Merge branch 'socfpga/hw' into next/soc
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61
62 enum ipi_msg_type {
63         IPI_WAKEUP,
64         IPI_TIMER,
65         IPI_RESCHEDULE,
66         IPI_CALL_FUNC,
67         IPI_CALL_FUNC_SINGLE,
68         IPI_CPU_STOP,
69 };
70
71 static DECLARE_COMPLETION(cpu_running);
72
73 static struct smp_operations smp_ops;
74
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77         if (ops)
78                 smp_ops = *ops;
79 };
80
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83         int ret;
84
85         /*
86          * We need to tell the secondary core where to find
87          * its stack and the page tables.
88          */
89         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90         secondary_data.pgdir = virt_to_phys(idmap_pgd);
91         secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92         __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93         outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94
95         /*
96          * Now bring the CPU into our world.
97          */
98         ret = boot_secondary(cpu, idle);
99         if (ret == 0) {
100                 /*
101                  * CPU was successfully started, wait for it
102                  * to come online or time out.
103                  */
104                 wait_for_completion_timeout(&cpu_running,
105                                                  msecs_to_jiffies(1000));
106
107                 if (!cpu_online(cpu)) {
108                         pr_crit("CPU%u: failed to come online\n", cpu);
109                         ret = -EIO;
110                 }
111         } else {
112                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113         }
114
115         secondary_data.stack = NULL;
116         secondary_data.pgdir = 0;
117
118         return ret;
119 }
120
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124         if (smp_ops.smp_init_cpus)
125                 smp_ops.smp_init_cpus();
126 }
127
128 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
129 {
130         if (smp_ops.smp_prepare_cpus)
131                 smp_ops.smp_prepare_cpus(max_cpus);
132 }
133
134 static void __cpuinit platform_secondary_init(unsigned int cpu)
135 {
136         if (smp_ops.smp_secondary_init)
137                 smp_ops.smp_secondary_init(cpu);
138 }
139
140 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
141 {
142         if (smp_ops.smp_boot_secondary)
143                 return smp_ops.smp_boot_secondary(cpu, idle);
144         return -ENOSYS;
145 }
146
147 #ifdef CONFIG_HOTPLUG_CPU
148 static void percpu_timer_stop(void);
149
150 static int platform_cpu_kill(unsigned int cpu)
151 {
152         if (smp_ops.cpu_kill)
153                 return smp_ops.cpu_kill(cpu);
154         return 1;
155 }
156
157 static void platform_cpu_die(unsigned int cpu)
158 {
159         if (smp_ops.cpu_die)
160                 smp_ops.cpu_die(cpu);
161 }
162
163 static int platform_cpu_disable(unsigned int cpu)
164 {
165         if (smp_ops.cpu_disable)
166                 return smp_ops.cpu_disable(cpu);
167
168         /*
169          * By default, allow disabling all CPUs except the first one,
170          * since this is special on a lot of platforms, e.g. because
171          * of clock tick interrupts.
172          */
173         return cpu == 0 ? -EPERM : 0;
174 }
175 /*
176  * __cpu_disable runs on the processor to be shutdown.
177  */
178 int __cpuinit __cpu_disable(void)
179 {
180         unsigned int cpu = smp_processor_id();
181         int ret;
182
183         ret = platform_cpu_disable(cpu);
184         if (ret)
185                 return ret;
186
187         /*
188          * Take this CPU offline.  Once we clear this, we can't return,
189          * and we must not schedule until we're ready to give up the cpu.
190          */
191         set_cpu_online(cpu, false);
192
193         /*
194          * OK - migrate IRQs away from this CPU
195          */
196         migrate_irqs();
197
198         /*
199          * Stop the local timer for this CPU.
200          */
201         percpu_timer_stop();
202
203         /*
204          * Flush user cache and TLB mappings, and then remove this CPU
205          * from the vm mask set of all processes.
206          *
207          * Caches are flushed to the Level of Unification Inner Shareable
208          * to write-back dirty lines to unified caches shared by all CPUs.
209          */
210         flush_cache_louis();
211         local_flush_tlb_all();
212
213         clear_tasks_mm_cpumask(cpu);
214
215         return 0;
216 }
217
218 static DECLARE_COMPLETION(cpu_died);
219
220 /*
221  * called on the thread which is asking for a CPU to be shutdown -
222  * waits until shutdown has completed, or it is timed out.
223  */
224 void __cpuinit __cpu_die(unsigned int cpu)
225 {
226         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227                 pr_err("CPU%u: cpu didn't die\n", cpu);
228                 return;
229         }
230         printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231
232         if (!platform_cpu_kill(cpu))
233                 printk("CPU%u: unable to kill\n", cpu);
234 }
235
236 /*
237  * Called from the idle thread for the CPU which has been shutdown.
