1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2012-2017 Altera Corporation <www.altera.com>
10 #include <linux/libfdt.h>
15 #include <asm/arch/misc.h>
16 #include <asm/arch/reset_manager.h>
17 #include <asm/arch/scan_manager.h>
18 #include <asm/arch/sdram.h>
19 #include <asm/arch/system_manager.h>
20 #include <asm/arch/nic301.h>
21 #include <asm/arch/scu.h>
22 #include <asm/pl310.h>
24 #include <dt-bindings/reset/altr,rst-mgr.h>
26 DECLARE_GLOBAL_DATA_PTR;
28 static struct pl310_regs *const pl310 =
29 (struct pl310_regs *)CONFIG_SYS_PL310_BASE;
30 static struct socfpga_system_manager *sysmgr_regs =
31 (struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS;
32 static struct nic301_registers *nic301_regs =
33 (struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS;
34 static struct scu_registers *scu_regs =
35 (struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS;
38 * DesignWare Ethernet initialization
40 #ifdef CONFIG_ETH_DESIGNWARE
41 static void gen5_dwmac_reset(const u8 of_reset_id, const u8 phymode)
45 if (of_reset_id == EMAC0_RESET) {
46 physhift = SYSMGR_EMACGRP_CTRL_PHYSEL0_LSB;
47 reset = SOCFPGA_RESET(EMAC0);
48 } else if (of_reset_id == EMAC1_RESET) {
49 physhift = SYSMGR_EMACGRP_CTRL_PHYSEL1_LSB;
50 reset = SOCFPGA_RESET(EMAC1);
52 printf("GMAC: Invalid reset ID (%i)!\n", of_reset_id);
56 /* configure to PHY interface select choosed */
57 clrsetbits_le32(&sysmgr_regs->emacgrp_ctrl,
58 SYSMGR_EMACGRP_CTRL_PHYSEL_MASK << physhift,
61 /* Release the EMAC controller from reset */
62 socfpga_per_reset(reset, 0);
65 static int socfpga_eth_reset(void)
67 /* Put all GMACs into RESET state. */
68 socfpga_per_reset(SOCFPGA_RESET(EMAC0), 1);
69 socfpga_per_reset(SOCFPGA_RESET(EMAC1), 1);
70 return socfpga_eth_reset_common(gen5_dwmac_reset);
73 static int socfpga_eth_reset(void)
83 } socfpga_fpga_model[] = {
85 { 0x2b15, "Cyclone V, E/A2", "cv_e_a2" },
86 { 0x2b05, "Cyclone V, E/A4", "cv_e_a4" },
87 { 0x2b22, "Cyclone V, E/A5", "cv_e_a5" },
88 { 0x2b13, "Cyclone V, E/A7", "cv_e_a7" },
89 { 0x2b14, "Cyclone V, E/A9", "cv_e_a9" },
91 { 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" },
92 { 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" },
93 { 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" },
94 { 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" },
95 { 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" },
96 /* Cyclone V SE/SX/ST */
97 { 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" },
98 { 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" },
99 { 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" },
100 { 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" },
102 { 0x2d03, "Arria V, D5", "av_d5" },
105 static int socfpga_fpga_id(const bool print_id)
107 const u32 altera_mi = 0x6e;
108 const u32 id = scan_mgr_get_fpga_id();
110 const u32 lsb = id & 0x00000001;
111 const u32 mi = (id >> 1) & 0x000007ff;
112 const u32 pn = (id >> 12) & 0x0000ffff;
113 const u32 version = (id >> 28) & 0x0000000f;
116 if ((mi != altera_mi) || (lsb != 1)) {
117 printf("FPGA: Not Altera chip ID\n");
121 for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++)
122 if (pn == socfpga_fpga_model[i].pn)
125 if (i == ARRAY_SIZE(socfpga_fpga_model)) {
126 printf("FPGA: Unknown Altera chip, ID 0x%08x\n", id);
131 printf("FPGA: Altera %s, version 0x%01x\n",
132 socfpga_fpga_model[i].name, version);
137 * Print CPU information
139 #if defined(CONFIG_DISPLAY_CPUINFO)
140 int print_cpuinfo(void)
143 SYSMGR_GET_BOOTINFO_BSEL(readl(&sysmgr_regs->bootinfo));
145 puts("CPU: Altera SoCFPGA Platform\n");
148 printf("BOOT: %s\n", bsel_str[bsel].name);
153 #ifdef CONFIG_ARCH_MISC_INIT
154 int arch_misc_init(void)
