common: Move RAM-sizing functions to init.h
[platform/kernel/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * EMIF programming
4  *
5  * (C) Copyright 2010
6  * Texas Instruments, <www.ti.com>
7  *
8  * Aneesh V <aneesh@ti.com>
9  */
10
11 #include <common.h>
12 #include <init.h>
13 #include <net.h>
14 #include <asm/emif.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/sys_proto.h>
17 #include <asm/omap_common.h>
18 #include <asm/omap_sec_common.h>
19 #include <asm/utils.h>
20 #include <linux/compiler.h>
21 #include <asm/ti-common/ti-edma3.h>
22
23 static int emif1_enabled = -1, emif2_enabled = -1;
24
25 void set_lpmode_selfrefresh(u32 base)
26 {
27         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
28         u32 reg;
29
30         reg = readl(&emif->emif_pwr_mgmt_ctrl);
31         reg &= ~EMIF_REG_LP_MODE_MASK;
32         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
33         reg &= ~EMIF_REG_SR_TIM_MASK;
34         writel(reg, &emif->emif_pwr_mgmt_ctrl);
35
36         /* dummy read for the new SR_TIM to be loaded */
37         readl(&emif->emif_pwr_mgmt_ctrl);
38 }
39
40 void force_emif_self_refresh()
41 {
42         set_lpmode_selfrefresh(EMIF1_BASE);
43         if (!is_dra72x())
44                 set_lpmode_selfrefresh(EMIF2_BASE);
45 }
46
47 inline u32 emif_num(u32 base)
48 {
49         if (base == EMIF1_BASE)
50                 return 1;
51         else if (base == EMIF2_BASE)
52                 return 2;
53         else
54                 return 0;
55 }
56
57 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
58 {
59         u32 mr;
60         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
61
62         mr_addr |= cs << EMIF_REG_CS_SHIFT;
63         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
64         if (omap_revision() == OMAP4430_ES2_0)
65                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
66         else
67                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
68         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
69               cs, mr_addr, mr);
70         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
71             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
72             ((mr & 0xff000000) >> 24) == (mr & 0xff))
73                 return mr & 0xff;
74         else
75                 return mr;
76 }
77
78 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
79 {
80         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
81
82         mr_addr |= cs << EMIF_REG_CS_SHIFT;
83         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
84         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
85 }
86
87 void emif_reset_phy(u32 base)
88 {
89         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
90         u32 iodft;
91
92         iodft = readl(&emif->emif_iodft_tlgc);
93         iodft |= EMIF_REG_RESET_PHY_MASK;
94         writel(iodft, &emif->emif_iodft_tlgc);
95 }
96
97 static void do_lpddr2_init(u32 base, u32 cs)
98 {
99         u32 mr_addr;
100         const struct lpddr2_mr_regs *mr_regs;
101
102         get_lpddr2_mr_regs(&mr_regs);
103         /* Wait till device auto initialization is complete */
104         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
105                 ;
106         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
107         /*
108          * tZQINIT = 1 us
109          * Enough loops assuming a maximum of 2GHz
110          */
111
112         sdelay(2000);
113
114         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
115         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
116
117         /*
118          * Enable refresh along with writing MR2
119          * Encoding of RL in MR2 is (RL - 2)
120          */
121         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
122         set_mr(base, cs, mr_addr, mr_regs->mr2);
123
124         if (mr_regs->mr3 > 0)
125                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
126 }
127
128 static void lpddr2_init(u32 base, const struct emif_regs *regs)
129 {
130         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
131
132         /* Not NVM */
133         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
134
135         /*
136          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
137          * when EMIF_SDRAM_CONFIG register is written
138          */
139         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
140
141         /*
142          * Set the SDRAM_CONFIG and PHY_CTRL for the
143          * un-locked frequency & default RL
144          */
145         writel(regs->sdram_config_init, &emif->emif_sdram_config);
146         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
147
148         do_ext_phy_settings(base, regs);
149
150         do_lpddr2_init(base, CS0);
151         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
152                 do_lpddr2_init(base, CS1);
153
154         writel(regs->sdram_config, &emif->emif_sdram_config);
155         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
156
157         /* Enable refresh now */
158         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
159
160         }
161
162 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
163 {
164 }
165
166 void emif_update_timings(u32 base, const struct emif_regs *regs)
167 {
168         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
169
170         if (!is_dra7xx())
171                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
172         else
173                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
174
175         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
176         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
177         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
178         if (omap_revision() == OMAP4430_ES1_0) {
179                 /* ES1 bug EMIF should be in force idle during freq_update */
180                 writel(0, &emif->emif_pwr_mgmt_ctrl);
181         } else {
182                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
183                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
184         }
185         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
186         writel(regs->zq_config, &emif->emif_zq_config);
187         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
188         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
189
190         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
191                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
192                         &emif->emif_l3_config);
193         } else if (omap_revision() >= OMAP4460_ES1_0) {
194                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
195                         &emif->emif_l3_config);
196         } else {
197                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
198                         &emif->emif_l3_config);
199         }
200 }
201
202 #ifndef CONFIG_OMAP44XX
203 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
204 {
205         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
206
207         /* keep sdram in self-refresh */
208         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
209                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
210         __udelay(130);
211
212         /*
213          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
214          * Invert clock adds an additional half cycle delay on the
215          * command interface.  The additional half cycle, is usually
216          * meant to enable leveling in the situation that DQS is later
217          * than CK on the board.It also helps provide some additional
218          * margin for leveling.