238  *
239  * Note that we disable IRQs here, but do not re-enable them
240  * before returning to the caller. This is also the behaviour
241  * of the other hotplug-cpu capable cores, so presumably coming
242  * out of idle fixes this.
243  */
244 void __ref cpu_die(void)
245 {
246         unsigned int cpu = smp_processor_id();
247
248         idle_task_exit();
249
250         local_irq_disable();
251         mb();
252
253         /* Tell __cpu_die() that this CPU is now safe to dispose of */
254         RCU_NONIDLE(complete(&cpu_died));
255
256         /*
257          * actual CPU shutdown procedure is at least platform (if not
258          * CPU) specific.
259          */
260         platform_cpu_die(cpu);
261
262         /*
263          * Do not return to the idle loop - jump back to the secondary
264          * cpu initialisation.  There's some initialisation which needs
265          * to be repeated to undo the effects of taking the CPU offline.
266          */
267         __asm__("mov    sp, %0\n"
268         "       mov     fp, #0\n"
269         "       b       secondary_start_kernel"
270                 :
271                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274
275 /*
276  * Called by both boot and secondaries to move global data into
277  * per-processor storage.
278  */
279 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
280 {
281         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
282
283         cpu_info->loops_per_jiffy = loops_per_jiffy;
284         cpu_info->cpuid = read_cpuid_id();
285
286         store_cpu_topology(cpuid);
287 }
288
289 static void percpu_timer_setup(void);
290
291 /*
292  * This is the secondary CPU boot entry.  We're using this CPUs
293  * idle thread stack, but a set of temporary page tables.
294  */
295 asmlinkage void __cpuinit secondary_start_kernel(void)
296 {
297         struct mm_struct *mm = &init_mm;
298         unsigned int cpu;
299
300         /*
301          * The identity mapping is uncached (strongly ordered), so
302          * switch away from it before attempting any exclusive accesses.
303          */
304         cpu_switch_mm(mm->pgd, mm);
305         enter_lazy_tlb(mm, current);
306         local_flush_tlb_all();
307
308         /*
309          * All kernel threads share the same mm context; grab a
310          * reference and switch to it.
311          */
312         cpu = smp_processor_id();
313         atomic_inc(&mm->mm_count);
314         current->active_mm = mm;
315         cpumask_set_cpu(cpu, mm_cpumask(mm));
316
317         cpu_init();
318
319         printk("CPU%u: Booted secondary processor\n", cpu);
320
321         preempt_disable();
322         trace_hardirqs_off();
323
324         /*
325          * Give the platform a chance to do its own initialisation.
326          */
327         platform_secondary_init(cpu);
328
329         notify_cpu_starting(cpu);
330
331         calibrate_delay();
332
333         smp_store_cpu_info(cpu);
334
335         /*
336          * OK, now it's safe to let the boot CPU continue.  Wait for
337          * the CPU migration code to notice that the CPU is online
338          * before we continue - which happens after __cpu_up returns.
339          */
340         set_cpu_online(cpu, true);
341         complete(&cpu_running);
342
343         /*
344          * Setup the percpu timer for this CPU.
345          */
346         percpu_timer_setup();
347
348         local_irq_enable();
349         local_fiq_enable();
350
351         /*
352          * OK, it's off to the idle thread for us
353          */
354         cpu_idle();
355 }
356
357 void __init smp_cpus_done(unsigned int max_cpus)
358 {
359         int cpu;
360         unsigned long bogosum = 0;
361
362         for_each_online_cpu(cpu)
363                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
364
365         printk(KERN_INFO "SMP: Total of %d processors activated "
366                "(%lu.%02lu BogoMIPS).\n",
367                num_online_cpus(),
368                bogosum / (500000/HZ),
369                (bogosum / (5000/HZ)) % 100);
370
371         hyp_mode_check();
372 }
373
374 void __init smp_prepare_boot_cpu(void)
375 {
376         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
377 }
378
379 void __init smp_prepare_cpus(unsigned int max_cpus)
380 {
381         unsigned int ncores = num_possible_cpus();
382
383         init_cpu_topology();
384
385         smp_store_cpu_info(smp_processor_id());
386
387         /*
388          * are we trying to boot more cores than exist?
389          */
390         if (max_cpus > ncores)
391                 max_cpus = ncores;
392         if (ncores > 1 && max_cpus) {
393                 /*
394                  * Enable the local timer or broadcast device for the
395                  * boot CPU, but only if we have more than one CPU.
