c900f28af201787f9dc43cecbc9cd82251951c59
[platform/kernel/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * EMIF programming
4  *
5  * (C) Copyright 2010
6  * Texas Instruments, <www.ti.com>
7  *
8  * Aneesh V <aneesh@ti.com>
9  */
10
11 #include <common.h>
12 #include <net.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/omap_sec_common.h>
18 #include <asm/utils.h>
19 #include <linux/compiler.h>
20 #include <asm/ti-common/ti-edma3.h>
21
22 static int emif1_enabled = -1, emif2_enabled = -1;
23
24 void set_lpmode_selfrefresh(u32 base)
25 {
26         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
27         u32 reg;
28
29         reg = readl(&emif->emif_pwr_mgmt_ctrl);
30         reg &= ~EMIF_REG_LP_MODE_MASK;
31         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
32         reg &= ~EMIF_REG_SR_TIM_MASK;
33         writel(reg, &emif->emif_pwr_mgmt_ctrl);
34
35         /* dummy read for the new SR_TIM to be loaded */
36         readl(&emif->emif_pwr_mgmt_ctrl);
37 }
38
39 void force_emif_self_refresh()
40 {
41         set_lpmode_selfrefresh(EMIF1_BASE);
42         if (!is_dra72x())
43                 set_lpmode_selfrefresh(EMIF2_BASE);
44 }
45
46 inline u32 emif_num(u32 base)
47 {
48         if (base == EMIF1_BASE)
49                 return 1;
50         else if (base == EMIF2_BASE)
51                 return 2;
52         else
53                 return 0;
54 }
55
56 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
57 {
58         u32 mr;
59         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
60
61         mr_addr |= cs << EMIF_REG_CS_SHIFT;
62         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
63         if (omap_revision() == OMAP4430_ES2_0)
64                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
65         else
66                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
67         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
68               cs, mr_addr, mr);
69         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
70             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
71             ((mr & 0xff000000) >> 24) == (mr & 0xff))
72                 return mr & 0xff;
73         else
74                 return mr;
75 }
76
77 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
78 {
79         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
80
81         mr_addr |= cs << EMIF_REG_CS_SHIFT;
82         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
83         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
84 }
85
86 void emif_reset_phy(u32 base)
87 {
88         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
89         u32 iodft;
90
91         iodft = readl(&emif->emif_iodft_tlgc);
92         iodft |= EMIF_REG_RESET_PHY_MASK;
93         writel(iodft, &emif->emif_iodft_tlgc);
94 }
95
96 static void do_lpddr2_init(u32 base, u32 cs)
97 {
98         u32 mr_addr;
99         const struct lpddr2_mr_regs *mr_regs;
100
101         get_lpddr2_mr_regs(&mr_regs);
102         /* Wait till device auto initialization is complete */
103         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
104                 ;
105         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
106         /*
107          * tZQINIT = 1 us
108          * Enough loops assuming a maximum of 2GHz
109          */
110
111         sdelay(2000);
112
113         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
114         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
115
116         /*
117          * Enable refresh along with writing MR2
118          * Encoding of RL in MR2 is (RL - 2)
119          */
120         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
121         set_mr(base, cs, mr_addr, mr_regs->mr2);
122
123         if (mr_regs->mr3 > 0)
124                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
125 }
126
127 static void lpddr2_init(u32 base, const struct emif_regs *regs)
128 {
129         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
130
131         /* Not NVM */
132         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
133
134         /*
135          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
136          * when EMIF_SDRAM_CONFIG register is written
137          */
138         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
139
140         /*
141          * Set the SDRAM_CONFIG and PHY_CTRL for the
142          * un-locked frequency & default RL
143          */
144         writel(regs->sdram_config_init, &emif->emif_sdram_config);
145         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
146
147         do_ext_phy_settings(base, regs);
148
149         do_lpddr2_init(base, CS0);
150         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
151                 do_lpddr2_init(base, CS1);
152
153         writel(regs->sdram_config, &emif->emif_sdram_config);
154         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
155
156         /* Enable refresh now */
157         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
158
159         }
160
161 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
162 {
163 }
164
165 void emif_update_timings(u32 base, const struct emif_regs *regs)
166 {
167         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
168
169         if (!is_dra7xx())
170                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
171         else
172                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
173
174         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
175         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
176         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
177         if (omap_revision() == OMAP4430_ES1_0) {
178                 /* ES1 bug EMIF should be in force idle during freq_update */
179                 writel(0, &emif->emif_pwr_mgmt_ctrl);
180         } else {
181                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
182                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
183         }
184         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
185         writel(regs->zq_config, &emif->emif_zq_config);
186         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
187         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
188
189         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
190                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
191                         &emif->emif_l3_config);
192         } else if (omap_revision() >= OMAP4460_ES1_0) {
193                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
194                         &emif->emif_l3_config);
195         } else {
196                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
197                         &emif->emif_l3_config);
198         }
199 }
200
201 #ifndef CONFIG_OMAP44XX
202 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
203 {
204         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
205
206         /* keep sdram in self-refresh */
207         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
208                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
209         __udelay(130);
210
211         /*
212          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
213          * Invert clock adds an additional half cycle delay on the
214          * command interface.  The additional half cycle, is usually
215          * meant to enable leveling in the situation that DQS is later
216          * than CK on the board.It also helps provide some additional
217          * margin for leveling.
