above mapping.
1201 * Must not be called with IRQs disabled.
1203 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1204 dma_addr_t handle, struct dma_attrs *attrs)
1206 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1207 size = PAGE_ALIGN(size);
1210 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1214 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1215 unmap_kernel_range((unsigned long)cpu_addr, size);
1219 __iommu_remove_mapping(dev, handle, size);
1220 __iommu_free_buffer(dev, pages, size);
1223 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1224 void *cpu_addr, dma_addr_t dma_addr,
1225 size_t size, struct dma_attrs *attrs)
1227 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1228 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1233 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1238 * Map a part of the scatter-gather list into contiguous io address space
1240 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1241 size_t size, dma_addr_t *handle,
1242 enum dma_data_direction dir, struct dma_attrs *attrs)
1244 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1245 dma_addr_t iova, iova_base;
1248 struct scatterlist *s;
1250 size = PAGE_ALIGN(size);
1251 *handle = DMA_ERROR_CODE;
1253 iova_base = iova = __alloc_iova(mapping, size);
1254 if (iova == DMA_ERROR_CODE)
1257 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1258 phys_addr_t phys = page_to_phys(sg_page(s));
1259 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1261 if (!arch_is_coherent() &&
1262 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1263 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1265 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1268 count += len >> PAGE_SHIFT;
1271 *handle = iova_base;
1275 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1276 __free_iova(mapping, iova_base, size);
1281 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1282 * @dev: valid struct device pointer
1283 * @sg: list of buffers
1284 * @nents: number of buffers to map
1285 * @dir: DMA transfer direction
1287 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1288 * The scatter gather list elements are merged together (if possible) and
1289 * tagged with the appropriate dma address and length. They are obtained via
1290 * sg_dma_{address,length}.
1292 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1293 enum dma_data_direction dir, struct dma_attrs *attrs)
1295 struct scatterlist *s = sg, *dma = sg, *start = sg;
1297 unsigned int offset = s->offset;
1298 unsigned int size = s->offset + s->length;
1299 unsigned int max = dma_get_max_seg_size(dev);
1301 for (i = 1; i < nents; i++) {
1304 s->dma_address = DMA_ERROR_CODE;
1307 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1308 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1312 dma->dma_address += offset;
1313 dma->dma_length = size - offset;
1315 size = offset = s->offset;
1322 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
1325 dma->dma_address += offset;
1326 dma->dma_length = size - offset;
1331 for_each_sg(sg, s, count, i)
1332 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1337 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1338 * @dev: valid struct device pointer
1339 * @sg: list of buffers
1340 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1341 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 * Unmap a set of streaming mode DMA translations. Again, CPU access
1344 * rules concerning calls here are the same as for dma_unmap_single().
1346 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1347 enum dma_data_direction dir, struct dma_attrs *attrs)
1349 struct scatterlist *s;
1352 for_each_sg(sg, s, nents, i) {
1354 __iommu_remove_mapping(dev, sg_dma_address(s),
1356 if (!arch_is_coherent() &&
1357 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1358 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1364 * arm_iommu_sync_sg_for_cpu
1365 * @dev: valid struct device pointer
1366 * @sg: list of buffers
1367 * @nents: number of buffers to map (returned from dma_map_sg)
1368 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1370 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1371 int nents, enum dma_data_direction dir)
1373 struct scatterlist *s;
1376 for_each_sg(sg, s, nents, i)
1377 if (!arch_is_coherent())
1378 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1383 * arm_iommu_sync_sg_for_device
1384 * @dev: valid struct device pointer
1385 * @sg: list of buffers
1386 * @nents: number of buffers to map (returned from dma_map_sg)
1387 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1389 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1390 int nents, enum dma_data_direction dir)
1392 struct scatterlist *s;
1395 for_each_sg(sg, s, nents, i)
1396 if (!arch_is_coherent())
1397 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1402 * arm_iommu_map_page
1403 * @dev: valid struct device pointer
1404 * @page: page that buffer resides in
1405 * @offset: offset into page for start of buffer
1406 * @size: size of buffer to map
1407 * @dir: DMA transfer direction
1409 * IOMMU aware version of arm_dma_map_page()