396                  */
397                 percpu_timer_setup();
398
399                 /*
400                  * Initialise the present map, which describes the set of CPUs
401                  * actually populated at the present time. A platform should
402                  * re-initialize the map in platform_smp_prepare_cpus() if
403                  * present != possible (e.g. physical hotplug).
404                  */
405                 init_cpu_present(cpu_possible_mask);
406
407                 /*
408                  * Initialise the SCU if there are more than one CPU
409                  * and let them know where to start.
410                  */
411                 platform_smp_prepare_cpus(max_cpus);
412         }
413 }
414
415 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
416
417 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
418 {
419         if (!smp_cross_call)
420                 smp_cross_call = fn;
421 }
422
423 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
424 {
425         smp_cross_call(mask, IPI_CALL_FUNC);
426 }
427
428 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
429 {
430         smp_cross_call(mask, IPI_WAKEUP);
431 }
432
433 void arch_send_call_function_single_ipi(int cpu)
434 {
435         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
436 }
437
438 static const char *ipi_types[NR_IPI] = {
439 #define S(x,s)  [x] = s
440         S(IPI_WAKEUP, "CPU wakeup interrupts"),
441         S(IPI_TIMER, "Timer broadcast interrupts"),
442         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
443         S(IPI_CALL_FUNC, "Function call interrupts"),
444         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
445         S(IPI_CPU_STOP, "CPU stop interrupts"),
446 };
447
448 void show_ipi_list(struct seq_file *p, int prec)
449 {
450         unsigned int cpu, i;
451
452         for (i = 0; i < NR_IPI; i++) {
453                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
454
455                 for_each_online_cpu(cpu)
456                         seq_printf(p, "%10u ",
457                                    __get_irq_stat(cpu, ipi_irqs[i]));
458
459                 seq_printf(p, " %s\n", ipi_types[i]);
460         }
461 }
462
463 u64 smp_irq_stat_cpu(unsigned int cpu)
464 {
465         u64 sum = 0;
466         int i;
467
468         for (i = 0; i < NR_IPI; i++)
469                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
470
471         return sum;
472 }
473
474 /*
475  * Timer (local or broadcast) support
476  */
477 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
478
479 static void ipi_timer(void)
480 {
481         struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
482         evt->event_handler(evt);
483 }
484
485 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
486 static void smp_timer_broadcast(const struct cpumask *mask)
487 {
488         smp_cross_call(mask, IPI_TIMER);
489 }
490 #else
491 #define smp_timer_broadcast     NULL
492 #endif
493
494 static void broadcast_timer_set_mode(enum clock_event_mode mode,
495         struct clock_event_device *evt)
496 {
497 }
498
499 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
500 {
501         evt->name       = "dummy_timer";
502         evt->features   = CLOCK_EVT_FEAT_ONESHOT |
503                           CLOCK_EVT_FEAT_PERIODIC |
504                           CLOCK_EVT_FEAT_DUMMY;
505         evt->rating     = 400;
506         evt->mult       = 1;
507         evt->set_mode   = broadcast_timer_set_mode;
508
509         clockevents_register_device(evt);
510 }
511
512 static struct local_timer_ops *lt_ops;
513
514 #ifdef CONFIG_LOCAL_TIMERS
515 int local_timer_register(struct local_timer_ops *ops)
516 {
517         if (!is_smp() || !setup_max_cpus)
518                 return -ENXIO;
519
520         if (lt_ops)
521                 return -EBUSY;
522
523         lt_ops = ops;
524         return 0;
525 }
526 #endif
527
528 static void __cpuinit percpu_timer_setup(void)
529 {
530         unsigned int cpu = smp_processor_id();
531         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
532
533         evt->cpumask = cpumask_of(cpu);
534         evt->broadcast = smp_timer_broadcast;
535
536         if (!lt_ops || lt_ops->setup(evt))
537                 broadcast_timer_setup(evt);
538 }
539
540 #ifdef CONFIG_HOTPLUG_CPU
541 /*
542  * The generic clock events code purposely does not stop the local timer
543  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
544  * manually here.
