1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Authors: Rusty Russell <rusty@rustcorp.com.au>
5 * Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/bsearch.h>
10 #include <linux/kvm_host.h>
11 #include <linux/uaccess.h>
12 #include <asm/kvm_arm.h>
13 #include <asm/kvm_host.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_coproc.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cputype.h>
19 #include <trace/events/kvm.h>
21 #include "../vfp/vfpinstr.h"
23 #define CREATE_TRACE_POINTS
28 /******************************************************************************
29 * Co-processor emulation
30 *****************************************************************************/
32 static bool write_to_read_only(struct kvm_vcpu *vcpu,
33 const struct coproc_params *params)
35 WARN_ONCE(1, "CP15 write to read-only register\n");
36 print_cp_instr(params);
37 kvm_inject_undefined(vcpu);
41 static bool read_from_write_only(struct kvm_vcpu *vcpu,
42 const struct coproc_params *params)
44 WARN_ONCE(1, "CP15 read to write-only register\n");
45 print_cp_instr(params);
46 kvm_inject_undefined(vcpu);
50 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
51 static u32 cache_levels;
53 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
57 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
58 * of cp15 registers can be viewed either as couple of two u32 registers
59 * or one u64 register. Current u64 register encoding is that least
60 * significant u32 word is followed by most significant u32 word.
62 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
63 const struct coproc_reg *r,
66 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
67 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
70 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
71 const struct coproc_reg *r)
75 val = vcpu_cp15(vcpu, r->reg + 1);
77 val = val | vcpu_cp15(vcpu, r->reg);
81 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
83 kvm_inject_undefined(vcpu);
87 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
90 * We can get here, if the host has been built without VFPv3 support,
91 * but the guest attempted a floating point operation.
93 kvm_inject_undefined(vcpu);
97 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
99 kvm_inject_undefined(vcpu);
103 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
106 * Compute guest MPIDR. We build a virtual cluster out of the
107 * vcpu_id, but we read the 'U' bit from the underlying
110 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
111 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
112 (vcpu->vcpu_id & 3));
115 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
116 static bool access_actlr(struct kvm_vcpu *vcpu,
117 const struct coproc_params *p,
118 const struct coproc_reg *r)
121 return ignore_write(vcpu, p);
123 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
127 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
128 static bool access_cbar(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
133 return write_to_read_only(vcpu, p);
134 return read_zero(vcpu, p);
137 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
138 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
139 const struct coproc_params *p,
140 const struct coproc_reg *r)
143 return ignore_write(vcpu, p);
145 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
149 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
153 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
154 l2ctlr &= ~(3 << 24);
155 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
156 /* How many cores in the current cluster and the next ones */
157 ncores -= (vcpu->vcpu_id & ~3);
158 /* Cap it to the maximum number of cores in a single cluster */
159 ncores = min(ncores, 3U);
160 l2ctlr |= (ncores & 3) << 24;
162 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
165 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
169 /* ACTLR contains SMP bit: make sure you create all cpus first! */
170 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
171 /* Make the SMP bit consistent with the guest configuration */
172 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
177 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
181 * TRM entries: A7:4.3.50, A15:4.3.49
182 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
184 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
185 const struct coproc_params *p,
186 const struct coproc_reg *r)
189 return ignore_write(vcpu, p);
191 *vcpu_reg(vcpu, p->Rt1) = 0;
196 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
198 static bool access_dcsw(struct kvm_vcpu *vcpu,
199 const struct coproc_params *p,
200 const struct coproc_reg *r)
203 return read_from_write_only(vcpu, p);
205 kvm_set_way_flush(vcpu);
210 * Generic accessor for VM registers. Only called as long as HCR_TVM
211 * is set. If the guest enables the MMU, we stop trapping the VM
212 * sys_regs and leave it in complete control of the caches.
214 * Used by the cpu-specific code.