219          */
220         writel(regs->emif_ddr_phy_ctlr_1,
221                &emif->emif_ddr_phy_ctrl_1);
222
223         writel(regs->emif_ddr_phy_ctlr_1,
224                &emif->emif_ddr_phy_ctrl_1_shdw);
225         __udelay(130);
226
227         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
228                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
229
230         /* Launch Full leveling */
231         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
232
233         /* Wait till full leveling is complete */
234         readl(&emif->emif_rd_wr_lvl_ctl);
235               __udelay(130);
236
237         /* Read data eye leveling no of samples */
238         config_data_eye_leveling_samples(base);
239
240         /*
241          * Launch 8 incremental WR_LVL- to compensate for
242          * PHY limitation.
243          */
244         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
245                &emif->emif_rd_wr_lvl_ctl);
246
247         __udelay(130);
248
249         /* Launch Incremental leveling */
250         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
251                __udelay(130);
252 }
253
254 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
255 {
256         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
257         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
258         u32 reg, i, phy;
259
260         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
261         phy = readl(&emif->emif_ddr_phy_ctrl_1);
262
263         /* Update PHY_REG_RDDQS_RATIO */
264         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
265         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
266                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
267                         reg = readl(emif_phy_status++);
268                         writel(reg, emif_ext_phy_ctrl_reg++);
269                         writel(reg, emif_ext_phy_ctrl_reg++);
270                 }
271
272         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
273         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
274         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
275         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
276                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
277                         reg = readl(emif_phy_status++);
278                         writel(reg, emif_ext_phy_ctrl_reg++);
279                         writel(reg, emif_ext_phy_ctrl_reg++);
280                 }
281
282         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
283         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
284         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
285         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
286                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
287                         reg = readl(emif_phy_status++);
288                         writel(reg, emif_ext_phy_ctrl_reg++);
289                         writel(reg, emif_ext_phy_ctrl_reg++);
290                 }
291
292         /* Disable Leveling */
293         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
294         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
295         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
296 }
297
298 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
299 {
300         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
301
302         /* Clear Error Status */
303         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
304                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
305                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
306
307         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
308                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
309                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
310
311         /* Disable refreshed before leveling */
312         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
313                         EMIF_REG_INITREF_DIS_MASK);
314
315         /* Start Full leveling */
316         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
317
318         __udelay(300);
319
320         /* Check for leveling timeout */
321         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
322                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
323                 return;
324         }
325
326         /* Enable refreshes after leveling */
327         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
328
329         debug("HW leveling success\n");
330         /*
331          * Update slave ratios in EXT_PHY_CTRLx registers
332          * as per HW leveling output
333          */
334         update_hwleveling_output(base, regs);
335 }
336
337 static void dra7_reset_ddr_data(u32 base, u32 size)
338 {
339 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
340         enable_edma3_clocks();
341
342         edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
343
344         disable_edma3_clocks();
345 #else
346         memset((void *)base, 0, size);
347 #endif
348 }
349
350 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
351 {
352         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
353         u32 rgn, rgn_start, size, ctrl_reg;
354
355         /* ECC available only on dra76x EMIF1 */
356         if ((base != EMIF1_BASE) || !is_dra76x())
357                 return;
358
359         if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
360                 /* Disable high-order interleaving */
361                 clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
362
363 #ifdef CONFIG_DRA7XX
364                 /* Clear the status flags and other history */
365                 writel(readl(&emif->emif_1b_ecc_err_cnt),
366                        &emif->emif_1b_ecc_err_cnt);
367                 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
368                 writel(0x2, &emif->emif_1b_ecc_err_addr_log);
369                 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
370                 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
371                        EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
372                        EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
373                        &emif->emif_irqstatus_sys);
374 #endif
375                 writel(regs->emif_ecc_address_range_1,
376                        &emif->emif_ecc_address_range_1);
377                 writel(regs->emif_ecc_address_range_2,
378                        &emif->emif_ecc_address_range_2);
379
380                 /* Disable RMW and ECC verification for read accesses */
381                 ctrl_reg = (regs->emif_ecc_ctrl_reg &
382                             ~EMIF_ECC_REG_RMW_EN_MASK) |
383                            EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
384                 writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
385
386                 /* Set region1 memory with 0 */
387                 rgn_start = (regs->emif_ecc_address_range_1 &
388                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
389                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
390                 size = (regs->emif_ecc_address_range_1 &
391                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
392
393                 if (regs->emif_ecc_ctrl_reg &
394                     EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
395                         dra7_reset_ddr_data(rgn, size);
396
397                 /* Set region2 memory with 0 */
398                 rgn_start = (regs->emif_ecc_address_range_2 &
399                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
400                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
401                 size = (regs->emif_ecc_address_range_2 &
402                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
403
404                 if (regs->emif_ecc_ctrl_reg &
405                     EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
406                         dra7_reset_ddr_data(rgn, size);
407
408                 /* Default value enables RMW and ECC verification */
409                 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
410         }
411 }
412
413 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
414 {
415         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
416
417         if (warm_reset()) {
418                 emif_reset_phy(base);
419                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
420         }
421         do_ext_phy_settings(base, regs);
422
423         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
424                &emif->emif_sdram_ref_ctrl);
425         /* Update timing registers */
426         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
427         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
428         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
429
430         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
431         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
432         writel(regs->zq_config, &emif->emif_zq_config);
433         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
434         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
435         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
436
437         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
438         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
439
440         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
441
442         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
443         writel(regs->sdram_config_init, &emif->emif_sdram_config);
444
445         __udelay(1000);
446
447         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
448
449         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
450                 /*
451                  * Perform Dummy ECC setup just to allow hardware
452                  * leveling of ECC memories
453                  */
454                 if (is_dra76x() && (base == EMIF1_BASE) &&
455                     (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
456                         writel(0, &emif->emif_ecc_address_range_1);
457                         writel(0, &emif->emif_ecc_address_range_2);
458                         writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
459                                EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
460                                &emif->emif_ecc_ctrl_reg);
461                 }
462
463                 dra7_ddr3_leveling(base, regs);
464
465                 /* Disable ECC */
466                 if (is_dra76x())
467                         writel(0, &emif->emif_ecc_ctrl_reg);
468         }
469
470         /* Enable ECC as necessary */
471         dra7_enable_ecc(base, regs);
472 }
473
474 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
475 {
476         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
477
478         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
479         writel(regs->sdram_config_init, &emif->emif_sdram_config);
480         /*
481          * Set SDRAM_CONFIG and PHY control registers to locked frequency
482          * and RL =7. As the default values of the Mode Registers are not
483          * defined, contents of mode Registers must be fully initialized.
