2 * linux/arch/arm/mach-versatile/core.c
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/platform_device.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27 #include <linux/amba/bus.h>
28 #include <linux/amba/clcd.h>
29 #include <linux/amba/pl061.h>
30 #include <linux/amba/mmci.h>
32 #include <linux/gfp.h>
34 #include <asm/clkdev.h>
35 #include <asm/system.h>
38 #include <asm/hardware/arm_timer.h>
39 #include <asm/hardware/icst.h>
40 #include <asm/hardware/vic.h>
41 #include <asm/mach-types.h>
43 #include <asm/mach/arch.h>
44 #include <asm/mach/flash.h>
45 #include <asm/mach/irq.h>
46 #include <asm/mach/time.h>
47 #include <asm/mach/map.h>
48 #include <mach/clkdev.h>
49 #include <mach/hardware.h>
50 #include <mach/platform.h>
51 #include <plat/timer-sp.h>
56 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
59 * Setup a VA for the Versatile Vectored Interrupt Controller.
61 #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
62 #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
64 static void sic_mask_irq(unsigned int irq)
67 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
70 static void sic_unmask_irq(unsigned int irq)
73 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
76 static struct irq_chip sic_chip = {
80 .unmask = sic_unmask_irq,
84 sic_handle_irq(unsigned int irq, struct irq_desc *desc)
86 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
89 do_bad_IRQ(irq, desc);
94 irq = ffs(status) - 1;
95 status &= ~(1 << irq);
99 generic_handle_irq(irq);
104 #define IRQ_MMCI0A IRQ_VICSOURCE22
105 #define IRQ_AACI IRQ_VICSOURCE24
106 #define IRQ_ETH IRQ_VICSOURCE25
107 #define PIC_MASK 0xFFD00000
109 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
110 #define IRQ_AACI IRQ_SIC_AACI
111 #define IRQ_ETH IRQ_SIC_ETH
115 void __init versatile_init_irq(void)
119 vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
121 set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
123 /* Do second interrupt controller */
124 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
126 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
127 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
128 set_irq_chip(i, &sic_chip);
129 set_irq_handler(i, handle_level_irq);
130 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
135 * Interrupts on secondary controller from 0 to 8 are routed to
137 * Interrupts from 21 to 31 are routed directly to the VIC on
138 * the corresponding number on primary controller. This is controlled
139 * by setting PIC_ENABLEx.
141 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
144 static struct map_desc versatile_io_desc[] __initdata = {
146 .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
147 .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
151 .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
152 .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
156 .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
157 .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
161 .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
162 .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
166 #ifdef CONFIG_MACH_VERSATILE_AB
168 .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
169 .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
173 .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
174 .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
179 #ifdef CONFIG_DEBUG_LL
181 .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
182 .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
189 .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
190 .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
194 .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
195 .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
196 .length = VERSATILE_PCI_BASE_SIZE,
199 .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
200 .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
201 .length = VERSATILE_PCI_CFG_BASE_SIZE,
206 .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
207 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
211 .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
212 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
216 .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
217 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
225 void __init versatile_map_io(void)
227 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
231 #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
233 static int versatile_flash_init(void)
237 val = __raw_readl(VERSATILE_FLASHCTRL);
238 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
239 __raw_writel(val, VERSATILE_FLASHCTRL);
244 static void versatile_flash_exit(void)
248 val = __raw_readl(VERSATILE_FLASHCTRL);
249 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
250 __raw_writel(val, VERSATILE_FLASHCTRL);
253 static void versatile_flash_set_vpp(int on)
257 val = __raw_readl(VERSATILE_FLASHCTRL);
259 val |= VERSATILE_FLASHPROG_FLVPPEN;
261 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
262 __raw_writel(val, VERSATILE_FLASHCTRL);
265 static struct flash_platform_data versatile_flash_data = {
266 .map_name = "cfi_probe",
268 .init = versatile_flash_init,
269 .exit = versatile_flash_exit,
270 .set_vpp = versatile_flash_set_vpp,
273 static struct resource versatile_flash_resource = {
