5 * Texas Instruments, <www.ti.com>
7 * Aneesh V <aneesh@ti.com>
9 * See file CREDITS for list of people who contributed to this
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 #include <asm/arch/clocks.h>
31 #include <asm/arch/sys_proto.h>
32 #include <asm/omap_common.h>
33 #include <asm/utils.h>
35 inline u32 emif_num(u32 base)
37 if (base == EMIF1_BASE)
39 else if (base == EMIF2_BASE)
46 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
49 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
51 mr_addr |= cs << EMIF_REG_CS_SHIFT;
52 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
53 if (omap_revision() == OMAP4430_ES2_0)
54 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
56 mr = readl(&emif->emif_lpddr2_mode_reg_data);
57 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
62 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
64 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
66 mr_addr |= cs << EMIF_REG_CS_SHIFT;
67 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
68 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
71 void emif_reset_phy(u32 base)
73 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
76 iodft = readl(&emif->emif_iodft_tlgc);
77 iodft |= EMIF_REG_RESET_PHY_MASK;
78 writel(iodft, &emif->emif_iodft_tlgc);
81 static void do_lpddr2_init(u32 base, u32 cs)
85 /* Wait till device auto initialization is complete */
86 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
88 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
91 * Enough loops assuming a maximum of 2GHz
94 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
95 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
97 * Enable refresh along with writing MR2
98 * Encoding of RL in MR2 is (RL - 2)
100 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
101 set_mr(base, cs, mr_addr, RL_FINAL - 2);
104 static void lpddr2_init(u32 base, const struct emif_regs *regs)
106 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
109 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
112 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
113 * when EMIF_SDRAM_CONFIG register is written
115 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
118 * Set the SDRAM_CONFIG and PHY_CTRL for the
119 * un-locked frequency & default RL
121 writel(regs->sdram_config_init, &emif->emif_sdram_config);
122 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
124 do_lpddr2_init(base, CS0);
125 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
126 do_lpddr2_init(base, CS1);
128 writel(regs->sdram_config, &emif->emif_sdram_config);
129 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
131 /* Enable refresh now */
132 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136 void emif_update_timings(u32 base, const struct emif_regs *regs)
138 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
140 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
141 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
142 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
143 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
144 if (omap_revision() == OMAP4430_ES1_0) {
145 /* ES1 bug EMIF should be in force idle during freq_update */
146 writel(0, &emif->emif_pwr_mgmt_ctrl);
148 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
149 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
151 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
152 writel(regs->zq_config, &emif->emif_zq_config);
153 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
154 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
156 if (omap_revision() == OMAP5430_ES1_0) {
157 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
158 &emif->emif_l3_config);
159 } else if (omap_revision() >= OMAP4460_ES1_0) {
160 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
161 &emif->emif_l3_config);
163 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
164 &emif->emif_l3_config);
168 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
169 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
172 * Organization and refresh requirements for LPDDR2 devices of different
173 * types and densities. Derived from JESD209-2 section 2.4
175 const struct lpddr2_addressing addressing_table[] = {
176 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
177 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
178 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
179 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
180 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
181 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
182 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
183 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
184 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
185 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
186 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
189 static const u32 lpddr2_density_2_size_in_mbytes[] = {
203 * Calculate the period of DDR clock from frequency value and set the
204 * denominator and numerator in global variables for easy access later
206 static void set_ddr_clk_period(u32 freq)
210 * period_in_ns = 10^9/freq
214 cancel_out(T_num, T_den, 200);
219 * Convert time in nano seconds to number of cycles of DDR clock
221 static inline u32 ns_2_cycles(u32 ns)
223 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
227 * ns_2_cycles with the difference that the time passed is 2 times the actual
228 * value(to avoid fractions). The cycles returned is for the original value of
229 * the timing parameter
231 static inline u32 ns_x2_2_cycles(u32 ns)
233 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
237 * Find addressing table index based on the device's type(S2 or S4) and
240 s8 addressing_table_index(u8 type, u8 density, u8 width)
243 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
247 * Look at the way ADDR_TABLE_INDEX* values have been defined
248 * in emif.h compared to LPDDR2_DENSITY_* values
249 * The table is layed out in the increasing order of density
250 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
253 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
254 index = ADDR_TABLE_INDEX1GS2;
255 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
256 index = ADDR_TABLE_INDEX2GS2;
260 debug("emif: addressing table index %d\n", index);
266 * Find the the right timing table from the array of timing
267 * tables of the device using DDR clock frequency
269 static const struct lpddr2_ac_timings *get_timings_table(const struct
270 lpddr2_ac_timings const *const *device_timings,
273 u32 i, temp, freq_nearest;
274 const struct lpddr2_ac_timings *timings = 0;
276 emif_assert(freq <= MAX_LPDDR2_FREQ);
277 emif_assert(device_timings);
280 * Start with the maximum allowed frequency - that is always safe
282 freq_nearest = MAX_LPDDR2_FREQ;
284 * Find the timings table that has the max frequency value:
285 * i. Above or equal to the DDR frequency - safe
286 * ii. The lowest that satisfies condition (i) - optimal
288 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
289 temp = device_timings[i]->max_freq;
290 if ((temp >= freq) && (temp <= freq_nearest)) {
292 timings = device_timings[i];
295 debug("emif: timings table: %d\n", freq_nearest);
300 * Finds the value of emif_sdram_config_reg
301 * All parameters are programmed based on the device on CS0.