484          * H/W takes care of this initialization
485          */
486         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
487
488         /* Update timing registers */
489         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
490         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
491         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
492
493         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
494
495         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
496         writel(regs->sdram_config_init, &emif->emif_sdram_config);
497         do_ext_phy_settings(base, regs);
498
499         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
500         omap5_ddr3_leveling(base, regs);
501 }
502
503 static void ddr3_init(u32 base, const struct emif_regs *regs)
504 {
505         if (is_omap54xx())
506                 omap5_ddr3_init(base, regs);
507         else
508                 dra7_ddr3_init(base, regs);
509 }
510 #endif
511
512 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
513 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
514
515 /*
516  * Organization and refresh requirements for LPDDR2 devices of different
517  * types and densities. Derived from JESD209-2 section 2.4
518  */
519 const struct lpddr2_addressing addressing_table[] = {
520         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
521         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
522         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
523         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
524         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
525         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
526         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
527         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
528         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
529         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
530         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
531 };
532
533 static const u32 lpddr2_density_2_size_in_mbytes[] = {
534         8,                      /* 64Mb */
535         16,                     /* 128Mb */
536         32,                     /* 256Mb */
537         64,                     /* 512Mb */
538         128,                    /* 1Gb   */
539         256,                    /* 2Gb   */
540         512,                    /* 4Gb   */
541         1024,                   /* 8Gb   */
542         2048,                   /* 16Gb  */
543         4096                    /* 32Gb  */
544 };
545
546 /*
547  * Calculate the period of DDR clock from frequency value and set the
548  * denominator and numerator in global variables for easy access later
549  */
550 static void set_ddr_clk_period(u32 freq)
551 {
552         /*
553          * period = 1/freq
554          * period_in_ns = 10^9/freq
555          */
556         *T_num = 1000000000;
557         *T_den = freq;
558         cancel_out(T_num, T_den, 200);
559
560 }
561
562 /*
563  * Convert time in nano seconds to number of cycles of DDR clock
564  */
565 static inline u32 ns_2_cycles(u32 ns)
566 {
567         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
568 }
569
570 /*
571  * ns_2_cycles with the difference that the time passed is 2 times the actual
572  * value(to avoid fractions). The cycles returned is for the original value of
573  * the timing parameter
574  */
575 static inline u32 ns_x2_2_cycles(u32 ns)
576 {
577         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
578 }
579
580 /*
581  * Find addressing table index based on the device's type(S2 or S4) and
582  * density
583  */
584 s8 addressing_table_index(u8 type, u8 density, u8 width)
585 {
586         u8 index;
587         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
588                 return -1;
589
590         /*
591          * Look at the way ADDR_TABLE_INDEX* values have been defined
592          * in emif.h compared to LPDDR2_DENSITY_* values
593          * The table is layed out in the increasing order of density
594          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
595          * at the end
596          */
597         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
598                 index = ADDR_TABLE_INDEX1GS2;
599         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
600                 index = ADDR_TABLE_INDEX2GS2;
601         else
602                 index = density;
603
604         debug("emif: addressing table index %d\n", index);
605
606         return index;
607 }
608
609 /*
610  * Find the the right timing table from the array of timing
611  * tables of the device using DDR clock frequency
612  */
613 static const struct lpddr2_ac_timings *get_timings_table(const struct
614                         lpddr2_ac_timings *const *device_timings,
615                         u32 freq)
616 {
617         u32 i, temp, freq_nearest;
618         const struct lpddr2_ac_timings *timings = 0;
619
620         emif_assert(freq <= MAX_LPDDR2_FREQ);
621         emif_assert(device_timings);
622
623         /*
624          * Start with the maximum allowed frequency - that is always safe
625          */
626         freq_nearest = MAX_LPDDR2_FREQ;
627         /*
628          * Find the timings table that has the max frequency value:
629          *   i.  Above or equal to the DDR frequency - safe
630          *   ii. The lowest that satisfies condition (i) - optimal
631          */
632         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
633                 temp = device_timings[i]->max_freq;
634                 if ((temp >= freq) && (temp <= freq_nearest)) {
635                         freq_nearest = temp;
636                         timings = device_timings[i];
637                 }
638         }
639         debug("emif: timings table: %d\n", freq_nearest);
640         return timings;
641 }
642
643 /*
644  * Finds the value of emif_sdram_config_reg
645  * All parameters are programmed based on the device on CS0.
646  * If there is a device on CS1, it will be same as that on CS0 or
647  * it will be NVM. We don't support NVM yet.