218          */
219         writel(regs->emif_ddr_phy_ctlr_1,
220                &emif->emif_ddr_phy_ctrl_1);
221
222         writel(regs->emif_ddr_phy_ctlr_1,
223                &emif->emif_ddr_phy_ctrl_1_shdw);
224         __udelay(130);
225
226         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
227                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
228
229         /* Launch Full leveling */
230         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
231
232         /* Wait till full leveling is complete */
233         readl(&emif->emif_rd_wr_lvl_ctl);
234               __udelay(130);
235
236         /* Read data eye leveling no of samples */
237         config_data_eye_leveling_samples(base);
238
239         /*
240          * Launch 8 incremental WR_LVL- to compensate for
241          * PHY limitation.
242          */
243         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
244                &emif->emif_rd_wr_lvl_ctl);
245
246         __udelay(130);
247
248         /* Launch Incremental leveling */
249         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
250                __udelay(130);
251 }
252
253 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
254 {
255         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
256         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
257         u32 reg, i, phy;
258
259         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
260         phy = readl(&emif->emif_ddr_phy_ctrl_1);
261
262         /* Update PHY_REG_RDDQS_RATIO */
263         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
264         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
265                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
266                         reg = readl(emif_phy_status++);
267                         writel(reg, emif_ext_phy_ctrl_reg++);
268                         writel(reg, emif_ext_phy_ctrl_reg++);
269                 }
270
271         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
272         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
273         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
274         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
275                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
276                         reg = readl(emif_phy_status++);
277                         writel(reg, emif_ext_phy_ctrl_reg++);
278                         writel(reg, emif_ext_phy_ctrl_reg++);
279                 }
280
281         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
282         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
283         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
284         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
285                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
286                         reg = readl(emif_phy_status++);
287                         writel(reg, emif_ext_phy_ctrl_reg++);
288                         writel(reg, emif_ext_phy_ctrl_reg++);
289                 }
290
291         /* Disable Leveling */
292         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
293         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
294         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
295 }
296
297 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
298 {
299         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
300
301         /* Clear Error Status */
302         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
303                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
304                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
305
306         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
307                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
308                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
309
310         /* Disable refreshed before leveling */
311         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
312                         EMIF_REG_INITREF_DIS_MASK);
313
314         /* Start Full leveling */
315         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
316
317         __udelay(300);
318
319         /* Check for leveling timeout */
320         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
321                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
322                 return;
323         }
324
325         /* Enable refreshes after leveling */
326         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
327
328         debug("HW leveling success\n");
329         /*
330          * Update slave ratios in EXT_PHY_CTRLx registers
331          * as per HW leveling output
332          */
333         update_hwleveling_output(base, regs);
334 }
335
336 static void dra7_reset_ddr_data(u32 base, u32 size)
337 {
338 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
339         enable_edma3_clocks();
340
341         edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
342
343         disable_edma3_clocks();
344 #else
345         memset((void *)base, 0, size);
346 #endif
347 }
348
349 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
350 {
351         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
352         u32 rgn, rgn_start, size, ctrl_reg;
353
354         /* ECC available only on dra76x EMIF1 */
355         if ((base != EMIF1_BASE) || !is_dra76x())
356                 return;
357
358         if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
359                 /* Disable high-order interleaving */
360                 clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
361
362 #ifdef CONFIG_DRA7XX
363                 /* Clear the status flags and other history */
364                 writel(readl(&emif->emif_1b_ecc_err_cnt),
365                        &emif->emif_1b_ecc_err_cnt);
366                 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
367                 writel(0x2, &emif->emif_1b_ecc_err_addr_log);
368                 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
369                 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
370                        EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
371                        EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
372                        &emif->emif_irqstatus_sys);
373 #endif
374                 writel(regs->emif_ecc_address_range_1,
375                        &emif->emif_ecc_address_range_1);
376                 writel(regs->emif_ecc_address_range_2,
377                        &emif->emif_ecc_address_range_2);
378
379                 /* Disable RMW and ECC verification for read accesses */
380                 ctrl_reg = (regs->emif_ecc_ctrl_reg &
381                             ~EMIF_ECC_REG_RMW_EN_MASK) |
382                            EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
383                 writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
384
385                 /* Set region1 memory with 0 */
386                 rgn_start = (regs->emif_ecc_address_range_1 &
387                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
388                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
389                 size = (regs->emif_ecc_address_range_1 &
390                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
391
392                 if (regs->emif_ecc_ctrl_reg &
393                     EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
394                         dra7_reset_ddr_data(rgn, size);
395
396                 /* Set region2 memory with 0 */
397                 rgn_start = (regs->emif_ecc_address_range_2 &
398                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
399                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
400                 size = (regs->emif_ecc_address_range_2 &
401                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
402
403                 if (regs->emif_ecc_ctrl_reg &
404                     EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
405                         dra7_reset_ddr_data(rgn, size);
406
407                 /* Default value enables RMW and ECC verification */
408                 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
409         }
410 }
411
412 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
413 {
414         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
415
416         if (warm_reset()) {
417                 emif_reset_phy(base);
418                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
419         }
420         do_ext_phy_settings(base, regs);
421
422         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
423                &emif->emif_sdram_ref_ctrl);
424         /* Update timing registers */
425         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
426         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
427         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
428
429         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
430         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
431         writel(regs->zq_config, &emif->emif_zq_config);
432         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
433         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
434         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
435
436         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
437         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
438
439         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
440
441         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
442         writel(regs->sdram_config_init, &emif->emif_sdram_config);
443
444         __udelay(1000);
445
446         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
447
448         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
449                 /*
450                  * Perform Dummy ECC setup just to allow hardware
451                  * leveling of ECC memories
452                  */
453                 if (is_dra76x() && (base == EMIF1_BASE) &&
454                     (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
455                         writel(0, &emif->emif_ecc_address_range_1);
456                         writel(0, &emif->emif_ecc_address_range_2);
457                         writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
458                                EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
459                                &emif->emif_ecc_ctrl_reg);
460                 }
461
462                 dra7_ddr3_leveling(base, regs);
463
464                 /* Disable ECC */
465                 if (is_dra76x())
466                         writel(0, &emif->emif_ecc_ctrl_reg);
467         }
468
469         /* Enable ECC as necessary */
470         dra7_enable_ecc(base, regs);
471 }
472
473 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
474 {
475         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
476
477         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
478         writel(regs->sdram_config_init, &emif->emif_sdram_config);
479         /*
480          * Set SDRAM_CONFIG and PHY control registers to locked frequency
481          * and RL =7. As the default values of the Mode Registers are not
482          * defined, contents of mode Registers must be fully initialized.