302 * If there is a device on CS1, it will be same as that on CS0 or
303 * it will be NVM. We don't support NVM yet.
304 * If cs1_device pointer is NULL it is assumed that there is no device
307 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
308 const struct lpddr2_device_details *cs1_device,
309 const struct lpddr2_addressing *addressing,
314 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
315 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
316 EMIF_REG_IBANK_POS_SHIFT;
318 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
320 config_reg |= RL << EMIF_REG_CL_SHIFT;
322 config_reg |= addressing->row_sz[cs0_device->io_width] <<
323 EMIF_REG_ROWSIZE_SHIFT;
325 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
327 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
328 EMIF_REG_EBANK_SHIFT;
330 config_reg |= addressing->col_sz[cs0_device->io_width] <<
331 EMIF_REG_PAGESIZE_SHIFT;
336 static u32 get_sdram_ref_ctrl(u32 freq,
337 const struct lpddr2_addressing *addressing)
339 u32 ref_ctrl = 0, val = 0, freq_khz;
340 freq_khz = freq / 1000;
342 * refresh rate to be set is 'tREFI * freq in MHz
343 * division by 10000 to account for khz and x10 in t_REFI_us_x10
345 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
346 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
351 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
352 const struct lpddr2_min_tck *min_tck,
353 const struct lpddr2_addressing *addressing)
355 u32 tim1 = 0, val = 0;
356 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
357 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
359 if (addressing->num_banks == BANKS8)
360 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
363 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
365 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
367 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
368 tim1 |= val << EMIF_REG_T_RC_SHIFT;
370 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
371 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
373 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
374 tim1 |= val << EMIF_REG_T_WR_SHIFT;
376 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
377 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
379 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
380 tim1 |= val << EMIF_REG_T_RP_SHIFT;
385 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
386 const struct lpddr2_min_tck *min_tck)
388 u32 tim2 = 0, val = 0;
389 val = max(min_tck->tCKE, timings->tCKE) - 1;
390 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
392 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
393 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
396 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
399 val = ns_2_cycles(timings->tXSR) - 1;
400 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
401 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
403 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
404 tim2 |= val << EMIF_REG_T_XP_SHIFT;
409 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
410 const struct lpddr2_min_tck *min_tck,
411 const struct lpddr2_addressing *addressing)
413 u32 tim3 = 0, val = 0;
414 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
415 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
417 val = ns_2_cycles(timings->tRFCab) - 1;
418 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
420 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
421 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
423 val = ns_2_cycles(timings->tZQCS) - 1;
424 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
426 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
427 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
432 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
433 const struct lpddr2_addressing *addressing,
439 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
440 addressing->t_REFI_us_x10;
443 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
444 addressing->t_REFI_us_x10;
445 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
447 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
449 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
451 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
454 * Assuming that two chipselects have a single calibration resistor
455 * If there are indeed two calibration resistors, then this flag should
456 * be enabled to take advantage of dual calibration feature.
457 * This data should ideally come from board files. But considering
458 * that none of the boards today have calibration resistors per CS,
459 * it would be an unnecessary overhead.