216 bool access_vm_reg(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
220 bool was_enabled = vcpu_has_cache_enabled(vcpu);
222 BUG_ON(!p->is_write);
224 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
226 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
228 kvm_toggle_cache(vcpu, was_enabled);
232 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
233 const struct coproc_params *p,
234 const struct coproc_reg *r)
240 return read_from_write_only(vcpu, p);
242 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
243 reg |= *vcpu_reg(vcpu, p->Rt1) ;
246 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
247 * Group0 SGIs only, while ICC_SGI1R can generate either group,
248 * depending on the SGI configuration. ICC_ASGI1R is effectively
249 * equivalent to ICC_SGI0R, as there is no "alternative" secure
253 default: /* Keep GCC quiet */
254 case 0: /* ICC_SGI1R */
257 case 1: /* ICC_ASGI1R */
258 case 2: /* ICC_SGI0R */
263 vgic_v3_dispatch_sgi(vcpu, reg, g1);
268 static bool access_gic_sre(struct kvm_vcpu *vcpu,
269 const struct coproc_params *p,
270 const struct coproc_reg *r)
273 return ignore_write(vcpu, p);
275 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
280 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
287 val = *vcpu_reg(vcpu, p->Rt1);
288 kvm_arm_timer_write_sysreg(vcpu,
289 TIMER_PTIMER, TIMER_REG_TVAL, val);
291 val = kvm_arm_timer_read_sysreg(vcpu,
292 TIMER_PTIMER, TIMER_REG_TVAL);
293 *vcpu_reg(vcpu, p->Rt1) = val;
299 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
300 const struct coproc_params *p,
301 const struct coproc_reg *r)
306 val = *vcpu_reg(vcpu, p->Rt1);
307 kvm_arm_timer_write_sysreg(vcpu,
308 TIMER_PTIMER, TIMER_REG_CTL, val);
310 val = kvm_arm_timer_read_sysreg(vcpu,
311 TIMER_PTIMER, TIMER_REG_CTL);
312 *vcpu_reg(vcpu, p->Rt1) = val;
318 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
319 const struct coproc_params *p,
320 const struct coproc_reg *r)
325 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
326 val |= *vcpu_reg(vcpu, p->Rt1);
327 kvm_arm_timer_write_sysreg(vcpu,
328 TIMER_PTIMER, TIMER_REG_CVAL, val);
330 val = kvm_arm_timer_read_sysreg(vcpu,
331 TIMER_PTIMER, TIMER_REG_CVAL);
332 *vcpu_reg(vcpu, p->Rt1) = val;
333 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
340 * We could trap ID_DFR0 and tell the guest we don't support performance
341 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
342 * NAKed, so it will read the PMCR anyway.
344 * Therefore we tell the guest we have 0 counters. Unfortunately, we
345 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
346 * all PM registers, which doesn't crash the guest kernel at least.
348 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
349 const struct coproc_params *p,
350 const struct coproc_reg *r)
353 return ignore_write(vcpu, p);
355 return read_zero(vcpu, p);
358 #define access_pmcr trap_raz_wi
359 #define access_pmcntenset trap_raz_wi
360 #define access_pmcntenclr trap_raz_wi
361 #define access_pmovsr trap_raz_wi
362 #define access_pmselr trap_raz_wi
363 #define access_pmceid0 trap_raz_wi
364 #define access_pmceid1 trap_raz_wi
365 #define access_pmccntr trap_raz_wi
366 #define access_pmxevtyper trap_raz_wi
367 #define access_pmxevcntr trap_raz_wi
368 #define access_pmuserenr trap_raz_wi
369 #define access_pmintenset trap_raz_wi
370 #define access_pmintenclr trap_raz_wi
372 /* Architected CP15 registers.
373 * CRn denotes the primary register number, but is copied to the CRm in the
374 * user space API for 64-bit register access in line with the terminology used
376 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
377 * registers preceding 32-bit ones.