483          * H/W takes care of this initialization
484          */
485         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
486
487         /* Update timing registers */
488         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
489         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
490         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
491
492         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
493
494         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
495         writel(regs->sdram_config_init, &emif->emif_sdram_config);
496         do_ext_phy_settings(base, regs);
497
498         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
499         omap5_ddr3_leveling(base, regs);
500 }
501
502 static void ddr3_init(u32 base, const struct emif_regs *regs)
503 {
504         if (is_omap54xx())
505                 omap5_ddr3_init(base, regs);
506         else
507                 dra7_ddr3_init(base, regs);
508 }
509 #endif
510
511 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
512 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
513
514 /*
515  * Organization and refresh requirements for LPDDR2 devices of different
516  * types and densities. Derived from JESD209-2 section 2.4
517  */
518 const struct lpddr2_addressing addressing_table[] = {
519         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
520         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
521         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
522         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
523         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
524         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
525         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
526         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
527         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
528         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
529         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
530 };
531
532 static const u32 lpddr2_density_2_size_in_mbytes[] = {
533         8,                      /* 64Mb */
534         16,                     /* 128Mb */
535         32,                     /* 256Mb */
536         64,                     /* 512Mb */
537         128,                    /* 1Gb   */
538         256,                    /* 2Gb   */
539         512,                    /* 4Gb   */
540         1024,                   /* 8Gb   */
541         2048,                   /* 16Gb  */
542         4096                    /* 32Gb  */
543 };
544
545 /*
546  * Calculate the period of DDR clock from frequency value and set the
547  * denominator and numerator in global variables for easy access later
548  */
549 static void set_ddr_clk_period(u32 freq)
550 {
551         /*
552          * period = 1/freq
553          * period_in_ns = 10^9/freq
554          */
555         *T_num = 1000000000;
556         *T_den = freq;
557         cancel_out(T_num, T_den, 200);
558
559 }
560
561 /*
562  * Convert time in nano seconds to number of cycles of DDR clock
563  */
564 static inline u32 ns_2_cycles(u32 ns)
565 {
566         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
567 }
568
569 /*
570  * ns_2_cycles with the difference that the time passed is 2 times the actual
571  * value(to avoid fractions). The cycles returned is for the original value of
572  * the timing parameter
573  */
574 static inline u32 ns_x2_2_cycles(u32 ns)
575 {
576         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
577 }
578
579 /*
580  * Find addressing table index based on the device's type(S2 or S4) and
581  * density
582  */
583 s8 addressing_table_index(u8 type, u8 density, u8 width)
584 {
585         u8 index;
586         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
587                 return -1;
588
589         /*
590          * Look at the way ADDR_TABLE_INDEX* values have been defined
591          * in emif.h compared to LPDDR2_DENSITY_* values
592          * The table is layed out in the increasing order of density
593          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
594          * at the end
595          */
596         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
597                 index = ADDR_TABLE_INDEX1GS2;
598         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
599                 index = ADDR_TABLE_INDEX2GS2;
600         else
601                 index = density;
602
603         debug("emif: addressing table index %d\n", index);
604
605         return index;
606 }
607
608 /*
609  * Find the the right timing table from the array of timing
610  * tables of the device using DDR clock frequency
611  */
612 static const struct lpddr2_ac_timings *get_timings_table(const struct
613                         lpddr2_ac_timings *const *device_timings,
614                         u32 freq)
615 {
616         u32 i, temp, freq_nearest;
617         const struct lpddr2_ac_timings *timings = 0;
618
619         emif_assert(freq <= MAX_LPDDR2_FREQ);
620         emif_assert(device_timings);
621
622         /*
623          * Start with the maximum allowed frequency - that is always safe
624          */
625         freq_nearest = MAX_LPDDR2_FREQ;
626         /*
627          * Find the timings table that has the max frequency value:
628          *   i.  Above or equal to the DDR frequency - safe
629          *   ii. The lowest that satisfies condition (i) - optimal
630          */
631         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
632                 temp = device_timings[i]->max_freq;
633                 if ((temp >= freq) && (temp <= freq_nearest)) {
634                         freq_nearest = temp;
635                         timings = device_timings[i];
636                 }
637         }
638         debug("emif: timings table: %d\n", freq_nearest);
639         return timings;
640 }
641
642 /*
643  * Finds the value of emif_sdram_config_reg
644  * All parameters are programmed based on the device on CS0.
645  * If there is a device on CS1, it will be same as that on CS0 or
646  * it will be NVM. We don't support NVM yet.