648  * If cs1_device pointer is NULL it is assumed that there is no device
649  * on CS1
650  */
651 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
652                                 const struct lpddr2_device_details *cs1_device,
653                                 const struct lpddr2_addressing *addressing,
654                                 u8 RL)
655 {
656         u32 config_reg = 0;
657
658         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
659         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
660                         EMIF_REG_IBANK_POS_SHIFT;
661
662         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
663
664         config_reg |= RL << EMIF_REG_CL_SHIFT;
665
666         config_reg |= addressing->row_sz[cs0_device->io_width] <<
667                         EMIF_REG_ROWSIZE_SHIFT;
668
669         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
670
671         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
672                         EMIF_REG_EBANK_SHIFT;
673
674         config_reg |= addressing->col_sz[cs0_device->io_width] <<
675                         EMIF_REG_PAGESIZE_SHIFT;
676
677         return config_reg;
678 }
679
680 static u32 get_sdram_ref_ctrl(u32 freq,
681                               const struct lpddr2_addressing *addressing)
682 {
683         u32 ref_ctrl = 0, val = 0, freq_khz;
684         freq_khz = freq / 1000;
685         /*
686          * refresh rate to be set is 'tREFI * freq in MHz
687          * division by 10000 to account for khz and x10 in t_REFI_us_x10
688          */
689         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
690         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
691
692         return ref_ctrl;
693 }
694
695 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
696                                const struct lpddr2_min_tck *min_tck,
697                                const struct lpddr2_addressing *addressing)
698 {
699         u32 tim1 = 0, val = 0;
700         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
701         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
702
703         if (addressing->num_banks == BANKS8)
704                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
705                                                         (4 * (*T_num)) - 1;
706         else
707                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
708
709         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
710
711         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
712         tim1 |= val << EMIF_REG_T_RC_SHIFT;
713
714         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
715         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
716
717         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
718         tim1 |= val << EMIF_REG_T_WR_SHIFT;
719
720         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
721         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
722
723         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
724         tim1 |= val << EMIF_REG_T_RP_SHIFT;
725
726         return tim1;
727 }
728
729 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
730                                const struct lpddr2_min_tck *min_tck)
731 {
732         u32 tim2 = 0, val = 0;
733         val = max(min_tck->tCKE, timings->tCKE) - 1;
734         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
735
736         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
737         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
738
739         /*
740          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
741          * same value
742          */
743         val = ns_2_cycles(timings->tXSR) - 1;
744         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
745         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
746
747         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
748         tim2 |= val << EMIF_REG_T_XP_SHIFT;
749
750         return tim2;
751 }
752
753 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
754                                const struct lpddr2_min_tck *min_tck,
755                                const struct lpddr2_addressing *addressing)
756 {
757         u32 tim3 = 0, val = 0;
758         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
759         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
760
761         val = ns_2_cycles(timings->tRFCab) - 1;
762         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
763
764         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
765         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
766
767         val = ns_2_cycles(timings->tZQCS) - 1;
768         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
769
770         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
771         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
772
773         return tim3;
774 }
775
776 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
777                              const struct lpddr2_addressing *addressing,
778                              u8 volt_ramp)
779 {
780         u32 zq = 0, val = 0;
781         if (volt_ramp)
782                 val =
783                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
784                     addressing->t_REFI_us_x10;
785         else
786                 val =
787                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
788                     addressing->t_REFI_us_x10;
789         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
790
791         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
792
793         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
794
795         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
796
797         /*
798          * Assuming that two chipselects have a single calibration resistor
799          * If there are indeed two calibration resistors, then this flag should
800          * be enabled to take advantage of dual calibration feature.
801          * This data should ideally come from board files. But considering
802          * that none of the boards today have calibration resistors per CS,
803          * it would be an unnecessary overhead.
804          */
805         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
806
807         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
808
809         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
810
811         return zq;
812 }
813
814 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
815                                  const struct lpddr2_addressing *addressing,
816                                  u8 is_derated)
817 {
818         u32 alert = 0, interval;
819         interval =
820             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
821         if (is_derated)
822                 interval *= 4;
823         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
824
825         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
826
827         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
828
829         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
830
831         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
832
833         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
834
835         return alert;
836 }
837
838 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
839 {
840         u32 idle = 0, val = 0;
841         if (volt_ramp)
842                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
843         else
844                 /*Maximum value in normal conditions - suggested by hw team */
845                 val = 0x1FF;
846         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
847
848         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
849
850         return idle;
851 }
852
853 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
854 {
855         u32 phy = 0, val = 0;
856
857         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