379 static const struct coproc_reg cp15_regs[] = {
380 /* MPIDR: we use VMPIDR for guest access. */
381 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
382 NULL, reset_mpidr, c0_MPIDR },
384 /* CSSELR: swapped by interrupt.S. */
385 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
386 NULL, reset_unknown, c0_CSSELR },
388 /* ACTLR: trapped by HCR.TAC bit. */
389 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
390 access_actlr, reset_actlr, c1_ACTLR },
392 /* CPACR: swapped by interrupt.S. */
393 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
394 NULL, reset_val, c1_CPACR, 0x00000000 },
396 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
397 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
398 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
399 access_vm_reg, reset_unknown, c2_TTBR0 },
400 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
401 access_vm_reg, reset_unknown, c2_TTBR1 },
402 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
403 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
404 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
407 /* DACR: swapped by interrupt.S. */
408 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
409 access_vm_reg, reset_unknown, c3_DACR },
411 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
412 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
413 access_vm_reg, reset_unknown, c5_DFSR },
414 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
415 access_vm_reg, reset_unknown, c5_IFSR },
416 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
417 access_vm_reg, reset_unknown, c5_ADFSR },
418 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
419 access_vm_reg, reset_unknown, c5_AIFSR },
421 /* DFAR/IFAR: swapped by interrupt.S. */
422 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
423 access_vm_reg, reset_unknown, c6_DFAR },
424 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
425 access_vm_reg, reset_unknown, c6_IFAR },
427 /* PAR swapped by interrupt.S */
428 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
431 * DC{C,I,CI}SW operations:
433 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
434 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
435 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
437 * L2CTLR access (guest wants to know #CPUs).
439 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
440 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
441 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
444 * Dummy performance monitor implementation.
446 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
447 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
448 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
449 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
450 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
451 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
452 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
453 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
454 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
455 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
456 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
457 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
458 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
460 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
461 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
462 access_vm_reg, reset_unknown, c10_PRRR},
463 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
464 access_vm_reg, reset_unknown, c10_NMRR},
466 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
467 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
468 access_vm_reg, reset_unknown, c10_AMAIR0},
469 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
470 access_vm_reg, reset_unknown, c10_AMAIR1},
473 { CRm64(12), Op1( 0), is64, access_gic_sgi},
475 /* VBAR: swapped by interrupt.S. */
476 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
477 NULL, reset_val, c12_VBAR, 0x00000000 },
480 { CRm64(12), Op1( 1), is64, access_gic_sgi},
482 { CRm64(12), Op1( 2), is64, access_gic_sgi},
484 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
486 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
487 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
488 access_vm_reg, reset_val, c13_CID, 0x00000000 },
489 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
490 NULL, reset_unknown, c13_TID_URW },
491 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
492 NULL, reset_unknown, c13_TID_URO },
493 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
494 NULL, reset_unknown, c13_TID_PRIV },
497 { CRm64(14), Op1( 2), is64, access_cntp_cval},
499 /* CNTKCTL: swapped by interrupt.S. */
500 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
501 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
504 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
505 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
507 /* The Configuration Base Address Register. */
508 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
511 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
515 for (i = 1; i < n; i++) {
516 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
517 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
525 /* Target specific emulation tables */
526 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
528 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
530 BUG_ON(check_reg_table(table->table, table->num));
531 target_tables[table->target] = table;
534 /* Get specific register table for this target. */
535 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
537 struct kvm_coproc_target_table *table;
539 table = target_tables[target];
544 #define reg_to_match_value(x) \
547 val = (x)->CRn << 11; \
548 val |= (x)->CRm << 7; \
549 val |= (x)->Op1 << 4; \
