1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/mbus.h>
14 #include <asm/pl310.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/soc.h>
20 #define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
21 #define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
23 static const struct mbus_win windows[] = {
25 { MBUS_SPI_BASE, MBUS_SPI_SIZE,
26 CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
29 { MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
30 CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
32 #ifdef CONFIG_ARMADA_MSYS
34 { MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
38 /* SPI0 CS0 Flash of size MBUS_SPI_SIZE is mapped to address MBUS_SPI_BASE */
39 #if defined(CONFIG_ENV_IS_IN_SPI_FLASH) && CONFIG_ENV_SPI_BUS == 0 && CONFIG_ENV_SPI_CS == 0 && \
40 CONFIG_ENV_OFFSET + CONFIG_ENV_SIZE <= MBUS_SPI_SIZE
41 void *env_sf_get_env_addr(void)
43 return (void *)MBUS_SPI_BASE + CONFIG_ENV_OFFSET;
47 void lowlevel_init(void)
50 * Dummy implementation, we only need LOWLEVEL_INIT
51 * on Armada to configure CP15 in start.S / cpu_init_cp15()
55 #if defined(CONFIG_SPL_BUILD) || !defined(CONFIG_ARMADA_32BIT_SYSCON_SYSRESET)
58 struct mvebu_system_registers *reg =
59 (struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
61 writel(readl(®->rstoutn_mask) | 1, ®->rstoutn_mask);
62 writel(readl(®->sys_soft_rst) | 1, ®->sys_soft_rst);
68 u32 get_boot_device(void)
73 #ifdef CONFIG_ARMADA_38X
78 * First check, if UART boot-mode is active. This can only
79 * be done, via the bootrom error register. Here the
80 * MSB marks if the UART mode is active.
82 val = readl(BOOTROM_ERR_REG);
83 boot_err_mode = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS;
84 debug("BOOTROM_ERR_REG=0x%08x boot_err_mode=0x%x\n", val, boot_err_mode);
85 if (boot_err_mode == BOOTROM_ERR_MODE_UART)
86 return BOOT_DEVICE_UART;
88 #ifdef CONFIG_ARMADA_38X
90 * If the bootrom error code contains any other than zeros it's an
91 * error condition and the bootROM has fallen back to UART boot
93 boot_err_code = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS;
94 debug("boot_err_code=0x%x\n", boot_err_code);
96 return BOOT_DEVICE_UART;
100 * Now check the SAR register for the strapped boot-device
102 val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
103 boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS;
104 debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device);
105 #ifdef BOOT_FROM_NAND
106 if (BOOT_FROM_NAND(boot_device))
107 return BOOT_DEVICE_NAND;
110 if (BOOT_FROM_MMC(boot_device))
111 return BOOT_DEVICE_MMC1;
113 #ifdef BOOT_FROM_UART
114 if (BOOT_FROM_UART(boot_device))
115 return BOOT_DEVICE_UART;
117 #ifdef BOOT_FROM_SATA
118 if (BOOT_FROM_SATA(boot_device))
119 return BOOT_DEVICE_SATA;
122 if (BOOT_FROM_SPI(boot_device))
123 return BOOT_DEVICE_SPI;
125 return BOOT_DEVICE_BOOTROM;
128 #if defined(CONFIG_DISPLAY_CPUINFO)
130 #if defined(CONFIG_ARMADA_375)
131 /* SAR frequency values for Armada 375 */
132 static const struct sar_freq_modes sar_freq_tab[] = {
133 { 0, 0x0, 266, 133, 266 },
134 { 1, 0x0, 333, 167, 167 },
135 { 2, 0x0, 333, 167, 222 },
136 { 3, 0x0, 333, 167, 333 },
137 { 4, 0x0, 400, 200, 200 },
138 { 5, 0x0, 400, 200, 267 },
139 { 6, 0x0, 400, 200, 400 },
140 { 7, 0x0, 500, 250, 250 },
141 { 8, 0x0, 500, 250, 334 },
142 { 9, 0x0, 500, 250, 500 },
143 { 10, 0x0, 533, 267, 267 },
144 { 11, 0x0, 533, 267, 356 },
145 { 12, 0x0, 533, 267, 533 },
146 { 13, 0x0, 600, 300, 300 },
147 { 14, 0x0, 600, 300, 400 },
148 { 15, 0x0, 600, 300, 600 },