647  * If cs1_device pointer is NULL it is assumed that there is no device
648  * on CS1
649  */
650 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
651                                 const struct lpddr2_device_details *cs1_device,
652                                 const struct lpddr2_addressing *addressing,
653                                 u8 RL)
654 {
655         u32 config_reg = 0;
656
657         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
658         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
659                         EMIF_REG_IBANK_POS_SHIFT;
660
661         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
662
663         config_reg |= RL << EMIF_REG_CL_SHIFT;
664
665         config_reg |= addressing->row_sz[cs0_device->io_width] <<
666                         EMIF_REG_ROWSIZE_SHIFT;
667
668         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
669
670         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
671                         EMIF_REG_EBANK_SHIFT;
672
673         config_reg |= addressing->col_sz[cs0_device->io_width] <<
674                         EMIF_REG_PAGESIZE_SHIFT;
675
676         return config_reg;
677 }
678
679 static u32 get_sdram_ref_ctrl(u32 freq,
680                               const struct lpddr2_addressing *addressing)
681 {
682         u32 ref_ctrl = 0, val = 0, freq_khz;
683         freq_khz = freq / 1000;
684         /*
685          * refresh rate to be set is 'tREFI * freq in MHz
686          * division by 10000 to account for khz and x10 in t_REFI_us_x10
687          */
688         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
689         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
690
691         return ref_ctrl;
692 }
693
694 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
695                                const struct lpddr2_min_tck *min_tck,
696                                const struct lpddr2_addressing *addressing)
697 {
698         u32 tim1 = 0, val = 0;
699         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
700         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
701
702         if (addressing->num_banks == BANKS8)
703                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
704                                                         (4 * (*T_num)) - 1;
705         else
706                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
707
708         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
709
710         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
711         tim1 |= val << EMIF_REG_T_RC_SHIFT;
712
713         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
714         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
715
716         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
717         tim1 |= val << EMIF_REG_T_WR_SHIFT;
718
719         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
720         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
721
722         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
723         tim1 |= val << EMIF_REG_T_RP_SHIFT;
724
725         return tim1;
726 }
727
728 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
729                                const struct lpddr2_min_tck *min_tck)
730 {
731         u32 tim2 = 0, val = 0;
732         val = max(min_tck->tCKE, timings->tCKE) - 1;
733         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
734
735         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
736         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
737
738         /*
739          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
740          * same value
741          */
742         val = ns_2_cycles(timings->tXSR) - 1;
743         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
744         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
745
746         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
747         tim2 |= val << EMIF_REG_T_XP_SHIFT;
748
749         return tim2;
750 }
751
752 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
753                                const struct lpddr2_min_tck *min_tck,
754                                const struct lpddr2_addressing *addressing)
755 {
756         u32 tim3 = 0, val = 0;
757         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
758         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
759
760         val = ns_2_cycles(timings->tRFCab) - 1;
761         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
762
763         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
764         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
765
766         val = ns_2_cycles(timings->tZQCS) - 1;
767         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
768
769         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
770         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
771
772         return tim3;
773 }
774
775 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
776                              const struct lpddr2_addressing *addressing,
777                              u8 volt_ramp)
778 {
779         u32 zq = 0, val = 0;
780         if (volt_ramp)
781                 val =
782                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
783                     addressing->t_REFI_us_x10;
784         else
785                 val =
786                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
787                     addressing->t_REFI_us_x10;
788         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
789
790         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
791
792         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
793
794         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
795
796         /*
797          * Assuming that two chipselects have a single calibration resistor
798          * If there are indeed two calibration resistors, then this flag should
799          * be enabled to take advantage of dual calibration feature.
800          * This data should ideally come from board files. But considering
801          * that none of the boards today have calibration resistors per CS,
802          * it would be an unnecessary overhead.
803          */
804         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
805
806         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
807
808         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
809
810         return zq;
811 }
812
813 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
814                                  const struct lpddr2_addressing *addressing,
815                                  u8 is_derated)
816 {
817         u32 alert = 0, interval;
818         interval =
819             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
820         if (is_derated)
821                 interval *= 4;
822         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
823
824         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
825
826         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
827
828         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
829
830         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
831
832         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
833
834         return alert;
835 }
836
837 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
838 {
839         u32 idle = 0, val = 0;
840         if (volt_ramp)
841                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
842         else
843                 /*Maximum value in normal conditions - suggested by hw team */
844                 val = 0x1FF;
845         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
846
847         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
848
849         return idle;
850 }
851
852 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
853 {
854         u32 phy = 0, val = 0;
855
856         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