550 val |= (x)->Op2 << 1; \
551 val |= !(x)->is_64bit; \
555 static int match_reg(const void *key, const void *elt)
557 const unsigned long pval = (unsigned long)key;
558 const struct coproc_reg *r = elt;
560 return pval - reg_to_match_value(r);
563 static const struct coproc_reg *find_reg(const struct coproc_params *params,
564 const struct coproc_reg table[],
567 unsigned long pval = reg_to_match_value(params);
569 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
572 static int emulate_cp15(struct kvm_vcpu *vcpu,
573 const struct coproc_params *params)
576 const struct coproc_reg *table, *r;
578 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
579 params->CRm, params->Op2, params->is_write);
581 table = get_target_table(vcpu->arch.target, &num);
583 /* Search target-specific then generic table. */
584 r = find_reg(params, table, num);
586 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
589 /* If we don't have an accessor, we should never get here! */
592 if (likely(r->access(vcpu, params, r))) {
593 /* Skip instruction, since it was emulated */
594 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
597 /* If access function fails, it should complain. */
598 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
599 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
600 print_cp_instr(params);
601 kvm_inject_undefined(vcpu);
607 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
609 struct coproc_params params;
611 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
612 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
613 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
614 params.is_64bit = true;
616 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
618 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
625 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
626 * @vcpu: The VCPU pointer
627 * @run: The kvm_run struct
629 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
631 struct coproc_params params = decode_64bit_hsr(vcpu);
633 return emulate_cp15(vcpu, ¶ms);
637 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
638 * @vcpu: The VCPU pointer
639 * @run: The kvm_run struct
641 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
643 struct coproc_params params = decode_64bit_hsr(vcpu);
646 trap_raz_wi(vcpu, ¶ms, NULL);
649 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
653 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
654 const struct coproc_reg *table, size_t num)
658 for (i = 0; i < num; i++)
660 table[i].reset(vcpu, &table[i]);
663 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
665 struct coproc_params params;
667 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
668 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
669 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
670 params.is_64bit = false;
672 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
673 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
674 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
681 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
682 * @vcpu: The VCPU pointer
683 * @run: The kvm_run struct
685 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
687 struct coproc_params params = decode_32bit_hsr(vcpu);
688 return emulate_cp15(vcpu, ¶ms);
692 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
693 * @vcpu: The VCPU pointer
694 * @run: The kvm_run struct
696 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
698 struct coproc_params params = decode_32bit_hsr(vcpu);
701 trap_raz_wi(vcpu, ¶ms, NULL);
704 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
708 /******************************************************************************
710 *****************************************************************************/
712 static bool index_to_params(u64 id, struct coproc_params *params)
714 switch (id & KVM_REG_SIZE_MASK) {
715 case KVM_REG_SIZE_U32:
716 /* Any unused index bits means it's not valid. */
717 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
718 | KVM_REG_ARM_COPROC_MASK
719 | KVM_REG_ARM_32_CRN_MASK
720 | KVM_REG_ARM_CRM_MASK
721 | KVM_REG_ARM_OPC1_MASK
722 | KVM_REG_ARM_32_OPC2_MASK))
725 params->is_64bit = false;
726 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
727 >> KVM_REG_ARM_32_CRN_SHIFT);
728 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
729 >> KVM_REG_ARM_CRM_SHIFT);
730 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
731 >> KVM_REG_ARM_OPC1_SHIFT);
732 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
733 >> KVM_REG_ARM_32_OPC2_SHIFT);
735 case KVM_REG_SIZE_U64:
736 /* Any unused index bits means it's not valid. */
737 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
738 | KVM_REG_ARM_COPROC_MASK
739 | KVM_REG_ARM_CRM_MASK
740 | KVM_REG_ARM_OPC1_MASK))
742 params->is_64bit = true;
743 /* CRm to CRn: see cp15_to_index for details */
744 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
745 >> KVM_REG_ARM_CRM_SHIFT);
746 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
747 >> KVM_REG_ARM_OPC1_SHIFT);
756 /* Decode an index value, and find the cp15 coproc_reg entry. */
757 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
761 const struct coproc_reg *table, *r;
762 struct coproc_params params;
764 /* We only do cp15 for now. */
765 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
768 if (!index_to_params(id, ¶ms))
771 table = get_target_table(vcpu->arch.target, &num);
772 r = find_reg(¶ms, table, num);
774 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
776 /* Not saved in the cp15 array? */
784 * These are the invariant cp15 registers: we let the guest see the host
785 * versions of these, so they're part of the guest state.
787 * A future CPU may provide a mechanism to present different values to
788 * the guest, or a future kvm may trap them.
