Merge https://gitlab.denx.de/u-boot/custodians/u-boot-fsl-qoriq
[platform/kernel/u-boot.git] / arch / arm / cpu / armv8 / fsl-layerscape / mp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2014-2015 Freescale Semiconductor, Inc.
4  */
5
6 #include <common.h>
7 #include <cpu_func.h>
8 #include <image.h>
9 #include <log.h>
10 #include <asm/cache.h>
11 #include <asm/io.h>
12 #include <asm/system.h>
13 #include <asm/arch/mp.h>
14 #include <asm/arch/soc.h>
15 #include <linux/delay.h>
16 #include "cpu.h"
17 #include <asm/arch-fsl-layerscape/soc.h>
18 #include <efi_loader.h>
19
20 DECLARE_GLOBAL_DATA_PTR;
21
22 void *get_spin_tbl_addr(void)
23 {
24         /* the spin table is at the beginning */
25         return secondary_boot_code_start;
26 }
27
28 void update_os_arch_secondary_cores(uint8_t os_arch)
29 {
30         u64 *table = get_spin_tbl_addr();
31         int i;
32
33         for (i = 1; i < CONFIG_MAX_CPUS; i++) {
34                 if (os_arch == IH_ARCH_DEFAULT)
35                         table[i * WORDS_PER_SPIN_TABLE_ENTRY +
36                                 SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_SAME;
37                 else
38                         table[i * WORDS_PER_SPIN_TABLE_ENTRY +
39                                 SPIN_TABLE_ELEM_ARCH_COMP_IDX] = OS_ARCH_DIFF;
40         }
41 }
42
43 #ifdef CONFIG_FSL_LSCH3
44 static void wake_secondary_core_n(int cluster, int core, int cluster_cores)
45 {
46         struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
47         struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
48         u32 mpidr = 0;
49
50         mpidr = ((cluster << 8) | core);
51         /*
52          * mpidr_el1 register value of core which needs to be released
53          * is written to scratchrw[6] register
54          */
55         gur_out32(&gur->scratchrw[6], mpidr);
56         asm volatile("dsb st" : : : "memory");
57         rst->brrl |= 1 << ((cluster * cluster_cores) + core);
58         asm volatile("dsb st" : : : "memory");
59         /*
60          * scratchrw[6] register value is polled
61          * when the value becomes zero, this means that this core is up
62          * and running, next core can be released now
63          */
64         while (gur_in32(&gur->scratchrw[6]) != 0)
65                 ;
66 }
67 #endif
68
69 int fsl_layerscape_wake_seconday_cores(void)
70 {
71         struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
72 #ifdef CONFIG_FSL_LSCH3
73         struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
74         u32 svr, ver, cluster, type;
75         int j = 0, cluster_cores = 0;
76 #elif defined(CONFIG_FSL_LSCH2)
77         struct ccsr_scfg __iomem *scfg = (void *)(CONFIG_SYS_FSL_SCFG_ADDR);
78 #endif
79         u32 cores, cpu_up_mask = 1;
80         int i, timeout = 10;
81         u64 *table;
82 #ifdef CONFIG_EFI_LOADER
83         u64 reloc_addr = U32_MAX;
84         efi_status_t ret;
85 #endif
86
87 #ifdef COUNTER_FREQUENCY_REAL
88         /* update for secondary cores */
89         __real_cntfrq = COUNTER_FREQUENCY_REAL;
90         flush_dcache_range((unsigned long)&__real_cntfrq,
91                            (unsigned long)&__real_cntfrq + 8);
92 #endif
93
94 #ifdef CONFIG_EFI_LOADER
95         /*
96          * EFI will reserve 64kb for its runtime services. This will probably
97          * overlap with our spin table code, which is why we have to relocate
98          * it.
99          * Keep this after the __real_cntfrq update, so we have it when we
100          * copy the complete section here.
101          */
102         ret = efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
103                                  EFI_RESERVED_MEMORY_TYPE,
104                                  efi_size_in_pages(secondary_boot_code_size),
105                                  &reloc_addr);
106         if (ret == EFI_SUCCESS) {
107                 debug("Relocating spin table from %llx to %llx (size %lx)\n",
108                       (u64)secondary_boot_code_start, reloc_addr,
109                       secondary_boot_code_size);
110                 memcpy((void *)reloc_addr, secondary_boot_code_start,
111                        secondary_boot_code_size);
112                 flush_dcache_range(reloc_addr,
113                                    reloc_addr + secondary_boot_code_size);
114
115                 /* set new entry point for secondary cores */
116                 secondary_boot_addr += (void *)reloc_addr -
117                                        secondary_boot_code_start;
118                 flush_dcache_range((unsigned long)&secondary_boot_addr,
119                                    (unsigned long)&secondary_boot_addr + 8);
120
121                 /* this will be used to reserve the memory */
122                 secondary_boot_code_start = (void *)reloc_addr;
123         }
124 #endif
125
126         cores = cpu_mask();
127         /* Clear spin table so that secondary processors
128          * observe the correct value after waking up from wfe.