857
858         if (freq <= 100000000)
859                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
860         else if (freq <= 200000000)
861                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
862         else
863                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
864         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
865
866         /* Other fields are constant magic values. Hardcode them together */
867         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
868                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
869
870         return phy;
871 }
872
873 static u32 get_emif_mem_size(u32 base)
874 {
875         u32 size_mbytes = 0, temp;
876         struct emif_device_details dev_details;
877         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
878         u32 emif_nr = emif_num(base);
879
880         emif_reset_phy(base);
881         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
882                                                 &cs0_dev_details);
883         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
884                                                 &cs1_dev_details);
885         emif_reset_phy(base);
886
887         if (dev_details.cs0_device_details) {
888                 temp = dev_details.cs0_device_details->density;
889                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
890         }
891
892         if (dev_details.cs1_device_details) {
893                 temp = dev_details.cs1_device_details->density;
894                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
895         }
896         /* convert to bytes */
897         return size_mbytes << 20;
898 }
899
900 /* Gets the encoding corresponding to a given DMM section size */
901 u32 get_dmm_section_size_map(u32 section_size)
902 {
903         /*
904          * Section size mapping:
905          * 0x0: 16-MiB section
906          * 0x1: 32-MiB section
907          * 0x2: 64-MiB section
908          * 0x3: 128-MiB section
909          * 0x4: 256-MiB section
910          * 0x5: 512-MiB section
911          * 0x6: 1-GiB section
912          * 0x7: 2-GiB section
913          */
914         section_size >>= 24; /* divide by 16 MB */
915         return log_2_n_round_down(section_size);
916 }
917
918 static void emif_calculate_regs(
919                 const struct emif_device_details *emif_dev_details,
920                 u32 freq, struct emif_regs *regs)
921 {
922         u32 temp, sys_freq;
923         const struct lpddr2_addressing *addressing;
924         const struct lpddr2_ac_timings *timings;
925         const struct lpddr2_min_tck *min_tck;
926         const struct lpddr2_device_details *cs0_dev_details =
927                                         emif_dev_details->cs0_device_details;
928         const struct lpddr2_device_details *cs1_dev_details =
929                                         emif_dev_details->cs1_device_details;
930         const struct lpddr2_device_timings *cs0_dev_timings =
931                                         emif_dev_details->cs0_device_timings;
932
933         emif_assert(emif_dev_details);
934         emif_assert(regs);
935         /*
936          * You can not have a device on CS1 without one on CS0
937          * So configuring EMIF without a device on CS0 doesn't
938          * make sense
939          */
940         emif_assert(cs0_dev_details);
941         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
942         /*
943          * If there is a device on CS1 it should be same type as CS0
944          * (or NVM. But NVM is not supported in this driver yet)
945          */
946         emif_assert((cs1_dev_details == NULL) ||
947                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
948                     (cs0_dev_details->type == cs1_dev_details->type));
949         emif_assert(freq <= MAX_LPDDR2_FREQ);
950
951         set_ddr_clk_period(freq);
952
953         /*
954          * The device on CS0 is used for all timing calculations
955          * There is only one set of registers for timings per EMIF. So, if the
956          * second CS(CS1) has a device, it should have the same timings as the
957          * device on CS0
958          */
959         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
960         emif_assert(timings);
961         min_tck = cs0_dev_timings->min_tck;
962
963         temp = addressing_table_index(cs0_dev_details->type,
964                                       cs0_dev_details->density,
965                                       cs0_dev_details->io_width);
966
967         emif_assert((temp >= 0));
968         addressing = &(addressing_table[temp]);
969         emif_assert(addressing);
970
971         sys_freq = get_sys_clk_freq();
972
973         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
974                                                         cs1_dev_details,
975                                                         addressing, RL_BOOT);
976
977         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
978                                                 cs1_dev_details,
979                                                 addressing, RL_FINAL);
980
981         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
982
983         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
984
985         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
986
987         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
988
989         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
990
991         regs->temp_alert_config =
992             get_temp_alert_config(cs1_dev_details, addressing, 0);
993
994         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
995                                             LPDDR2_VOLTAGE_STABLE);
996
997         regs->emif_ddr_phy_ctlr_1_init =
998                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
999
1000         regs->emif_ddr_phy_ctlr_1 =
1001                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
1002
1003         regs->freq = freq;
1004
1005         print_timing_reg(regs->sdram_config_init);
1006         print_timing_reg(regs->sdram_config);
1007         print_timing_reg(regs->ref_ctrl);
1008         print_timing_reg(regs->sdram_tim1);
1009         print_timing_reg(regs->sdram_tim2);
1010         print_timing_reg(regs->sdram_tim3);
1011         print_timing_reg(regs->read_idle_ctrl);
1012         print_timing_reg(regs->temp_alert_config);
1013         print_timing_reg(regs->zq_config);
1014         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1015         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1016 }
1017 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1018
1019 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1020 const char *get_lpddr2_type(u8 type_id)
1021 {
1022         switch (type_id) {
1023         case LPDDR2_TYPE_S4:
1024                 return "LPDDR2-S4";
1025         case LPDDR2_TYPE_S2:
1026                 return "LPDDR2-S2";
1027         default:
1028                 return NULL;
1029         }
1030 }
1031
1032 const char *get_lpddr2_io_width(u8 width_id)
1033 {
1034         switch (width_id) {
1035         case LPDDR2_IO_WIDTH_8:
1036                 return "x8";
1037         case LPDDR2_IO_WIDTH_16:
1038                 return "x16";
1039         case LPDDR2_IO_WIDTH_32:
1040                 return "x32";
1041         default:
1042                 return NULL;
1043         }
1044 }
1045
1046 const char *get_lpddr2_manufacturer(u32 manufacturer)
1047 {
1048         switch (manufacturer) {
1049         case LPDDR2_MANUFACTURER_SAMSUNG:
1050                 return "Samsung";
1051         case LPDDR2_MANUFACTURER_QIMONDA:
1052                 return "Qimonda";
1053         case LPDDR2_MANUFACTURER_ELPIDA:
1054                 return "Elpida";
1055         case LPDDR2_MANUFACTURER_ETRON:
1056                 return "Etron";
1057         case LPDDR2_MANUFACTURER_NANYA:
1058                 return "Nanya";