790 /* Unfortunately, there's no register-argument for mrc, so generate. */
791 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
792 static void get_##name(struct kvm_vcpu *v, \
793 const struct coproc_reg *r) \
797 asm volatile("mrc p15, " __stringify(op1) \
798 ", %0, c" __stringify(crn) \
799 ", c" __stringify(crm) \
800 ", " __stringify(op2) "\n" : "=r" (val)); \
801 ((struct coproc_reg *)r)->val = val; \
804 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
805 FUNCTION_FOR32(0, 0, 0, 1, CTR)
806 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
807 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
808 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
809 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
810 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
811 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
812 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
813 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
814 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
815 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
816 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
817 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
818 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
819 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
820 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
821 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
822 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
823 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
824 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
826 /* ->val is filled in by kvm_invariant_coproc_table_init() */
827 static struct coproc_reg invariant_cp15[] = {
828 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
829 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
830 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
831 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
832 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
834 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
835 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
837 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
838 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
839 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
840 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
841 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
842 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
843 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
844 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
846 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
847 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
848 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
849 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
850 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
851 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
855 * Reads a register value from a userspace address to a kernel
856 * variable. Make sure that register size matches sizeof(*__val).
858 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
860 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
866 * Writes a register value to a userspace address from a kernel variable.
867 * Make sure that register size matches sizeof(*__val).
869 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
871 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
876 static int get_invariant_cp15(u64 id, void __user *uaddr)
878 struct coproc_params params;
879 const struct coproc_reg *r;
882 if (!index_to_params(id, ¶ms))
885 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
890 if (KVM_REG_SIZE(id) == 4) {
893 ret = reg_to_user(uaddr, &val, id);
894 } else if (KVM_REG_SIZE(id) == 8) {
895 ret = reg_to_user(uaddr, &r->val, id);
900 static int set_invariant_cp15(u64 id, void __user *uaddr)
902 struct coproc_params params;
903 const struct coproc_reg *r;
907 if (!index_to_params(id, ¶ms))
909 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
914 if (KVM_REG_SIZE(id) == 4) {
917 err = reg_from_user(&val32, uaddr, id);
920 } else if (KVM_REG_SIZE(id) == 8) {
921 err = reg_from_user(&val, uaddr, id);
926 /* This is what we mean by invariant: you can't change it. */
933 static bool is_valid_cache(u32 val)
937 if (val >= CSSELR_MAX)
940 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
942 ctype = (cache_levels >> (level * 3)) & 7;
945 case 0: /* No cache */
947 case 1: /* Instruction cache only */
949 case 2: /* Data cache only */
950 case 4: /* Unified cache */
952 case 3: /* Separate instruction and data caches */
954 default: /* Reserved: we can't know instruction or data. */
959 /* Which cache CCSIDR represents depends on CSSELR value. */
960 static u32 get_ccsidr(u32 csselr)
964 /* Make sure noone else changes CSSELR during this! */
966 /* Put value into CSSELR */
967 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
969 /* Read result out of CCSIDR */
970 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
976 static int demux_c15_get(u64 id, void __user *uaddr)
979 u32 __user *uval = uaddr;
981 /* Fail if we have unknown bits set. */