149 { 16, 0x0, 666, 333, 333 },
150 { 17, 0x0, 666, 333, 444 },
151 { 18, 0x0, 666, 333, 666 },
152 { 19, 0x0, 800, 400, 267 },
153 { 20, 0x0, 800, 400, 400 },
154 { 21, 0x0, 800, 400, 534 },
155 { 22, 0x0, 900, 450, 300 },
156 { 23, 0x0, 900, 450, 450 },
157 { 24, 0x0, 900, 450, 600 },
158 { 25, 0x0, 1000, 500, 500 },
159 { 26, 0x0, 1000, 500, 667 },
160 { 27, 0x0, 1000, 333, 500 },
161 { 28, 0x0, 400, 400, 400 },
162 { 29, 0x0, 1100, 550, 550 },
163 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
165 #elif defined(CONFIG_ARMADA_38X)
166 /* SAR frequency values for Armada 38x */
167 static const struct sar_freq_modes sar_freq_tab[] = {
168 { 0x0, 0x0, 666, 333, 333 },
169 { 0x2, 0x0, 800, 400, 400 },
170 { 0x4, 0x0, 1066, 533, 533 },
171 { 0x6, 0x0, 1200, 600, 600 },
172 { 0x8, 0x0, 1332, 666, 666 },
173 { 0xc, 0x0, 1600, 800, 800 },
174 { 0x10, 0x0, 1866, 933, 933 },
175 { 0x13, 0x0, 2000, 1000, 933 },
176 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
178 #elif defined(CONFIG_ARMADA_MSYS)
179 static const struct sar_freq_modes sar_freq_tab[] = {
180 { 0x0, 0x0, 400, 400, 400 },
181 { 0x2, 0x0, 667, 333, 667 },
182 { 0x3, 0x0, 800, 400, 800 },
183 { 0x5, 0x0, 800, 400, 800 },
184 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
187 /* SAR frequency values for Armada XP */
188 static const struct sar_freq_modes sar_freq_tab[] = {
189 { 0xa, 0x5, 800, 400, 400 },
190 { 0x1, 0x5, 1066, 533, 533 },
191 { 0x2, 0x5, 1200, 600, 600 },
192 { 0x2, 0x9, 1200, 600, 400 },
193 { 0x3, 0x5, 1333, 667, 667 },
194 { 0x4, 0x5, 1500, 750, 750 },
195 { 0x4, 0x9, 1500, 750, 500 },
196 { 0xb, 0x9, 1600, 800, 533 },
197 { 0xb, 0xa, 1600, 800, 640 },
198 { 0xb, 0x5, 1600, 800, 800 },
199 { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
203 void get_sar_freq(struct sar_freq_modes *sar_freq)
209 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
210 val = readl(CFG_SAR2_REG); /* SAR - Sample At Reset */
212 val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
214 freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
215 #if defined(SAR2_CPU_FREQ_MASK)
217 * Shift CPU0 clock frequency select bit from SAR2 register
218 * into correct position
220 freq |= ((readl(CFG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
221 >> SAR2_CPU_FREQ_OFFS) << 3;
223 for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
224 if (sar_freq_tab[i].val == freq) {
225 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
226 *sar_freq = sar_freq_tab[i];
232 ffc = (val & SAR_FFC_FREQ_MASK) >>
234 for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
235 if (sar_freq_tab[k].ffc == ffc) {
236 *sar_freq = sar_freq_tab[k];
245 /* SAR value not found, return 0 for frequencies */
246 *sar_freq = sar_freq_tab[i - 1];
249 int print_cpuinfo(void)
251 u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
252 u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
253 struct sar_freq_modes sar_freq;
279 case SOC_98DX3236_ID:
282 case SOC_98DX3336_ID:
285 case SOC_98DX4251_ID:
305 printf("?? (%x)", revid);
312 case MV_88F67XX_A0_ID:
316 printf("?? (%x)", revid);
325 case MV_88F68XX_Z1_ID:
328 case MV_88F68XX_A0_ID:
331 case MV_88F68XX_B0_ID:
335 printf("?? (%x)", revid);
340 case SOC_98DX3236_ID:
341 case SOC_98DX3336_ID:
342 case SOC_98DX4251_ID:
351 printf("?? (%x)", revid);
357 printf("?? (%x)", revid);
361 get_sar_freq(&sar_freq);
362 printf(" at %d MHz\n", sar_freq.p_clk);
366 #endif /* CONFIG_DISPLAY_CPUINFO */
369 * This function initialize Controller DRAM Fastpath windows.