156 const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7;
157 const int fpga_id = socfpga_fpga_id(0);
158 env_set("bootmode", bsel_str[bsel].mode);
160 env_set("fpgatype", socfpga_fpga_model[fpga_id].var);
161 return socfpga_eth_reset();
166 * Convert all NIC-301 AMBA slaves from secure to non-secure
168 static void socfpga_nic301_slave_ns(void)
170 writel(0x1, &nic301_regs->lwhps2fpgaregs);
171 writel(0x1, &nic301_regs->hps2fpgaregs);
172 writel(0x1, &nic301_regs->acp);
173 writel(0x1, &nic301_regs->rom);
174 writel(0x1, &nic301_regs->ocram);
175 writel(0x1, &nic301_regs->sdrdata);
178 void socfpga_sdram_remap_zero(void)
182 socfpga_nic301_slave_ns();
185 * Private components security:
186 * U-Boot : configure private timer, global timer and cpu component
187 * access as non secure for kernel stage (as required by Linux)
189 setbits_le32(&scu_regs->sacr, 0xfff);
191 /* Configure the L2 controller to make SDRAM start at 0 */
192 remap = 0x1; /* remap.mpuzero */
193 /* Keep fpga bridge enabled when running from FPGA onchip RAM */
194 if (socfpga_is_booting_from_fpga())
195 remap |= 0x8; /* remap.hps2fpga */
196 writel(remap, &nic301_regs->remap);
198 writel(0x1, &pl310->pl310_addr_filter_start);
201 static u32 iswgrp_handoff[8];
203 int arch_early_init_r(void)
208 * Write magic value into magic register to unlock support for
209 * issuing warm reset. The ancient kernel code expects this
210 * value to be written into the register by the bootloader, so
211 * to support that old code, we write it here instead of in the
212 * reset_cpu() function just before resetting the CPU.
214 writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable);
216 for (i = 0; i < 8; i++) /* Cache initial SW setting regs */
217 iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]);
219 socfpga_bridges_reset(1);
221 socfpga_sdram_remap_zero();
223 /* Add device descriptor to FPGA device table */
226 #ifdef CONFIG_DESIGNWARE_SPI
227 /* Get Designware SPI controller out of reset */
228 socfpga_per_reset(SOCFPGA_RESET(SPIM0), 0);
229 socfpga_per_reset(SOCFPGA_RESET(SPIM1), 0);
232 #ifdef CONFIG_NAND_DENALI
233 socfpga_per_reset(SOCFPGA_RESET(NAND), 0);
239 #ifndef CONFIG_SPL_BUILD
240 static struct socfpga_reset_manager *reset_manager_base =
241 (struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS;
242 static struct socfpga_sdr_ctrl *sdr_ctrl =
243 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
245 static void socfpga_sdram_apply_static_cfg(void)
247 const u32 applymask = 0x8;
248 u32 val = readl(&sdr_ctrl->static_cfg) | applymask;
251 * SDRAM staticcfg register specific:
252 * When applying the register setting, the CPU must not access
253 * SDRAM. Luckily for us, we can abuse i-cache here to help us
254 * circumvent the SDRAM access issue. The idea is to make sure
255 * that the code is in one full i-cache line by branching past
256 * it and back. Once it is in the i-cache, we execute the core
257 * of the code and apply the register settings.
259 * The code below uses 7 instructions, while the Cortex-A9 has
260 * 32-byte cachelines, thus the limit is 8 instructions total.
271 : : "r"(val), "r"(&sdr_ctrl->static_cfg) : "memory", "cc");
274 void do_bridge_reset(int enable)
277 writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module);
278 socfpga_sdram_apply_static_cfg();
279 writel(iswgrp_handoff[3], &sdr_ctrl->fpgaport_rst);
280 writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset);
281 writel(iswgrp_handoff[1], &nic301_regs->remap);
283 writel(0, &sysmgr_regs->fpgaintfgrp_module);
284 writel(0, &sdr_ctrl->fpgaport_rst);
285 socfpga_sdram_apply_static_cfg();
286 writel(0, &reset_manager_base->brg_mod_reset);
287 writel(1, &nic301_regs->remap);