461 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
463 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
465 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
470 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
471 const struct lpddr2_addressing *addressing,
474 u32 alert = 0, interval;
476 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
479 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
481 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
483 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
485 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
487 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
489 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
494 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
496 u32 idle = 0, val = 0;
498 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
500 /*Maximum value in normal conditions - suggested by hw team */
502 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
504 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
509 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
511 u32 phy = 0, val = 0;
513 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
515 if (freq <= 100000000)
516 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
517 else if (freq <= 200000000)
518 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
520 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
521 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
523 /* Other fields are constant magic values. Hardcode them together */
524 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
525 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
530 static u32 get_emif_mem_size(struct emif_device_details *devices)
532 u32 size_mbytes = 0, temp;
537 if (devices->cs0_device_details) {
538 temp = devices->cs0_device_details->density;
539 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
542 if (devices->cs1_device_details) {
543 temp = devices->cs1_device_details->density;
544 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
546 /* convert to bytes */
547 return size_mbytes << 20;
550 /* Gets the encoding corresponding to a given DMM section size */
551 u32 get_dmm_section_size_map(u32 section_size)
554 * Section size mapping:
555 * 0x0: 16-MiB section
556 * 0x1: 32-MiB section
557 * 0x2: 64-MiB section
558 * 0x3: 128-MiB section
559 * 0x4: 256-MiB section
560 * 0x5: 512-MiB section
564 section_size >>= 24; /* divide by 16 MB */
565 return log_2_n_round_down(section_size);
568 static void emif_calculate_regs(
569 const struct emif_device_details *emif_dev_details,
570 u32 freq, struct emif_regs *regs)
573 const struct lpddr2_addressing *addressing;
574 const struct lpddr2_ac_timings *timings;
575 const struct lpddr2_min_tck *min_tck;
576 const struct lpddr2_device_details *cs0_dev_details =
577 emif_dev_details->cs0_device_details;
578 const struct lpddr2_device_details *cs1_dev_details =
579 emif_dev_details->cs1_device_details;
580 const struct lpddr2_device_timings *cs0_dev_timings =
581 emif_dev_details->cs0_device_timings;
583 emif_assert(emif_dev_details);
586 * You can not have a device on CS1 without one on CS0
587 * So configuring EMIF without a device on CS0 doesn't
590 emif_assert(cs0_dev_details);
591 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
593 * If there is a device on CS1 it should be same type as CS0
594 * (or NVM. But NVM is not supported in this driver yet)
596 emif_assert((cs1_dev_details == NULL) ||
597 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
598 (cs0_dev_details->type == cs1_dev_details->type));
599 emif_assert(freq <= MAX_LPDDR2_FREQ);
601 set_ddr_clk_period(freq);
604 * The device on CS0 is used for all timing calculations
605 * There is only one set of registers for timings per EMIF. So, if the
606 * second CS(CS1) has a device, it should have the same timings as the
609 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
610 emif_assert(timings);
611 min_tck = cs0_dev_timings->min_tck;
613 temp = addressing_table_index(cs0_dev_details->type,
614 cs0_dev_details->density,
615 cs0_dev_details->io_width);
617 emif_assert((temp >= 0));
618 addressing = &(addressing_table[temp]);
619 emif_assert(addressing);
621 sys_freq = get_sys_clk_freq();
623 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
625 addressing, RL_BOOT);
627 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
629 addressing, RL_FINAL);
631 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
633 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
635 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
637 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
639 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
641 regs->temp_alert_config =
642 get_temp_alert_config(cs1_dev_details, addressing, 0);
644 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
645 LPDDR2_VOLTAGE_STABLE);
647 regs->emif_ddr_phy_ctlr_1_init =
648 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
650 regs->emif_ddr_phy_ctlr_1 =
651 get_ddr_phy_ctrl_1(freq, RL_FINAL);
655 print_timing_reg(regs->sdram_config_init);
656 print_timing_reg(regs->sdram_config);
657 print_timing_reg(regs->ref_ctrl);
658 print_timing_reg(regs->sdram_tim1);
659 print_timing_reg(regs->sdram_tim2);
660 print_timing_reg(regs->sdram_tim3);
661 print_timing_reg(regs->read_idle_ctrl);
662 print_timing_reg(regs->temp_alert_config);
663 print_timing_reg(regs->zq_config);