858
859         if (freq <= 100000000)
860                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
861         else if (freq <= 200000000)
862                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
863         else
864                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
865         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
866
867         /* Other fields are constant magic values. Hardcode them together */
868         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
869                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
870
871         return phy;
872 }
873
874 static u32 get_emif_mem_size(u32 base)
875 {
876         u32 size_mbytes = 0, temp;
877         struct emif_device_details dev_details;
878         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
879         u32 emif_nr = emif_num(base);
880
881         emif_reset_phy(base);
882         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
883                                                 &cs0_dev_details);
884         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
885                                                 &cs1_dev_details);
886         emif_reset_phy(base);
887
888         if (dev_details.cs0_device_details) {
889                 temp = dev_details.cs0_device_details->density;
890                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
891         }
892
893         if (dev_details.cs1_device_details) {
894                 temp = dev_details.cs1_device_details->density;
895                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
896         }
897         /* convert to bytes */
898         return size_mbytes << 20;
899 }
900
901 /* Gets the encoding corresponding to a given DMM section size */
902 u32 get_dmm_section_size_map(u32 section_size)
903 {
904         /*
905          * Section size mapping:
906          * 0x0: 16-MiB section
907          * 0x1: 32-MiB section
908          * 0x2: 64-MiB section
909          * 0x3: 128-MiB section
910          * 0x4: 256-MiB section
911          * 0x5: 512-MiB section
912          * 0x6: 1-GiB section
913          * 0x7: 2-GiB section
914          */
915         section_size >>= 24; /* divide by 16 MB */
916         return log_2_n_round_down(section_size);
917 }
918
919 static void emif_calculate_regs(
920                 const struct emif_device_details *emif_dev_details,
921                 u32 freq, struct emif_regs *regs)
922 {
923         u32 temp, sys_freq;
924         const struct lpddr2_addressing *addressing;
925         const struct lpddr2_ac_timings *timings;
926         const struct lpddr2_min_tck *min_tck;
927         const struct lpddr2_device_details *cs0_dev_details =
928                                         emif_dev_details->cs0_device_details;
929         const struct lpddr2_device_details *cs1_dev_details =
930                                         emif_dev_details->cs1_device_details;
931         const struct lpddr2_device_timings *cs0_dev_timings =
932                                         emif_dev_details->cs0_device_timings;
933
934         emif_assert(emif_dev_details);
935         emif_assert(regs);
936         /*
937          * You can not have a device on CS1 without one on CS0
938          * So configuring EMIF without a device on CS0 doesn't
939          * make sense
940          */
941         emif_assert(cs0_dev_details);
942         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
943         /*
944          * If there is a device on CS1 it should be same type as CS0
945          * (or NVM. But NVM is not supported in this driver yet)
946          */
947         emif_assert((cs1_dev_details == NULL) ||
948                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
949                     (cs0_dev_details->type == cs1_dev_details->type));
950         emif_assert(freq <= MAX_LPDDR2_FREQ);
951
952         set_ddr_clk_period(freq);
953
954         /*
955          * The device on CS0 is used for all timing calculations
956          * There is only one set of registers for timings per EMIF. So, if the
957          * second CS(CS1) has a device, it should have the same timings as the
958          * device on CS0
959          */
960         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
961         emif_assert(timings);
962         min_tck = cs0_dev_timings->min_tck;
963
964         temp = addressing_table_index(cs0_dev_details->type,
965                                       cs0_dev_details->density,
966                                       cs0_dev_details->io_width);
967
968         emif_assert((temp >= 0));
969         addressing = &(addressing_table[temp]);
970         emif_assert(addressing);
971
972         sys_freq = get_sys_clk_freq();
973
974         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
975                                                         cs1_dev_details,
976                                                         addressing, RL_BOOT);
977
978         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
979                                                 cs1_dev_details,
980                                                 addressing, RL_FINAL);
981
982         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
983
984         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
985
986         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
987
988         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
989
990         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
991
992         regs->temp_alert_config =
993             get_temp_alert_config(cs1_dev_details, addressing, 0);
994
995         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
996                                             LPDDR2_VOLTAGE_STABLE);
997
998         regs->emif_ddr_phy_ctlr_1_init =
999                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
1000
1001         regs->emif_ddr_phy_ctlr_1 =
1002                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
1003
1004         regs->freq = freq;
1005
1006         print_timing_reg(regs->sdram_config_init);
1007         print_timing_reg(regs->sdram_config);
1008         print_timing_reg(regs->ref_ctrl);
1009         print_timing_reg(regs->sdram_tim1);
1010         print_timing_reg(regs->sdram_tim2);
1011         print_timing_reg(regs->sdram_tim3);
1012         print_timing_reg(regs->read_idle_ctrl);
1013         print_timing_reg(regs->temp_alert_config);
1014         print_timing_reg(regs->zq_config);
1015         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1016         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1017 }
1018 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1019
1020 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1021 const char *get_lpddr2_type(u8 type_id)
1022 {
1023         switch (type_id) {
1024         case LPDDR2_TYPE_S4:
1025                 return "LPDDR2-S4";
1026         case LPDDR2_TYPE_S2:
1027                 return "LPDDR2-S2";
1028         default:
1029                 return NULL;
1030         }
1031 }
1032
1033 const char *get_lpddr2_io_width(u8 width_id)
1034 {
1035         switch (width_id) {
1036         case LPDDR2_IO_WIDTH_8:
1037                 return "x8";
1038         case LPDDR2_IO_WIDTH_16:
1039                 return "x16";
1040         case LPDDR2_IO_WIDTH_32:
1041                 return "x32";
1042         default:
1043                 return NULL;
1044         }
1045 }
1046
1047 const char *get_lpddr2_manufacturer(u32 manufacturer)
1048 {
1049         switch (manufacturer) {
1050         case LPDDR2_MANUFACTURER_SAMSUNG:
1051                 return "Samsung";
1052         case LPDDR2_MANUFACTURER_QIMONDA:
1053                 return "Qimonda";
1054         case LPDDR2_MANUFACTURER_ELPIDA:
1055                 return "Elpida";
1056         case LPDDR2_MANUFACTURER_ETRON:
1057                 return "Etron";
1058         case LPDDR2_MANUFACTURER_NANYA:
1059                 return "Nanya";