274 .start = VERSATILE_FLASH_BASE,
275 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
276 .flags = IORESOURCE_MEM,
279 static struct platform_device versatile_flash_device = {
283 .platform_data = &versatile_flash_data,
286 .resource = &versatile_flash_resource,
289 static struct resource smc91x_resources[] = {
291 .start = VERSATILE_ETH_BASE,
292 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
293 .flags = IORESOURCE_MEM,
298 .flags = IORESOURCE_IRQ,
302 static struct platform_device smc91x_device = {
305 .num_resources = ARRAY_SIZE(smc91x_resources),
306 .resource = smc91x_resources,
309 static struct resource versatile_i2c_resource = {
310 .start = VERSATILE_I2C_BASE,
311 .end = VERSATILE_I2C_BASE + SZ_4K - 1,
312 .flags = IORESOURCE_MEM,
315 static struct platform_device versatile_i2c_device = {
316 .name = "versatile-i2c",
319 .resource = &versatile_i2c_resource,
322 static struct i2c_board_info versatile_i2c_board_info[] = {
324 I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
328 static int __init versatile_i2c_init(void)
330 return i2c_register_board_info(0, versatile_i2c_board_info,
331 ARRAY_SIZE(versatile_i2c_board_info));
333 arch_initcall(versatile_i2c_init);
335 #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
337 unsigned int mmc_status(struct device *dev)
339 struct amba_device *adev = container_of(dev, struct amba_device, dev);
342 if (adev->res.start == VERSATILE_MMCI0_BASE)
347 return readl(VERSATILE_SYSMCI) & mask;
350 static struct mmci_platform_data mmc0_plat_data = {
351 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
352 .status = mmc_status,
360 static const struct icst_params versatile_oscvco_params = {
362 .vco_max = ICST307_VCO_MAX,
363 .vco_min = ICST307_VCO_MIN,
368 .s2div = icst307_s2div,
369 .idx2s = icst307_idx2s,
372 static void versatile_oscvco_set(struct clk *clk, struct icst_vco vco)
374 void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
377 val = readl(clk->vcoreg) & ~0x7ffff;
378 val |= vco.v | (vco.r << 9) | (vco.s << 16);
380 writel(0xa05f, sys_lock);
381 writel(val, clk->vcoreg);
385 static const struct clk_ops osc4_clk_ops = {
386 .round = icst_clk_round,
388 .setvco = versatile_oscvco_set,
391 static struct clk osc4_clk = {
392 .ops = &osc4_clk_ops,
393 .params = &versatile_oscvco_params,
397 * These are fixed clocks.
399 static struct clk ref24_clk = {
403 static struct clk_lookup lookups[] = {
437 #define SYS_CLCD_MODE_MASK (3 << 0)
438 #define SYS_CLCD_MODE_888 (0 << 0)
439 #define SYS_CLCD_MODE_5551 (1 << 0)
440 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
441 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
442 #define SYS_CLCD_NLCDIOON (1 << 2)
443 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
444 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
445 #define SYS_CLCD_ID_MASK (0x1f << 8)
446 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
447 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
448 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
449 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
450 #define SYS_CLCD_ID_VGA (0x1f << 8)
452 static struct clcd_panel vga = {
466 .vmode = FB_VMODE_NONINTERLACED,
470 .tim2 = TIM2_BCD | TIM2_IPC,
471 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
475 static struct clcd_panel sanyo_3_8_in = {
477 .name = "Sanyo QVGA",
489 .vmode = FB_VMODE_NONINTERLACED,
494 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
498 static struct clcd_panel sanyo_2_5_in = {
500 .name = "Sanyo QVGA Portrait",
511 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
512 .vmode = FB_VMODE_NONINTERLACED,
516 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
517 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
521 static struct clcd_panel epson_2_2_in = {
523 .name = "Epson QCIF",
535 .vmode = FB_VMODE_NONINTERLACED,
539 .tim2 = TIM2_BCD | TIM2_IPC,
540 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
545 * Detect which LCD panel is connected, and return the appropriate
546 * clcd_panel structure. Note: we do not have any information on
547 * the required timings for the 8.4in panel, so we presently assume
550 static struct clcd_panel *versatile_clcd_panel(void)
552 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
553 struct clcd_panel *panel = &vga;
556 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
557 if (val == SYS_CLCD_ID_SANYO_3_8)
558 panel = &sanyo_3_8_in;
559 else if (val == SYS_CLCD_ID_SANYO_2_5)
560 panel = &sanyo_2_5_in;
561 else if (val == SYS_CLCD_ID_EPSON_2_2)
562 panel = &epson_2_2_in;
563 else if (val == SYS_CLCD_ID_VGA)
566 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
575 * Disable all display connectors on the interface module.
577 static void versatile_clcd_disable(struct clcd_fb *fb)
579 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
582 val = readl(sys_clcd);
583 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
584 writel(val, sys_clcd);
586 #ifdef CONFIG_MACH_VERSATILE_AB
588 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
590 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
591 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
594 ctrl = readl(versatile_ib2_ctrl);
596 writel(ctrl, versatile_ib2_ctrl);
602 * Enable the relevant connector on the interface module.