1059         case LPDDR2_MANUFACTURER_HYNIX:
1060                 return "Hynix";
1061         case LPDDR2_MANUFACTURER_MOSEL:
1062                 return "Mosel";
1063         case LPDDR2_MANUFACTURER_WINBOND:
1064                 return "Winbond";
1065         case LPDDR2_MANUFACTURER_ESMT:
1066                 return "ESMT";
1067         case LPDDR2_MANUFACTURER_SPANSION:
1068                 return "Spansion";
1069         case LPDDR2_MANUFACTURER_SST:
1070                 return "SST";
1071         case LPDDR2_MANUFACTURER_ZMOS:
1072                 return "ZMOS";
1073         case LPDDR2_MANUFACTURER_INTEL:
1074                 return "Intel";
1075         case LPDDR2_MANUFACTURER_NUMONYX:
1076                 return "Numonyx";
1077         case LPDDR2_MANUFACTURER_MICRON:
1078                 return "Micron";
1079         default:
1080                 return NULL;
1081         }
1082 }
1083
1084 static void display_sdram_details(u32 emif_nr, u32 cs,
1085                                   struct lpddr2_device_details *device)
1086 {
1087         const char *mfg_str;
1088         const char *type_str;
1089         char density_str[10];
1090         u32 density;
1091
1092         debug("EMIF%d CS%d\t", emif_nr, cs);
1093
1094         if (!device) {
1095                 debug("None\n");
1096                 return;
1097         }
1098
1099         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1100         type_str = get_lpddr2_type(device->type);
1101
1102         density = lpddr2_density_2_size_in_mbytes[device->density];
1103         if ((density / 1024 * 1024) == density) {
1104                 density /= 1024;
1105                 sprintf(density_str, "%d GB", density);
1106         } else
1107                 sprintf(density_str, "%d MB", density);
1108         if (mfg_str && type_str)
1109                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1110 }
1111
1112 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1113                                   struct lpddr2_device_details *lpddr2_device)
1114 {
1115         u32 mr = 0, temp;
1116
1117         mr = get_mr(base, cs, LPDDR2_MR0);
1118         if (mr > 0xFF) {
1119                 /* Mode register value bigger than 8 bit */
1120                 return 0;
1121         }
1122
1123         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1124         if (temp) {
1125                 /* Not SDRAM */
1126                 return 0;
1127         }
1128         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1129
1130         if (temp) {
1131                 /* DNV supported - But DNV is only supported for NVM */
1132                 return 0;
1133         }
1134
1135         mr = get_mr(base, cs, LPDDR2_MR4);
1136         if (mr > 0xFF) {
1137                 /* Mode register value bigger than 8 bit */
1138                 return 0;
1139         }
1140
1141         mr = get_mr(base, cs, LPDDR2_MR5);
1142         if (mr > 0xFF) {
1143                 /* Mode register value bigger than 8 bit */
1144                 return 0;
1145         }
1146
1147         if (!get_lpddr2_manufacturer(mr)) {
1148                 /* Manufacturer not identified */
1149                 return 0;
1150         }
1151         lpddr2_device->manufacturer = mr;
1152
1153         mr = get_mr(base, cs, LPDDR2_MR6);
1154         if (mr >= 0xFF) {
1155                 /* Mode register value bigger than 8 bit */
1156                 return 0;
1157         }
1158
1159         mr = get_mr(base, cs, LPDDR2_MR7);
1160         if (mr >= 0xFF) {
1161                 /* Mode register value bigger than 8 bit */
1162                 return 0;
1163         }
1164
1165         mr = get_mr(base, cs, LPDDR2_MR8);
1166         if (mr >= 0xFF) {
1167                 /* Mode register value bigger than 8 bit */
1168                 return 0;
1169         }
1170
1171         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1172         if (!get_lpddr2_type(temp)) {
1173                 /* Not SDRAM */
1174                 return 0;
1175         }
1176         lpddr2_device->type = temp;
1177
1178         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1179         if (temp > LPDDR2_DENSITY_32Gb) {
1180                 /* Density not supported */
1181                 return 0;
1182         }
1183         lpddr2_device->density = temp;
1184
1185         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1186         if (!get_lpddr2_io_width(temp)) {
1187                 /* IO width unsupported value */
1188                 return 0;
1189         }
1190         lpddr2_device->io_width = temp;
1191
1192         /*
1193          * If all the above tests pass we should
1194          * have a device on this chip-select
1195          */
1196         return 1;
1197 }
1198
1199 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1200                         struct lpddr2_device_details *lpddr2_dev_details)
1201 {
1202         u32 phy;
1203         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1204
1205         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1206
1207         if (!lpddr2_dev_details)
1208                 return NULL;
1209
1210         /* Do the minimum init for mode register accesses */
1211         if (!(running_from_sdram() || warm_reset())) {
1212                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1213                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1214         }
1215
1216         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1217                 return NULL;
1218
1219         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1220
1221         return lpddr2_dev_details;
1222 }
1223 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1224
1225 static void do_sdram_init(u32 base)
1226 {
1227         const struct emif_regs *regs;
1228         u32 in_sdram, emif_nr;
1229
1230         debug(">>do_sdram_init() %x\n", base);
1231
1232         in_sdram = running_from_sdram();
1233         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1234
1235 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1236         emif_get_reg_dump(emif_nr, &regs);
1237         if (!regs) {
1238                 debug("EMIF: reg dump not provided\n");
1239                 return;
1240         }
1241 #else
1242         /*
1243          * The user has not provided the register values. We need to
1244          * calculate it based on the timings and the DDR frequency
1245          */
1246         struct emif_device_details dev_details;
1247         struct emif_regs calculated_regs;
1248
1249         /*
1250          * Get device details:
1251          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1252          * - Obtained from user otherwise
1253          */
1254         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1255         emif_reset_phy(base);
1256         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1257                                                 &cs0_dev_details);
1258         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1259                                                 &cs1_dev_details);
1260         emif_reset_phy(base);
1261
1262         /* Return if no devices on this EMIF */
1263         if (!dev_details.cs0_device_details &&
1264             !dev_details.cs1_device_details) {
1265                 return;
1266         }
1267
1268         /*
1269          * Get device timings:
1270          * - Default timings specified by JESD209-2 if
1271          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1272          * - Obtained from user otherwise
1273          */
1274         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1275                                 &dev_details.cs1_device_timings);
1276
1277         /* Calculate the register values */
1278         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1279         regs = &calculated_regs;
1280 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1281
1282         /*
1283          * Initializing the DDR device can not happen from SDRAM.