1060         case LPDDR2_MANUFACTURER_HYNIX:
1061                 return "Hynix";
1062         case LPDDR2_MANUFACTURER_MOSEL:
1063                 return "Mosel";
1064         case LPDDR2_MANUFACTURER_WINBOND:
1065                 return "Winbond";
1066         case LPDDR2_MANUFACTURER_ESMT:
1067                 return "ESMT";
1068         case LPDDR2_MANUFACTURER_SPANSION:
1069                 return "Spansion";
1070         case LPDDR2_MANUFACTURER_SST:
1071                 return "SST";
1072         case LPDDR2_MANUFACTURER_ZMOS:
1073                 return "ZMOS";
1074         case LPDDR2_MANUFACTURER_INTEL:
1075                 return "Intel";
1076         case LPDDR2_MANUFACTURER_NUMONYX:
1077                 return "Numonyx";
1078         case LPDDR2_MANUFACTURER_MICRON:
1079                 return "Micron";
1080         default:
1081                 return NULL;
1082         }
1083 }
1084
1085 static void display_sdram_details(u32 emif_nr, u32 cs,
1086                                   struct lpddr2_device_details *device)
1087 {
1088         const char *mfg_str;
1089         const char *type_str;
1090         char density_str[10];
1091         u32 density;
1092
1093         debug("EMIF%d CS%d\t", emif_nr, cs);
1094
1095         if (!device) {
1096                 debug("None\n");
1097                 return;
1098         }
1099
1100         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1101         type_str = get_lpddr2_type(device->type);
1102
1103         density = lpddr2_density_2_size_in_mbytes[device->density];
1104         if ((density / 1024 * 1024) == density) {
1105                 density /= 1024;
1106                 sprintf(density_str, "%d GB", density);
1107         } else
1108                 sprintf(density_str, "%d MB", density);
1109         if (mfg_str && type_str)
1110                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1111 }
1112
1113 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1114                                   struct lpddr2_device_details *lpddr2_device)
1115 {
1116         u32 mr = 0, temp;
1117
1118         mr = get_mr(base, cs, LPDDR2_MR0);
1119         if (mr > 0xFF) {
1120                 /* Mode register value bigger than 8 bit */
1121                 return 0;
1122         }
1123
1124         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1125         if (temp) {
1126                 /* Not SDRAM */
1127                 return 0;
1128         }
1129         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1130
1131         if (temp) {
1132                 /* DNV supported - But DNV is only supported for NVM */
1133                 return 0;
1134         }
1135
1136         mr = get_mr(base, cs, LPDDR2_MR4);
1137         if (mr > 0xFF) {
1138                 /* Mode register value bigger than 8 bit */
1139                 return 0;
1140         }
1141
1142         mr = get_mr(base, cs, LPDDR2_MR5);
1143         if (mr > 0xFF) {
1144                 /* Mode register value bigger than 8 bit */
1145                 return 0;
1146         }
1147
1148         if (!get_lpddr2_manufacturer(mr)) {
1149                 /* Manufacturer not identified */
1150                 return 0;
1151         }
1152         lpddr2_device->manufacturer = mr;
1153
1154         mr = get_mr(base, cs, LPDDR2_MR6);
1155         if (mr >= 0xFF) {
1156                 /* Mode register value bigger than 8 bit */
1157                 return 0;
1158         }
1159
1160         mr = get_mr(base, cs, LPDDR2_MR7);
1161         if (mr >= 0xFF) {
1162                 /* Mode register value bigger than 8 bit */
1163                 return 0;
1164         }
1165
1166         mr = get_mr(base, cs, LPDDR2_MR8);
1167         if (mr >= 0xFF) {
1168                 /* Mode register value bigger than 8 bit */
1169                 return 0;
1170         }
1171
1172         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1173         if (!get_lpddr2_type(temp)) {
1174                 /* Not SDRAM */
1175                 return 0;
1176         }
1177         lpddr2_device->type = temp;
1178
1179         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1180         if (temp > LPDDR2_DENSITY_32Gb) {
1181                 /* Density not supported */
1182                 return 0;
1183         }
1184         lpddr2_device->density = temp;
1185
1186         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1187         if (!get_lpddr2_io_width(temp)) {
1188                 /* IO width unsupported value */
1189                 return 0;
1190         }
1191         lpddr2_device->io_width = temp;
1192
1193         /*
1194          * If all the above tests pass we should
1195          * have a device on this chip-select
1196          */
1197         return 1;
1198 }
1199
1200 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1201                         struct lpddr2_device_details *lpddr2_dev_details)
1202 {
1203         u32 phy;
1204         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1205
1206         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1207
1208         if (!lpddr2_dev_details)
1209                 return NULL;
1210
1211         /* Do the minimum init for mode register accesses */
1212         if (!(running_from_sdram() || warm_reset())) {
1213                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1214                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1215         }
1216
1217         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1218                 return NULL;
1219
1220         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1221
1222         return lpddr2_dev_details;
1223 }
1224 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1225
1226 static void do_sdram_init(u32 base)
1227 {
1228         const struct emif_regs *regs;
1229         u32 in_sdram, emif_nr;
1230
1231         debug(">>do_sdram_init() %x\n", base);
1232
1233         in_sdram = running_from_sdram();
1234         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1235
1236 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1237         emif_get_reg_dump(emif_nr, &regs);
1238         if (!regs) {
1239                 debug("EMIF: reg dump not provided\n");
1240                 return;
1241         }
1242 #else
1243         /*
1244          * The user has not provided the register values. We need to
1245          * calculate it based on the timings and the DDR frequency
1246          */
1247         struct emif_device_details dev_details;
1248         struct emif_regs calculated_regs;
1249
1250         /*
1251          * Get device details:
1252          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1253          * - Obtained from user otherwise
1254          */
1255         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1256         emif_reset_phy(base);
1257         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1258                                                 &cs0_dev_details);
1259         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1260                                                 &cs1_dev_details);
1261         emif_reset_phy(base);
1262
1263         /* Return if no devices on this EMIF */
1264         if (!dev_details.cs0_device_details &&
1265             !dev_details.cs1_device_details) {
1266                 return;
1267         }
1268
1269         /*
1270          * Get device timings:
1271          * - Default timings specified by JESD209-2 if
1272          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1273          * - Obtained from user otherwise
1274          */
1275         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1276                                 &dev_details.cs1_device_timings);
1277
1278         /* Calculate the register values */
1279         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1280         regs = &calculated_regs;
1281 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1282
1283         /*
1284          * Initializing the DDR device can not happen from SDRAM.