1411 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1412 unsigned long offset, size_t size, enum dma_data_direction dir,
1413 struct dma_attrs *attrs)
1415 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1416 dma_addr_t dma_addr;
1417 int ret, len = PAGE_ALIGN(size + offset);
1419 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1420 __dma_page_cpu_to_dev(page, offset, size, dir);
1422 dma_addr = __alloc_iova(mapping, len);
1423 if (dma_addr == DMA_ERROR_CODE)
1426 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1430 return dma_addr + offset;
1432 __free_iova(mapping, dma_addr, len);
1433 return DMA_ERROR_CODE;
1437 * arm_iommu_unmap_page
1438 * @dev: valid struct device pointer
1439 * @handle: DMA address of buffer
1440 * @size: size of buffer (same as passed to dma_map_page)
1441 * @dir: DMA transfer direction (same as passed to dma_map_page)
1443 * IOMMU aware version of arm_dma_unmap_page()
1445 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1446 size_t size, enum dma_data_direction dir,
1447 struct dma_attrs *attrs)
1449 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1450 dma_addr_t iova = handle & PAGE_MASK;
1451 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1452 int offset = handle & ~PAGE_MASK;
1453 int len = PAGE_ALIGN(size + offset);
1458 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1459 __dma_page_dev_to_cpu(page, offset, size, dir);
1461 iommu_unmap(mapping->domain, iova, len);
1462 __free_iova(mapping, iova, len);
1465 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1466 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1468 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1469 dma_addr_t iova = handle & PAGE_MASK;
1470 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1471 unsigned int offset = handle & ~PAGE_MASK;
1476 if (!arch_is_coherent())
1477 __dma_page_dev_to_cpu(page, offset, size, dir);
1480 static void arm_iommu_sync_single_for_device(struct device *dev,
1481 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1483 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1484 dma_addr_t iova = handle & PAGE_MASK;
1485 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1486 unsigned int offset = handle & ~PAGE_MASK;
1491 __dma_page_cpu_to_dev(page, offset, size, dir);
1494 struct dma_map_ops iommu_ops = {
1495 .alloc = arm_iommu_alloc_attrs,
1496 .free = arm_iommu_free_attrs,
1497 .mmap = arm_iommu_mmap_attrs,
1498 .get_sgtable = arm_iommu_get_sgtable,
1500 .map_page = arm_iommu_map_page,
1501 .unmap_page = arm_iommu_unmap_page,
1502 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1503 .sync_single_for_device = arm_iommu_sync_single_for_device,
1505 .map_sg = arm_iommu_map_sg,
1506 .unmap_sg = arm_iommu_unmap_sg,
1507 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1508 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1512 * arm_iommu_create_mapping
1513 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1514 * @base: start address of the valid IO address space
1515 * @size: size of the valid IO address space
1516 * @order: accuracy of the IO addresses allocations
1518 * Creates a mapping structure which holds information about used/unused
1519 * IO address ranges, which is required to perform memory allocation and
1520 * mapping with IOMMU aware functions.
1522 * The client device need to be attached to the mapping with
1523 * arm_iommu_attach_device function.
1525 struct dma_iommu_mapping *
1526 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1529 unsigned int count = size >> (PAGE_SHIFT + order);
1530 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1531 struct dma_iommu_mapping *mapping;
1535 return ERR_PTR(-EINVAL);
1537 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1541 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1542 if (!mapping->bitmap)
1545 mapping->base = base;
1546 mapping->bits = BITS_PER_BYTE * bitmap_size;
1547 mapping->order = order;
1548 spin_lock_init(&mapping->lock);
1550 mapping->domain = iommu_domain_alloc(bus);
1551 if (!mapping->domain)
1554 kref_init(&mapping->kref);
1557 kfree(mapping->bitmap);
1561 return ERR_PTR(err);
1564 static void release_iommu_mapping(struct kref *kref)
1566 struct dma_iommu_mapping *mapping =
1567 container_of(kref, struct dma_iommu_mapping, kref);
1569 iommu_domain_free(mapping->domain);
1570 kfree(mapping->bitmap);
1574 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1577 kref_put(&mapping->kref, release_iommu_mapping);
1581 * arm_iommu_attach_device
1582 * @dev: valid struct device pointer
1583 * @mapping: io address space mapping structure (returned from
1584 * arm_iommu_create_mapping)
1586 * Attaches specified io address space mapping to the provided device,
1587 * this replaces the dma operations (dma_map_ops pointer) with the
1588 * IOMMU aware version. More than one client might be attached to
1589 * the same io address space mapping.
1591 int arm_iommu_attach_device(struct device *dev,
1592 struct dma_iommu_mapping *mapping)
1596 err = iommu_attach_device(mapping->domain, dev);
1600 kref_get(&mapping->kref);
1601 dev->archdata.mapping = mapping;
1602 set_dma_ops(dev, &iommu_ops);
1604 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));