664 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
665 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
667 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
669 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
670 const char *get_lpddr2_type(u8 type_id)
682 const char *get_lpddr2_io_width(u8 width_id)
685 case LPDDR2_IO_WIDTH_8:
687 case LPDDR2_IO_WIDTH_16:
689 case LPDDR2_IO_WIDTH_32:
696 const char *get_lpddr2_manufacturer(u32 manufacturer)
698 switch (manufacturer) {
699 case LPDDR2_MANUFACTURER_SAMSUNG:
701 case LPDDR2_MANUFACTURER_QIMONDA:
703 case LPDDR2_MANUFACTURER_ELPIDA:
705 case LPDDR2_MANUFACTURER_ETRON:
707 case LPDDR2_MANUFACTURER_NANYA:
709 case LPDDR2_MANUFACTURER_HYNIX:
711 case LPDDR2_MANUFACTURER_MOSEL:
713 case LPDDR2_MANUFACTURER_WINBOND:
715 case LPDDR2_MANUFACTURER_ESMT:
717 case LPDDR2_MANUFACTURER_SPANSION:
719 case LPDDR2_MANUFACTURER_SST:
721 case LPDDR2_MANUFACTURER_ZMOS:
723 case LPDDR2_MANUFACTURER_INTEL:
725 case LPDDR2_MANUFACTURER_NUMONYX:
727 case LPDDR2_MANUFACTURER_MICRON:
734 static void display_sdram_details(u32 emif_nr, u32 cs,
735 struct lpddr2_device_details *device)
738 const char *type_str;
739 char density_str[10];
742 debug("EMIF%d CS%d\t", emif_nr, cs);
749 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
750 type_str = get_lpddr2_type(device->type);
752 density = lpddr2_density_2_size_in_mbytes[device->density];
753 if ((density / 1024 * 1024) == density) {
755 sprintf(density_str, "%d GB", density);
757 sprintf(density_str, "%d MB", density);
758 if (mfg_str && type_str)
759 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
762 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
763 struct lpddr2_device_details *lpddr2_device)
767 mr = get_mr(base, cs, LPDDR2_MR0);
769 /* Mode register value bigger than 8 bit */
773 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
778 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
781 /* DNV supported - But DNV is only supported for NVM */
785 mr = get_mr(base, cs, LPDDR2_MR4);
787 /* Mode register value bigger than 8 bit */
791 mr = get_mr(base, cs, LPDDR2_MR5);
793 /* Mode register value bigger than 8 bit */
797 if (!get_lpddr2_manufacturer(mr)) {
798 /* Manufacturer not identified */
801 lpddr2_device->manufacturer = mr;
803 mr = get_mr(base, cs, LPDDR2_MR6);
805 /* Mode register value bigger than 8 bit */
809 mr = get_mr(base, cs, LPDDR2_MR7);
811 /* Mode register value bigger than 8 bit */
815 mr = get_mr(base, cs, LPDDR2_MR8);
817 /* Mode register value bigger than 8 bit */
821 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
822 if (!get_lpddr2_type(temp)) {
826 lpddr2_device->type = temp;
828 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
829 if (temp > LPDDR2_DENSITY_32Gb) {
830 /* Density not supported */
833 lpddr2_device->density = temp;
835 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
836 if (!get_lpddr2_io_width(temp)) {
837 /* IO width unsupported value */
840 lpddr2_device->io_width = temp;
843 * If all the above tests pass we should
844 * have a device on this chip-select
849 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
850 struct lpddr2_device_details *lpddr2_dev_details)
853 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
855 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
857 if (!lpddr2_dev_details)
860 /* Do the minimum init for mode register accesses */
861 if (!running_from_sdram()) {
862 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
863 writel(phy, &emif->emif_ddr_phy_ctrl_1);
866 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
869 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
871 return lpddr2_dev_details;
873 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
875 static void do_sdram_init(u32 base)
877 const struct emif_regs *regs;
878 u32 in_sdram, emif_nr;
880 debug(">>do_sdram_init() %x\n", base);
882 in_sdram = running_from_sdram();
883 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
885 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
886 emif_get_reg_dump(emif_nr, ®s);
888 debug("EMIF: reg dump not provided\n");
893 * The user has not provided the register values. We need to
894 * calculate it based on the timings and the DDR frequency
896 struct emif_device_details dev_details;
897 struct emif_regs calculated_regs;
900 * Get device details:
901 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
902 * - Obtained from user otherwise
904 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
905 emif_reset_phy(base);
906 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
908 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
910 emif_reset_phy(base);
912 /* Return if no devices on this EMIF */
913 if (!dev_details.cs0_device_details &&
914 !dev_details.cs1_device_details) {
915 emif_sizes[emif_nr - 1] = 0;
920 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
923 * Get device timings:
924 * - Default timings specified by JESD209-2 if
925 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
926 * - Obtained from user otherwise
928 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
929 &dev_details.cs1_device_timings);
931 /* Calculate the register values */
932 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
933 regs = &calculated_regs;
934 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
937 * Initializing the LPDDR2 device can not happen from SDRAM.