370 * It takes the CS size information from the 0x1500 scratch registers
371 * and sets the correct windows sizes and base addresses accordingly.
373 * These values are set in the scratch registers by the Marvell
374 * DDR3 training code, which is executed by the SPL before the
375 * main payload (U-Boot) is executed.
377 static void update_sdram_window_sizes(void)
383 for (i = 0; i < SDRAM_MAX_CS; i++) {
384 size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
386 size |= ~(SDRAM_ADDR_MASK);
388 /* Set Base Address */
389 temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
390 writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
393 * Check if out of max window size and resize
396 temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
397 ~(SDRAM_ADDR_MASK)) | 1;
398 temp |= (size & SDRAM_ADDR_MASK);
399 writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
401 base += ((u64)size + 1);
404 * Disable window if not used, otherwise this
405 * leads to overlapping enabled windows with
406 * pretty strange results
408 clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
413 #ifdef CONFIG_ARCH_CPU_INIT
414 #define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800)
415 #define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
416 #define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \
417 (((addr) & 0xF) << 6))
418 #define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \
419 (((reg) & 0xF) << 2))
421 static void setup_usb_phys(void)
429 /* Setup PLL frequency */
430 /* USB REF frequency = 25 MHz */
431 clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
433 /* Power up PLL and PHY channel */
434 setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
436 /* Assert VCOCAL_START */
437 setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
442 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
445 for (dev = 0; dev < 3; dev++) {
446 setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
448 /* Assert REG_RCAL_START in channel REG 1 */
449 setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
451 clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
456 * This function is not called from the SPL U-Boot version
458 int arch_cpu_init(void)
461 * We need to call mvebu_mbus_probe() before calling
462 * update_sdram_window_sizes() as it disables all previously
463 * configured mbus windows and then configures them as
464 * required for U-Boot. Calling update_sdram_window_sizes()
465 * without this configuration will not work, as the internal
466 * registers can't be accessed reliably because of potenial
468 * After updating the SDRAM access windows we need to call
469 * mvebu_mbus_probe() again, as this now correctly configures
470 * the SDRAM areas that are later used by the MVEBU drivers
475 * First disable all windows
477 mvebu_mbus_probe(NULL, 0);
479 if (IS_ENABLED(CONFIG_ARMADA_XP)) {
481 * Now the SDRAM access windows can be reconfigured using
482 * the information in the SDRAM scratch pad registers
484 update_sdram_window_sizes();
488 * Finally the mbus windows can be configured with the
489 * updated SDRAM sizes
491 mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
493 if (IS_ENABLED(CONFIG_ARMADA_XP)) {
494 /* Enable GBE0, GBE1, LCD and NFC PUP */
495 clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
496 GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
497 NAND_PUP_EN | SPI_PUP_EN);
499 /* Configure USB PLL and PHYs on AXP */
503 /* Enable NAND and NAND arbiter */
504 clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
506 /* Disable MBUS error propagation */
507 clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
511 #endif /* CONFIG_ARCH_CPU_INIT */
513 u32 mvebu_get_nand_clock(void)
517 if (IS_ENABLED(CONFIG_ARMADA_38X))
518 reg = MVEBU_DFX_DIV_CLK_CTRL(1);
519 else if (IS_ENABLED(CONFIG_ARMADA_MSYS))
520 reg = MVEBU_DFX_DIV_CLK_CTRL(8);
522 reg = MVEBU_CORE_DIV_CLK_CTRL(1);
524 return CONFIG_SYS_MVEBU_PLL_CLOCK /
526 NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
529 #if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