982 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
983 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
986 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
987 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
988 if (KVM_REG_SIZE(id) != 4)
990 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
991 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
992 if (!is_valid_cache(val))
995 return put_user(get_ccsidr(val), uval);
1001 static int demux_c15_set(u64 id, void __user *uaddr)
1004 u32 __user *uval = uaddr;
1006 /* Fail if we have unknown bits set. */
1007 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1008 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1011 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1012 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1013 if (KVM_REG_SIZE(id) != 4)
1015 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1016 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1017 if (!is_valid_cache(val))
1020 if (get_user(newval, uval))
1023 /* This is also invariant: you can't change it. */
1024 if (newval != get_ccsidr(val))
1033 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1034 KVM_REG_ARM_VFP_FPSCR,
1035 KVM_REG_ARM_VFP_FPINST,
1036 KVM_REG_ARM_VFP_FPINST2,
1037 KVM_REG_ARM_VFP_MVFR0,
1038 KVM_REG_ARM_VFP_MVFR1,
1039 KVM_REG_ARM_VFP_FPSID };
1041 static unsigned int num_fp_regs(void)
1043 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1049 static unsigned int num_vfp_regs(void)
1051 /* Normal FP regs + control regs. */
1052 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1055 static int copy_vfp_regids(u64 __user *uindices)
1058 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1059 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1061 for (i = 0; i < num_fp_regs(); i++) {
1062 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1068 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1069 if (put_user(u32reg | vfp_sysregs[i], uindices))
1074 return num_vfp_regs();
1077 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1079 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1082 /* Fail if we have unknown bits set. */
1083 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1084 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1087 if (vfpid < num_fp_regs()) {
1088 if (KVM_REG_SIZE(id) != 8)
1090 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1094 /* FP control registers are all 32 bit. */
1095 if (KVM_REG_SIZE(id) != 4)
1099 case KVM_REG_ARM_VFP_FPEXC:
1100 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1101 case KVM_REG_ARM_VFP_FPSCR:
1102 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1103 case KVM_REG_ARM_VFP_FPINST:
1104 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1105 case KVM_REG_ARM_VFP_FPINST2:
1106 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1107 case KVM_REG_ARM_VFP_MVFR0:
1109 return reg_to_user(uaddr, &val, id);
1110 case KVM_REG_ARM_VFP_MVFR1:
1112 return reg_to_user(uaddr, &val, id);
1113 case KVM_REG_ARM_VFP_FPSID:
1115 return reg_to_user(uaddr, &val, id);
1121 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1123 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1126 /* Fail if we have unknown bits set. */
1127 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1128 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1131 if (vfpid < num_fp_regs()) {
1132 if (KVM_REG_SIZE(id) != 8)
1134 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1138 /* FP control registers are all 32 bit. */
1139 if (KVM_REG_SIZE(id) != 4)
1143 case KVM_REG_ARM_VFP_FPEXC:
1144 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1145 case KVM_REG_ARM_VFP_FPSCR:
1146 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1147 case KVM_REG_ARM_VFP_FPINST:
1148 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1149 case KVM_REG_ARM_VFP_FPINST2:
1150 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1151 /* These are invariant. */
1152 case KVM_REG_ARM_VFP_MVFR0:
1153 if (reg_from_user(&val, uaddr, id))
1155 if (val != fmrx(MVFR0))
1158 case KVM_REG_ARM_VFP_MVFR1:
1159 if (reg_from_user(&val, uaddr, id))
1161 if (val != fmrx(MVFR1))
1164 case KVM_REG_ARM_VFP_FPSID:
1165 if (reg_from_user(&val, uaddr, id))
1167 if (val != fmrx(FPSID))
1174 #else /* !CONFIG_VFPv3 */
1175 static unsigned int num_vfp_regs(void)
1180 static int copy_vfp_regids(u64 __user *uindices)
1185 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1190 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1194 #endif /* !CONFIG_VFPv3 */
1196 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1198 const struct coproc_reg *r;
1199 void __user *uaddr = (void __user *)(long)reg->addr;
1202 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1203 return demux_c15_get(reg->id, uaddr);
1205 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1206 return vfp_get_reg(vcpu, reg->id, uaddr);
1208 r = index_to_coproc_reg(vcpu, reg->id);
1210 return get_invariant_cp15(reg->id, uaddr);
1213 if (KVM_REG_SIZE(reg->id) == 8) {
1216 val = vcpu_cp15_reg64_get(vcpu, r);
1217 ret = reg_to_user(uaddr, &val, reg->id);
1218 } else if (KVM_REG_SIZE(reg->id) == 4) {