1285          * Changing the timing registers in EMIF can happen(going from one
1286          * OPP to another)
1287          */
1288         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1289                 if (emif_sdram_type(regs->sdram_config) ==
1290                     EMIF_SDRAM_TYPE_LPDDR2)
1291                         lpddr2_init(base, regs);
1292 #ifndef CONFIG_OMAP44XX
1293                 else
1294                         ddr3_init(base, regs);
1295 #endif
1296         }
1297 #ifdef CONFIG_OMAP54XX
1298         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1299             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1300                 set_lpmode_selfrefresh(base);
1301                 emif_reset_phy(base);
1302                 omap5_ddr3_leveling(base, regs);
1303         }
1304 #endif
1305
1306         /* Write to the shadow registers */
1307         emif_update_timings(base, regs);
1308
1309         debug("<<do_sdram_init() %x\n", base);
1310 }
1311
1312 void emif_post_init_config(u32 base)
1313 {
1314         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1315         u32 omap_rev = omap_revision();
1316
1317         /* reset phy on ES2.0 */
1318         if (omap_rev == OMAP4430_ES2_0)
1319                 emif_reset_phy(base);
1320
1321         /* Put EMIF back in smart idle on ES1.0 */
1322         if (omap_rev == OMAP4430_ES1_0)
1323                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1324 }
1325
1326 void dmm_init(u32 base)
1327 {
1328         const struct dmm_lisa_map_regs *lisa_map_regs;
1329         u32 i, section, valid;
1330
1331 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1332         emif_get_dmm_regs(&lisa_map_regs);
1333 #else
1334         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1335         u32 section_cnt, sys_addr;
1336         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1337
1338         mapped_size = 0;
1339         section_cnt = 3;
1340         sys_addr = CONFIG_SYS_SDRAM_BASE;
1341         emif1_size = get_emif_mem_size(EMIF1_BASE);
1342         emif2_size = get_emif_mem_size(EMIF2_BASE);
1343         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1344
1345         if (!emif1_size && !emif2_size)
1346                 return;
1347
1348         /* symmetric interleaved section */
1349         if (emif1_size && emif2_size) {
1350                 mapped_size = min(emif1_size, emif2_size);
1351                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1352                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1353                 /* only MSB */
1354                 section_map |= (sys_addr >> 24) <<
1355                                 EMIF_SYS_ADDR_SHIFT;
1356                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1357                                 << EMIF_SYS_SIZE_SHIFT;
1358                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1359                 emif1_size -= mapped_size;
1360                 emif2_size -= mapped_size;
1361                 sys_addr += (mapped_size * 2);
1362                 section_cnt--;
1363         }
1364
1365         /*
1366          * Single EMIF section(we can have a maximum of 1 single EMIF
1367          * section- either EMIF1 or EMIF2 or none, but not both)
1368          */
1369         if (emif1_size) {
1370                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1371                 section_map |= get_dmm_section_size_map(emif1_size)
1372                                 << EMIF_SYS_SIZE_SHIFT;
1373                 /* only MSB */
1374                 section_map |= (mapped_size >> 24) <<
1375                                 EMIF_SDRC_ADDR_SHIFT;
1376                 /* only MSB */
1377                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1378                 section_cnt--;
1379         }
1380         if (emif2_size) {
1381                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1382                 section_map |= get_dmm_section_size_map(emif2_size) <<
1383                                 EMIF_SYS_SIZE_SHIFT;
1384                 /* only MSB */
1385                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1386                 /* only MSB */
1387                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1388                 section_cnt--;
1389         }
1390
1391         if (section_cnt == 2) {
1392                 /* Only 1 section - either symmetric or single EMIF */
1393                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1394                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1395                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1396         } else {
1397                 /* 2 sections - 1 symmetric, 1 single EMIF */
1398                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1399                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1400         }
1401
1402         /* TRAP for invalid TILER mappings in section 0 */
1403         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1404
1405         if (omap_revision() >= OMAP4460_ES1_0)
1406                 lis_map_regs_calculated.is_ma_present = 1;
1407
1408         lisa_map_regs = &lis_map_regs_calculated;
1409 #endif
1410         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1411             (struct dmm_lisa_map_regs *)base;
1412
1413         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1414         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1415         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1416         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1417
1418         writel(lisa_map_regs->dmm_lisa_map_3,
1419                 &hw_lisa_map_regs->dmm_lisa_map_3);
1420         writel(lisa_map_regs->dmm_lisa_map_2,
1421                 &hw_lisa_map_regs->dmm_lisa_map_2);
1422         writel(lisa_map_regs->dmm_lisa_map_1,
1423                 &hw_lisa_map_regs->dmm_lisa_map_1);
1424         writel(lisa_map_regs->dmm_lisa_map_0,
1425                 &hw_lisa_map_regs->dmm_lisa_map_0);
1426
1427         if (lisa_map_regs->is_ma_present) {
1428                 hw_lisa_map_regs =
1429                     (struct dmm_lisa_map_regs *)MA_BASE;
1430
1431                 writel(lisa_map_regs->dmm_lisa_map_3,
1432                         &hw_lisa_map_regs->dmm_lisa_map_3);
1433                 writel(lisa_map_regs->dmm_lisa_map_2,
1434                         &hw_lisa_map_regs->dmm_lisa_map_2);
1435                 writel(lisa_map_regs->dmm_lisa_map_1,
1436                         &hw_lisa_map_regs->dmm_lisa_map_1);
1437                 writel(lisa_map_regs->dmm_lisa_map_0,
1438                         &hw_lisa_map_regs->dmm_lisa_map_0);
1439
1440                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1441         }
1442
1443         /*
1444          * EMIF should be configured only when
1445          * memory is mapped on it. Using emif1_enabled
1446          * and emif2_enabled variables for this.