604 static void versatile_clcd_enable(struct clcd_fb *fb)
606 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
609 val = readl(sys_clcd);
610 val &= ~SYS_CLCD_MODE_MASK;
612 switch (fb->fb.var.green.length) {
614 val |= SYS_CLCD_MODE_5551;
617 val |= SYS_CLCD_MODE_565_RLSB;
620 val |= SYS_CLCD_MODE_888;
627 writel(val, sys_clcd);
630 * And now enable the PSUs
632 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
633 writel(val, sys_clcd);
635 #ifdef CONFIG_MACH_VERSATILE_AB
637 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
639 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
640 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
643 ctrl = readl(versatile_ib2_ctrl);
645 writel(ctrl, versatile_ib2_ctrl);
650 static unsigned long framesize = SZ_1M;
652 static int versatile_clcd_setup(struct clcd_fb *fb)
656 fb->panel = versatile_clcd_panel();
658 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
660 if (!fb->fb.screen_base) {
661 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
665 fb->fb.fix.smem_start = dma;
666 fb->fb.fix.smem_len = framesize;
671 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
673 return dma_mmap_writecombine(&fb->dev->dev, vma,
675 fb->fb.fix.smem_start,
676 fb->fb.fix.smem_len);
679 static void versatile_clcd_remove(struct clcd_fb *fb)
681 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
682 fb->fb.screen_base, fb->fb.fix.smem_start);
685 static struct clcd_board clcd_plat_data = {
687 .check = clcdfb_check,
688 .decode = clcdfb_decode,
689 .disable = versatile_clcd_disable,
690 .enable = versatile_clcd_enable,
691 .setup = versatile_clcd_setup,
692 .mmap = versatile_clcd_mmap,
693 .remove = versatile_clcd_remove,
696 static struct pl061_platform_data gpio0_plat_data = {
698 .irq_base = IRQ_GPIO0_START,
701 static struct pl061_platform_data gpio1_plat_data = {
703 .irq_base = IRQ_GPIO1_START,
706 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
707 #define AACI_DMA { 0x80, 0x81 }
708 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
709 #define MMCI0_DMA { 0x84, 0 }
710 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
711 #define KMI0_DMA { 0, 0 }
712 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
713 #define KMI1_DMA { 0, 0 }
716 * These devices are connected directly to the multi-layer AHB switch
718 #define SMC_IRQ { NO_IRQ, NO_IRQ }
719 #define SMC_DMA { 0, 0 }
720 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
721 #define MPMC_DMA { 0, 0 }
722 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
723 #define CLCD_DMA { 0, 0 }
724 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
725 #define DMAC_DMA { 0, 0 }
728 * These devices are connected via the core APB bridge
730 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
731 #define SCTL_DMA { 0, 0 }
732 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
733 #define WATCHDOG_DMA { 0, 0 }
734 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
735 #define GPIO0_DMA { 0, 0 }
736 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
737 #define GPIO1_DMA { 0, 0 }
738 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
739 #define RTC_DMA { 0, 0 }
742 * These devices are connected via the DMA APB bridge
744 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
745 #define SCI_DMA { 7, 6 }
746 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
747 #define UART0_DMA { 15, 14 }
748 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
749 #define UART1_DMA { 13, 12 }
750 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
751 #define UART2_DMA { 11, 10 }
752 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
753 #define SSP_DMA { 9, 8 }
755 /* FPGA Primecells */
756 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
757 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
758 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
759 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
761 /* DevChip Primecells */
762 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
763 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
764 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
765 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
766 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
767 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
768 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
769 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
770 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
771 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
772 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
773 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
774 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
775 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
777 static struct amba_device *amba_devs[] __initdata = {
799 #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
801 static void versatile_leds_event(led_event_t ledevt)
806 local_irq_save(flags);
807 val = readl(VA_LEDS_BASE);
811 val = val & ~VERSATILE_SYS_LED0;
815 val = val | VERSATILE_SYS_LED0;
819 val = val ^ VERSATILE_SYS_LED1;
830 writel(val, VA_LEDS_BASE);
831 local_irq_restore(flags);
833 #endif /* CONFIG_LEDS */
835 void __init versatile_init(void)
839 osc4_clk.vcoreg = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
841 clkdev_add_table(lookups, ARRAY_SIZE(lookups));
843 platform_device_register(&versatile_flash_device);
844 platform_device_register(&versatile_i2c_device);
845 platform_device_register(&smc91x_device);
847 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
848 struct amba_device *d = amba_devs[i];
849 amba_device_register(d, &iomem_resource);
853 leds_event = versatile_leds_event;
858 * Where is the timer (VA)?
860 #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
861 #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
862 #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
863 #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
866 * Set up timer interrupt, and return the current time in seconds.
868 static void __init versatile_timer_init(void)
873 * set clock frequency:
874 * VERSATILE_REFCLK is 32KHz
875 * VERSATILE_TIMCLK is 1MHz
877 val = readl(__io_address(VERSATILE_SCTL_BASE));
878 writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
879 (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
880 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
881 (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
882 __io_address(VERSATILE_SCTL_BASE));
885 * Initialise to a known state (all timers off)
887 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
888 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
889 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
890 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
892 sp804_clocksource_init(TIMER3_VA_BASE);
893 sp804_clockevents_init(TIMER0_VA_BASE, IRQ_TIMERINT0_1);
896 struct sys_timer versatile_timer = {
897 .init = versatile_timer_init,