530 int board_mmc_init(struct bd_info *bis)
532 mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
533 SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
539 #define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0
540 #define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4
542 #define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4))
543 #define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4))
544 #define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4))
546 static void ahci_mvebu_mbus_config(void __iomem *base)
548 const struct mbus_dram_target_info *dram;
551 /* mbus is not initialized in SPL; keep the ROM settings */
552 if (IS_ENABLED(CONFIG_SPL_BUILD))
555 dram = mvebu_mbus_dram_info();
557 for (i = 0; i < 4; i++) {
558 writel(0, base + AHCI_WINDOW_CTRL(i));
559 writel(0, base + AHCI_WINDOW_BASE(i));
560 writel(0, base + AHCI_WINDOW_SIZE(i));
563 for (i = 0; i < dram->num_cs; i++) {
564 const struct mbus_dram_window *cs = dram->cs + i;
566 writel((cs->mbus_attr << 8) |
567 (dram->mbus_dram_target_id << 4) | 1,
568 base + AHCI_WINDOW_CTRL(i));
569 writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
570 writel(((cs->size - 1) & 0xffff0000),
571 base + AHCI_WINDOW_SIZE(i));
575 static void ahci_mvebu_regret_option(void __iomem *base)
578 * Enable the regret bit to allow the SATA unit to regret a
579 * request that didn't receive an acknowlegde and avoid a
582 writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
583 writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
586 int board_ahci_enable(void)
588 ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
589 ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
594 #ifdef CONFIG_USB_XHCI_MVEBU
595 #define USB3_MAX_WINDOWS 4
596 #define USB3_WIN_CTRL(w) (0x0 + ((w) * 8))
597 #define USB3_WIN_BASE(w) (0x4 + ((w) * 8))
599 static void xhci_mvebu_mbus_config(void __iomem *base,
600 const struct mbus_dram_target_info *dram)
604 for (i = 0; i < USB3_MAX_WINDOWS; i++) {
605 writel(0, base + USB3_WIN_CTRL(i));
606 writel(0, base + USB3_WIN_BASE(i));
609 for (i = 0; i < dram->num_cs; i++) {
610 const struct mbus_dram_window *cs = dram->cs + i;
612 /* Write size, attributes and target id to control register */
613 writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
614 (dram->mbus_dram_target_id << 4) | 1,
615 base + USB3_WIN_CTRL(i));
617 /* Write base address to base register */
618 writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
622 int board_xhci_enable(fdt_addr_t base)
624 const struct mbus_dram_target_info *dram;
626 printf("MVEBU XHCI INIT controller @ 0x%llx\n", (fdt64_t)base);
628 dram = mvebu_mbus_dram_info();
629 xhci_mvebu_mbus_config((void __iomem *)base, dram);
635 void enable_caches(void)
637 /* Avoid problem with e.g. neta ethernet driver */
638 invalidate_dcache_all();
641 * Armada 375 still has some problems with d-cache enabled in the
642 * ethernet driver (mvpp2). So lets keep the d-cache disabled
643 * until this is solved.
645 if (!IS_ENABLED(CONFIG_ARMADA_375)) {
646 /* Enable D-cache. I-cache is already enabled in start.S */
651 void v7_outer_cache_enable(void)
653 struct pl310_regs *const pl310 =
654 (struct pl310_regs *)CFG_SYS_PL310_BASE;
656 /* The L2 cache is already disabled at this point */
659 * For now L2 cache will be enabled only for Armada XP and Armada 38x.
660 * It can be enabled also for other SoCs after testing that it works fine.
662 if (!IS_ENABLED(CONFIG_ARMADA_XP) && !IS_ENABLED(CONFIG_ARMADA_38X))
665 if (IS_ENABLED(CONFIG_ARMADA_XP)) {
669 * For Aurora cache in no outer mode, enable via the CP15
670 * coprocessor broadcasting of cache commands to L2.
672 asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
673 u |= BIT(8); /* Set the FW bit */
674 asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
679 /* Enable the L2 cache */
680 setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
683 void v7_outer_cache_disable(void)
685 struct pl310_regs *const pl310 =
686 (struct pl310_regs *)CFG_SYS_PL310_BASE;
688 clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);