1447          */
1448         emif1_enabled = 0;
1449         emif2_enabled = 0;
1450         for (i = 0; i < 4; i++) {
1451                 section = __raw_readl(DMM_BASE + i*4);
1452                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1453                         (EMIF_SDRC_MAP_SHIFT);
1454                 if (valid == 3) {
1455                         emif1_enabled = 1;
1456                         emif2_enabled = 1;
1457                         break;
1458                 }
1459
1460                 if (valid == 1)
1461                         emif1_enabled = 1;
1462
1463                 if (valid == 2)
1464                         emif2_enabled = 1;
1465         }
1466 }
1467
1468 static void do_bug0039_workaround(u32 base)
1469 {
1470         u32 val, i, clkctrl;
1471         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1472         const struct read_write_regs *bug_00339_regs;
1473         u32 iterations;
1474         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1475         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1476
1477         if (is_dra7xx())
1478                 phy_status_base++;
1479
1480         bug_00339_regs = get_bug_regs(&iterations);
1481
1482         /* Put EMIF in to idle */
1483         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1484         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1485
1486         /* Copy the phy status registers in to phy ctrl shadow registers */
1487         for (i = 0; i < iterations; i++) {
1488                 val = __raw_readl(phy_status_base +
1489                                   bug_00339_regs[i].read_reg - 1);
1490
1491                 __raw_writel(val, phy_ctrl_base +
1492                              ((bug_00339_regs[i].write_reg - 1) << 1));
1493
1494                 __raw_writel(val, phy_ctrl_base +
1495                              (bug_00339_regs[i].write_reg << 1) - 1);
1496         }
1497
1498         /* Disable leveling */
1499         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1500
1501         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1502 }
1503
1504 /*
1505  * SDRAM initialization:
1506  * SDRAM initialization has two parts:
1507  * 1. Configuring the SDRAM device
1508  * 2. Update the AC timings related parameters in the EMIF module
1509  * (1) should be done only once and should not be done while we are
1510  * running from SDRAM.
1511  * (2) can and should be done more than once if OPP changes.
1512  * Particularly, this may be needed when we boot without SPL and
1513  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1514  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1515  * the frequency. So,
1516  * Doing (1) and (2) makes sense - first time initialization
1517  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1518  * Doing (1) and not (2) doen't make sense
1519  * See do_sdram_init() for the details
1520  */
1521 void sdram_init(void)
1522 {
1523         u32 in_sdram, size_prog, size_detect;
1524         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1525         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1526
1527         debug(">>sdram_init()\n");
1528
1529         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1530                 return;
1531
1532         in_sdram = running_from_sdram();
1533         debug("in_sdram = %d\n", in_sdram);
1534
1535         if (!in_sdram) {
1536                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1537                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1538                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1539                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1540         }
1541
1542         if (!in_sdram)
1543                 dmm_init(DMM_BASE);
1544
1545         if (emif1_enabled)
1546                 do_sdram_init(EMIF1_BASE);
1547
1548         if (emif2_enabled)
1549                 do_sdram_init(EMIF2_BASE);
1550
1551         if (!(in_sdram || warm_reset())) {
1552                 if (emif1_enabled)
1553                         emif_post_init_config(EMIF1_BASE);
1554                 if (emif2_enabled)
1555                         emif_post_init_config(EMIF2_BASE);
1556         }
1557
1558         /* for the shadow registers to take effect */
1559         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1560                 freq_update_core();
1561
1562         /* Do some testing after the init */
1563         if (!in_sdram) {
1564                 size_prog = omap_sdram_size();
1565                 size_prog = log_2_n_round_down(size_prog);
1566                 size_prog = (1 << size_prog);
1567
1568                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1569                                                 size_prog);
1570                 /* Compare with the size programmed */
1571                 if (size_detect != size_prog) {
1572                         printf("SDRAM: identified size not same as expected"
1573                                 " size identified: %x expected: %x\n",
1574                                 size_detect,
1575                                 size_prog);
1576                 } else
1577                         debug("get_ram_size() successful");
1578         }
1579
1580 #if defined(CONFIG_TI_SECURE_DEVICE)
1581         /*
1582          * On HS devices, do static EMIF firewall configuration
1583          * but only do it if not already running in SDRAM
1584          */
1585         if (!in_sdram)
1586                 if (0 != secure_emif_reserve())
1587                         hang();
1588
1589         /* On HS devices, ensure static EMIF firewall APIs are locked */
1590         if (0 != secure_emif_firewall_lock())
1591                 hang();
1592 #endif
1593
1594         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1595             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1596                 if (emif1_enabled)
1597                         do_bug0039_workaround(EMIF1_BASE);
1598                 if (emif2_enabled)
1599                         do_bug0039_workaround(EMIF2_BASE);
1600         }
1601
1602         debug("<<sdram_init()\n");
1603 }