1284          * Changing the timing registers in EMIF can happen(going from one
1285          * OPP to another)
1286          */
1287         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1288                 if (emif_sdram_type(regs->sdram_config) ==
1289                     EMIF_SDRAM_TYPE_LPDDR2)
1290                         lpddr2_init(base, regs);
1291 #ifndef CONFIG_OMAP44XX
1292                 else
1293                         ddr3_init(base, regs);
1294 #endif
1295         }
1296 #ifdef CONFIG_OMAP54XX
1297         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1298             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1299                 set_lpmode_selfrefresh(base);
1300                 emif_reset_phy(base);
1301                 omap5_ddr3_leveling(base, regs);
1302         }
1303 #endif
1304
1305         /* Write to the shadow registers */
1306         emif_update_timings(base, regs);
1307
1308         debug("<<do_sdram_init() %x\n", base);
1309 }
1310
1311 void emif_post_init_config(u32 base)
1312 {
1313         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1314         u32 omap_rev = omap_revision();
1315
1316         /* reset phy on ES2.0 */
1317         if (omap_rev == OMAP4430_ES2_0)
1318                 emif_reset_phy(base);
1319
1320         /* Put EMIF back in smart idle on ES1.0 */
1321         if (omap_rev == OMAP4430_ES1_0)
1322                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1323 }
1324
1325 void dmm_init(u32 base)
1326 {
1327         const struct dmm_lisa_map_regs *lisa_map_regs;
1328         u32 i, section, valid;
1329
1330 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1331         emif_get_dmm_regs(&lisa_map_regs);
1332 #else
1333         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1334         u32 section_cnt, sys_addr;
1335         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1336
1337         mapped_size = 0;
1338         section_cnt = 3;
1339         sys_addr = CONFIG_SYS_SDRAM_BASE;
1340         emif1_size = get_emif_mem_size(EMIF1_BASE);
1341         emif2_size = get_emif_mem_size(EMIF2_BASE);
1342         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1343
1344         if (!emif1_size && !emif2_size)
1345                 return;
1346
1347         /* symmetric interleaved section */
1348         if (emif1_size && emif2_size) {
1349                 mapped_size = min(emif1_size, emif2_size);
1350                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1351                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1352                 /* only MSB */
1353                 section_map |= (sys_addr >> 24) <<
1354                                 EMIF_SYS_ADDR_SHIFT;
1355                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1356                                 << EMIF_SYS_SIZE_SHIFT;
1357                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1358                 emif1_size -= mapped_size;
1359                 emif2_size -= mapped_size;
1360                 sys_addr += (mapped_size * 2);
1361                 section_cnt--;
1362         }
1363
1364         /*
1365          * Single EMIF section(we can have a maximum of 1 single EMIF
1366          * section- either EMIF1 or EMIF2 or none, but not both)
1367          */
1368         if (emif1_size) {
1369                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1370                 section_map |= get_dmm_section_size_map(emif1_size)
1371                                 << EMIF_SYS_SIZE_SHIFT;
1372                 /* only MSB */
1373                 section_map |= (mapped_size >> 24) <<
1374                                 EMIF_SDRC_ADDR_SHIFT;
1375                 /* only MSB */
1376                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1377                 section_cnt--;
1378         }
1379         if (emif2_size) {
1380                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1381                 section_map |= get_dmm_section_size_map(emif2_size) <<
1382                                 EMIF_SYS_SIZE_SHIFT;
1383                 /* only MSB */
1384                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1385                 /* only MSB */
1386                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1387                 section_cnt--;
1388         }
1389
1390         if (section_cnt == 2) {
1391                 /* Only 1 section - either symmetric or single EMIF */
1392                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1393                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1394                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1395         } else {
1396                 /* 2 sections - 1 symmetric, 1 single EMIF */
1397                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1398                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1399         }
1400
1401         /* TRAP for invalid TILER mappings in section 0 */
1402         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1403
1404         if (omap_revision() >= OMAP4460_ES1_0)
1405                 lis_map_regs_calculated.is_ma_present = 1;
1406
1407         lisa_map_regs = &lis_map_regs_calculated;
1408 #endif
1409         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1410             (struct dmm_lisa_map_regs *)base;
1411
1412         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1413         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1414         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1415         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1416
1417         writel(lisa_map_regs->dmm_lisa_map_3,
1418                 &hw_lisa_map_regs->dmm_lisa_map_3);
1419         writel(lisa_map_regs->dmm_lisa_map_2,
1420                 &hw_lisa_map_regs->dmm_lisa_map_2);
1421         writel(lisa_map_regs->dmm_lisa_map_1,
1422                 &hw_lisa_map_regs->dmm_lisa_map_1);
1423         writel(lisa_map_regs->dmm_lisa_map_0,
1424                 &hw_lisa_map_regs->dmm_lisa_map_0);
1425
1426         if (lisa_map_regs->is_ma_present) {
1427                 hw_lisa_map_regs =
1428                     (struct dmm_lisa_map_regs *)MA_BASE;
1429
1430                 writel(lisa_map_regs->dmm_lisa_map_3,
1431                         &hw_lisa_map_regs->dmm_lisa_map_3);
1432                 writel(lisa_map_regs->dmm_lisa_map_2,
1433                         &hw_lisa_map_regs->dmm_lisa_map_2);
1434                 writel(lisa_map_regs->dmm_lisa_map_1,
1435                         &hw_lisa_map_regs->dmm_lisa_map_1);
1436                 writel(lisa_map_regs->dmm_lisa_map_0,
1437                         &hw_lisa_map_regs->dmm_lisa_map_0);
1438
1439                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1440         }
1441
1442         /*
1443          * EMIF should be configured only when
1444          * memory is mapped on it. Using emif1_enabled
1445          * and emif2_enabled variables for this.