129          */
130         table = get_spin_tbl_addr();
131         memset(table, 0, CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE);
132         flush_dcache_range((unsigned long)table,
133                            (unsigned long)table +
134                            (CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE));
135
136         debug("Waking secondary cores to start from %lx\n", gd->relocaddr);
137
138 #ifdef CONFIG_FSL_LSCH3
139         gur_out32(&gur->bootlocptrh, (u32)(gd->relocaddr >> 32));
140         gur_out32(&gur->bootlocptrl, (u32)gd->relocaddr);
141
142         svr = gur_in32(&gur->svr);
143         ver = SVR_SOC_VER(svr);
144         if (ver == SVR_LS2080A || ver == SVR_LS2085A) {
145                 gur_out32(&gur->scratchrw[6], 1);
146                 asm volatile("dsb st" : : : "memory");
147                 rst->brrl = cores;
148                 asm volatile("dsb st" : : : "memory");
149         } else {
150                 /*
151                  * Release the cores out of reset one-at-a-time to avoid
152                  * power spikes
153                  */
154                 i = 0;
155                 cluster = in_le32(&gur->tp_cluster[i].lower);
156                 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
157                         type = initiator_type(cluster, j);
158                         if (type &&
159                             TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
160                                 cluster_cores++;
161                 }
162
163                 do {
164                         cluster = in_le32(&gur->tp_cluster[i].lower);
165                         for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
166                                 type = initiator_type(cluster, j);
167                                 if (type &&
168                                     TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
169                                         wake_secondary_core_n(i, j,
170                                                               cluster_cores);
171                         }
172                 i++;
173                 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
174         }
175 #elif defined(CONFIG_FSL_LSCH2)
176         scfg_out32(&scfg->scratchrw[0], (u32)(gd->relocaddr >> 32));
177         scfg_out32(&scfg->scratchrw[1], (u32)gd->relocaddr);
178         asm volatile("dsb st" : : : "memory");
179         gur_out32(&gur->brrl, cores);
180         asm volatile("dsb st" : : : "memory");
181
182         /* Bootup online cores */
183         scfg_out32(&scfg->corebcr, cores);
184 #endif
185         /* This is needed as a precautionary measure.
186          * If some code before this has accidentally  released the secondary
187          * cores then the pre-bootloader code will trap them in a "wfe" unless
188          * the scratchrw[6] is set. In this case we need a sev here to get these
189          * cores moving again.
190          */
191         asm volatile("sev");
192
193         while (timeout--) {
194                 flush_dcache_range((unsigned long)table, (unsigned long)table +
195                                    CONFIG_MAX_CPUS * 64);
196                 for (i = 1; i < CONFIG_MAX_CPUS; i++) {
197                         if (table[i * WORDS_PER_SPIN_TABLE_ENTRY +
198                                         SPIN_TABLE_ELEM_STATUS_IDX])
199                                 cpu_up_mask |= 1 << i;
200                 }
201                 if (hweight32(cpu_up_mask) == hweight32(cores))
202                         break;
203                 udelay(10);
204         }
205         if (timeout <= 0) {
206                 printf("CPU:   Failed to bring up some cores (mask 0x%x)\n",
207                        cores ^ cpu_up_mask);
208                 return 1;
209         }
210         printf("CPU:   %d cores online\n", hweight32(cores));
211
212         return 0;
213 }
214
215 int is_core_valid(unsigned int core)
216 {
217         return !!((1 << core) & cpu_mask());
218 }
219
220 static int is_pos_valid(unsigned int pos)
221 {
222         return !!((1 << pos) & cpu_pos_mask());
223 }
224
225 int is_core_online(u64 cpu_id)
226 {
227         u64 *table = get_spin_tbl_addr();
228         int pos = id_to_core(cpu_id);
229         table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
230         return table[SPIN_TABLE_ELEM_STATUS_IDX] == 1;
231 }
232
233 int cpu_reset(u32 nr)
234 {
235         puts("Feature is not implemented.\n");
236
237         return 0;
238 }
239
240 int cpu_disable(u32 nr)
241 {
242         puts("Feature is not implemented.\n");
243
244         return 0;
245 }
246
247 static int core_to_pos(int nr)
248 {
249         u32 cores = cpu_pos_mask();
250         int i, count = 0;
251
252         if (nr == 0) {
253                 return 0;
254         } else if (nr >= hweight32(cores)) {
255                 puts("Not a valid core number.\n");
256                 return -1;
257         }
258
259         for (i = 1; i < 32; i++) {
260                 if (is_pos_valid(i)) {
261                         count++;
262                         if (count == nr)
263                                 break;
264                 }
265         }
266
267         if (count != nr)
268                 return -1;
269
270         return i;
271 }
272
273 int cpu_status(u32 nr)
274 {
275         u64 *table = get_spin_tbl_addr();
276         int pos;
277
278         if (nr == 0) {
279                 printf("table base @ 0x%p\n", table);
280         } else {
281                 pos = core_to_pos(nr);
282                 if (pos < 0)
283                         return -1;
284                 table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
285                 printf("table @ 0x%p\n", table);
286                 printf("   addr - 0x%016llx\n",
287                        table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX]);
288                 printf("   status   - 0x%016llx\n",
289                        table[SPIN_TABLE_ELEM_STATUS_IDX]);
290                 printf("   lpid  - 0x%016llx\n",
291                        table[SPIN_TABLE_ELEM_LPID_IDX]);
292         }
293
294         return 0;
295 }
296
297 int cpu_release(u32 nr, int argc, char *const argv[])
298 {
299         u64 boot_addr;
300         u64 *table = get_spin_tbl_addr();
301         int pos;
302
303         pos = core_to_pos(nr);
304         if (pos <= 0)
305                 return -1;
306
307         table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
308         boot_addr = simple_strtoull(argv[0], NULL, 16);
309         table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX] = boot_addr;
310         flush_dcache_range((unsigned long)table,
311                            (unsigned long)table + SPIN_TABLE_ELEM_SIZE);
312         asm volatile("dsb st");
313
314         /*
315          * The secondary CPUs polling the spin-table above for a non-zero
316          * value. To save power "wfe" is called. Thus call "sev" here to
317          * wake the CPUs and let them check the spin-table again (see
318          * slave_cpu loop in lowlevel.S)
319          */
320         asm volatile("sev");
321
322         return 0;
323 }