1219 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1225 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1227 const struct coproc_reg *r;
1228 void __user *uaddr = (void __user *)(long)reg->addr;
1231 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1232 return demux_c15_set(reg->id, uaddr);
1234 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1235 return vfp_set_reg(vcpu, reg->id, uaddr);
1237 r = index_to_coproc_reg(vcpu, reg->id);
1239 return set_invariant_cp15(reg->id, uaddr);
1242 if (KVM_REG_SIZE(reg->id) == 8) {
1245 ret = reg_from_user(&val, uaddr, reg->id);
1247 vcpu_cp15_reg64_set(vcpu, r, val);
1248 } else if (KVM_REG_SIZE(reg->id) == 4) {
1249 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1255 static unsigned int num_demux_regs(void)
1257 unsigned int i, count = 0;
1259 for (i = 0; i < CSSELR_MAX; i++)
1260 if (is_valid_cache(i))
1266 static int write_demux_regids(u64 __user *uindices)
1268 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1271 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1272 for (i = 0; i < CSSELR_MAX; i++) {
1273 if (!is_valid_cache(i))
1275 if (put_user(val | i, uindices))
1282 static u64 cp15_to_index(const struct coproc_reg *reg)
1284 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1285 if (reg->is_64bit) {
1286 val |= KVM_REG_SIZE_U64;
1287 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1289 * CRn always denotes the primary coproc. reg. nr. for the
1290 * in-kernel representation, but the user space API uses the
1291 * CRm for the encoding, because it is modelled after the
1292 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1295 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1297 val |= KVM_REG_SIZE_U32;
1298 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1299 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1300 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1301 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1306 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1311 if (put_user(cp15_to_index(reg), *uind))
1318 /* Assumed ordered tables, see kvm_coproc_table_init. */
1319 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1321 const struct coproc_reg *i1, *i2, *end1, *end2;
1322 unsigned int total = 0;
1325 /* We check for duplicates here, to allow arch-specific overrides. */
1326 i1 = get_target_table(vcpu->arch.target, &num);
1329 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1331 BUG_ON(i1 == end1 || i2 == end2);
1333 /* Walk carefully, as both tables may refer to the same register. */
1335 int cmp = cmp_reg(i1, i2);
1336 /* target-specific overrides generic entry. */
1338 /* Ignore registers we trap but don't save. */
1340 if (!copy_reg_to_user(i1, &uind))
1345 /* Ignore registers we trap but don't save. */
1347 if (!copy_reg_to_user(i2, &uind))
1353 if (cmp <= 0 && ++i1 == end1)
1355 if (cmp >= 0 && ++i2 == end2)
1361 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1363 return ARRAY_SIZE(invariant_cp15)
1366 + walk_cp15(vcpu, (u64 __user *)NULL);
1369 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1374 /* Then give them all the invariant registers' indices. */
1375 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1376 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1381 err = walk_cp15(vcpu, uindices);
1386 err = copy_vfp_regids(uindices);
1391 return write_demux_regids(uindices);
1394 void kvm_coproc_table_init(void)
1398 /* Make sure tables are unique and in order. */
1399 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1400 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1402 /* We abuse the reset function to overwrite the table itself. */
1403 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1404 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1407 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1409 * If software reads the Cache Type fields from Ctype1
1410 * upwards, once it has seen a value of 0b000, no caches
1411 * exist at further-out levels of the hierarchy. So, for
1412 * example, if Ctype3 is the first Cache Type field with a
1413 * value of 0b000, the values of Ctype4 to Ctype7 must be
1416 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1417 for (i = 0; i < 7; i++)
1418 if (((cache_levels >> (i*3)) & 7) == 0)
1420 /* Clear all higher bits. */
1421 cache_levels &= (1 << (i*3))-1;
1425 * kvm_reset_coprocs - sets cp15 registers to reset value
1426 * @vcpu: The VCPU pointer
1428 * This function finds the right table above and sets the registers on the
1429 * virtual CPU struct to their architecturally defined reset values.
1431 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1434 const struct coproc_reg *table;
1436 /* Catch someone adding a register without putting in reset entry. */
1437 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1439 /* Generic chip reset first (so target could override). */
1440 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1442 table = get_target_table(vcpu->arch.target, &num);
1443 reset_coproc_regs(vcpu, table, num);
1445 for (num = 1; num < NR_CP15_REGS; num++)
1446 WARN(vcpu_cp15(vcpu, num) == 0x42424242,
1447 "Didn't reset vcpu_cp15(vcpu, %zi)", num);