1446          */
1447         emif1_enabled = 0;
1448         emif2_enabled = 0;
1449         for (i = 0; i < 4; i++) {
1450                 section = __raw_readl(DMM_BASE + i*4);
1451                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1452                         (EMIF_SDRC_MAP_SHIFT);
1453                 if (valid == 3) {
1454                         emif1_enabled = 1;
1455                         emif2_enabled = 1;
1456                         break;
1457                 }
1458
1459                 if (valid == 1)
1460                         emif1_enabled = 1;
1461
1462                 if (valid == 2)
1463                         emif2_enabled = 1;
1464         }
1465 }
1466
1467 static void do_bug0039_workaround(u32 base)
1468 {
1469         u32 val, i, clkctrl;
1470         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1471         const struct read_write_regs *bug_00339_regs;
1472         u32 iterations;
1473         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1474         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1475
1476         if (is_dra7xx())
1477                 phy_status_base++;
1478
1479         bug_00339_regs = get_bug_regs(&iterations);
1480
1481         /* Put EMIF in to idle */
1482         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1483         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1484
1485         /* Copy the phy status registers in to phy ctrl shadow registers */
1486         for (i = 0; i < iterations; i++) {
1487                 val = __raw_readl(phy_status_base +
1488                                   bug_00339_regs[i].read_reg - 1);
1489
1490                 __raw_writel(val, phy_ctrl_base +
1491                              ((bug_00339_regs[i].write_reg - 1) << 1));
1492
1493                 __raw_writel(val, phy_ctrl_base +
1494                              (bug_00339_regs[i].write_reg << 1) - 1);
1495         }
1496
1497         /* Disable leveling */
1498         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1499
1500         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1501 }
1502
1503 /*
1504  * SDRAM initialization:
1505  * SDRAM initialization has two parts:
1506  * 1. Configuring the SDRAM device
1507  * 2. Update the AC timings related parameters in the EMIF module
1508  * (1) should be done only once and should not be done while we are
1509  * running from SDRAM.
1510  * (2) can and should be done more than once if OPP changes.
1511  * Particularly, this may be needed when we boot without SPL and
1512  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1513  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1514  * the frequency. So,
1515  * Doing (1) and (2) makes sense - first time initialization
1516  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1517  * Doing (1) and not (2) doen't make sense
1518  * See do_sdram_init() for the details
1519  */
1520 void sdram_init(void)
1521 {
1522         u32 in_sdram, size_prog, size_detect;
1523         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1524         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1525
1526         debug(">>sdram_init()\n");
1527
1528         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1529                 return;
1530
1531         in_sdram = running_from_sdram();
1532         debug("in_sdram = %d\n", in_sdram);
1533
1534         if (!in_sdram) {
1535                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1536                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1537                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1538                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1539         }
1540
1541         if (!in_sdram)
1542                 dmm_init(DMM_BASE);
1543
1544         if (emif1_enabled)
1545                 do_sdram_init(EMIF1_BASE);
1546
1547         if (emif2_enabled)
1548                 do_sdram_init(EMIF2_BASE);
1549
1550         if (!(in_sdram || warm_reset())) {
1551                 if (emif1_enabled)
1552                         emif_post_init_config(EMIF1_BASE);
1553                 if (emif2_enabled)
1554                         emif_post_init_config(EMIF2_BASE);
1555         }
1556
1557         /* for the shadow registers to take effect */
1558         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1559                 freq_update_core();
1560
1561         /* Do some testing after the init */
1562         if (!in_sdram) {
1563                 size_prog = omap_sdram_size();
1564                 size_prog = log_2_n_round_down(size_prog);
1565                 size_prog = (1 << size_prog);
1566
1567                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1568                                                 size_prog);
1569                 /* Compare with the size programmed */
1570                 if (size_detect != size_prog) {
1571                         printf("SDRAM: identified size not same as expected"
1572                                 " size identified: %x expected: %x\n",
1573                                 size_detect,
1574                                 size_prog);
1575                 } else
1576                         debug("get_ram_size() successful");
1577         }
1578
1579 #if defined(CONFIG_TI_SECURE_DEVICE)
1580         /*
1581          * On HS devices, do static EMIF firewall configuration
1582          * but only do it if not already running in SDRAM
1583          */
1584         if (!in_sdram)
1585                 if (0 != secure_emif_reserve())
1586                         hang();
1587
1588         /* On HS devices, ensure static EMIF firewall APIs are locked */
1589         if (0 != secure_emif_firewall_lock())
1590                 hang();
1591 #endif
1592
1593         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1594             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1595                 if (emif1_enabled)
1596                         do_bug0039_workaround(EMIF1_BASE);
1597                 if (emif2_enabled)
1598                         do_bug0039_workaround(EMIF2_BASE);
1599         }
1600
1601         debug("<<sdram_init()\n");
1602 }