545  */
546 static void percpu_timer_stop(void)
547 {
548         unsigned int cpu = smp_processor_id();
549         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
550
551         if (lt_ops)
552                 lt_ops->stop(evt);
553 }
554 #endif
555
556 static DEFINE_RAW_SPINLOCK(stop_lock);
557
558 /*
559  * ipi_cpu_stop - handle IPI from smp_send_stop()
560  */
561 static void ipi_cpu_stop(unsigned int cpu)
562 {
563         if (system_state == SYSTEM_BOOTING ||
564             system_state == SYSTEM_RUNNING) {
565                 raw_spin_lock(&stop_lock);
566                 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
567                 dump_stack();
568                 raw_spin_unlock(&stop_lock);
569         }
570
571         set_cpu_online(cpu, false);
572
573         local_fiq_disable();
574         local_irq_disable();
575
576         while (1)
577                 cpu_relax();
578 }
579
580 /*
581  * Main handler for inter-processor interrupts
582  */
583 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
584 {
585         handle_IPI(ipinr, regs);
586 }
587
588 void handle_IPI(int ipinr, struct pt_regs *regs)
589 {
590         unsigned int cpu = smp_processor_id();
591         struct pt_regs *old_regs = set_irq_regs(regs);
592
593         if (ipinr < NR_IPI)
594                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
595
596         switch (ipinr) {
597         case IPI_WAKEUP:
598                 break;
599
600         case IPI_TIMER:
601                 irq_enter();
602                 ipi_timer();
603                 irq_exit();
604                 break;
605
606         case IPI_RESCHEDULE:
607                 scheduler_ipi();
608                 break;
609
610         case IPI_CALL_FUNC:
611                 irq_enter();
612                 generic_smp_call_function_interrupt();
613                 irq_exit();
614                 break;
615
616         case IPI_CALL_FUNC_SINGLE:
617                 irq_enter();
618                 generic_smp_call_function_single_interrupt();
619                 irq_exit();
620                 break;
621
622         case IPI_CPU_STOP:
623                 irq_enter();
624                 ipi_cpu_stop(cpu);
625                 irq_exit();
626                 break;
627
628         default:
629                 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
630                        cpu, ipinr);
631                 break;
632         }
633         set_irq_regs(old_regs);
634 }
635
636 void smp_send_reschedule(int cpu)
637 {
638         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
639 }
640
641 #ifdef CONFIG_HOTPLUG_CPU
642 static void smp_kill_cpus(cpumask_t *mask)
643 {
644         unsigned int cpu;
645         for_each_cpu(cpu, mask)
646                 platform_cpu_kill(cpu);
647 }
648 #else
649 static void smp_kill_cpus(cpumask_t *mask) { }
650 #endif
651
652 void smp_send_stop(void)
653 {
654         unsigned long timeout;
655         struct cpumask mask;
656
657         cpumask_copy(&mask, cpu_online_mask);
658         cpumask_clear_cpu(smp_processor_id(), &mask);
659         if (!cpumask_empty(&mask))
660                 smp_cross_call(&mask, IPI_CPU_STOP);
661
662         /* Wait up to one second for other CPUs to stop */
663         timeout = USEC_PER_SEC;
664         while (num_online_cpus() > 1 && timeout--)
665                 udelay(1);
666
667         if (num_online_cpus() > 1)
668                 pr_warning("SMP: failed to stop secondary CPUs\n");
669
670         smp_kill_cpus(&mask);
671 }
672
673 /*
674  * not supported here
675  */
676 int setup_profiling_timer(unsigned int multiplier)
677 {
678         return -EINVAL;
679 }
680
681 #ifdef CONFIG_CPU_FREQ
682
683 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
684 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
685 static unsigned long global_l_p_j_ref;
686 static unsigned long global_l_p_j_ref_freq;
687
688 static int cpufreq_callback(struct notifier_block *nb,
689                                         unsigned long val, void *data)
690 {
691         struct cpufreq_freqs *freq = data;
692         int cpu = freq->cpu;
693
694         if (freq->flags & CPUFREQ_CONST_LOOPS)
695                 return NOTIFY_OK;
696
697         if (!per_cpu(l_p_j_ref, cpu)) {
698                 per_cpu(l_p_j_ref, cpu) =
699                         per_cpu(cpu_data, cpu).loops_per_jiffy;
700                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
701                 if (!global_l_p_j_ref) {
702                         global_l_p_j_ref = loops_per_jiffy;
703                         global_l_p_j_ref_freq = freq->old;
704                 }
705         }
706
707         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
708             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
709             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
710                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
711                                                 global_l_p_j_ref_freq,
712                                                 freq->new);
713                 per_cpu(cpu_data, cpu).loops_per_jiffy =
714                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
715                                         per_cpu(l_p_j_ref_freq, cpu),
716                                         freq->new);
717         }
718         return NOTIFY_OK;
719 }
720
721 static struct notifier_block cpufreq_notifier = {
722         .notifier_call  = cpufreq_callback,
723 };
724
725 static int __init register_cpufreq_notifier(void)
726 {
727         return cpufreq_register_notifier(&cpufreq_notifier,
728                                                 CPUFREQ_TRANSITION_NOTIFIER);
729 }
730 core_initcall(register_cpufreq_notifier);
731
732 #endif