938 * Changing the timing registers in EMIF can happen(going from one
942 lpddr2_init(base, regs);
944 /* Write to the shadow registers */
945 emif_update_timings(base, regs);
947 debug("<<do_sdram_init() %x\n", base);
950 void emif_post_init_config(u32 base)
952 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
953 u32 omap_rev = omap_revision();
955 if (omap_rev == OMAP5430_ES1_0)
958 /* reset phy on ES2.0 */
959 if (omap_rev == OMAP4430_ES2_0)
960 emif_reset_phy(base);
962 /* Put EMIF back in smart idle on ES1.0 */
963 if (omap_rev == OMAP4430_ES1_0)
964 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
967 void dmm_init(u32 base)
969 const struct dmm_lisa_map_regs *lisa_map_regs;
971 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
972 emif_get_dmm_regs(&lisa_map_regs);
974 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
975 u32 section_cnt, sys_addr;
976 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
980 sys_addr = CONFIG_SYS_SDRAM_BASE;
981 emif1_size = emif_sizes[0];
982 emif2_size = emif_sizes[1];
983 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
985 if (!emif1_size && !emif2_size)
988 /* symmetric interleaved section */
989 if (emif1_size && emif2_size) {
990 mapped_size = min(emif1_size, emif2_size);
991 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
992 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
994 section_map |= (sys_addr >> 24) <<
996 section_map |= get_dmm_section_size_map(mapped_size * 2)
997 << EMIF_SYS_SIZE_SHIFT;
998 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
999 emif1_size -= mapped_size;
1000 emif2_size -= mapped_size;
1001 sys_addr += (mapped_size * 2);
1006 * Single EMIF section(we can have a maximum of 1 single EMIF
1007 * section- either EMIF1 or EMIF2 or none, but not both)
1010 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1011 section_map |= get_dmm_section_size_map(emif1_size)
1012 << EMIF_SYS_SIZE_SHIFT;
1014 section_map |= (mapped_size >> 24) <<
1015 EMIF_SDRC_ADDR_SHIFT;
1017 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1021 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1022 section_map |= get_dmm_section_size_map(emif2_size) <<
1023 EMIF_SYS_SIZE_SHIFT;
1025 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1027 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1031 if (section_cnt == 2) {
1032 /* Only 1 section - either symmetric or single EMIF */
1033 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1034 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1035 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1037 /* 2 sections - 1 symmetric, 1 single EMIF */
1038 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1039 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1042 /* TRAP for invalid TILER mappings in section 0 */
1043 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1045 lisa_map_regs = &lis_map_regs_calculated;
1047 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1048 (struct dmm_lisa_map_regs *)base;
1050 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1051 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1052 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1053 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1055 writel(lisa_map_regs->dmm_lisa_map_3,
1056 &hw_lisa_map_regs->dmm_lisa_map_3);
1057 writel(lisa_map_regs->dmm_lisa_map_2,
1058 &hw_lisa_map_regs->dmm_lisa_map_2);
1059 writel(lisa_map_regs->dmm_lisa_map_1,
1060 &hw_lisa_map_regs->dmm_lisa_map_1);
1061 writel(lisa_map_regs->dmm_lisa_map_0,
1062 &hw_lisa_map_regs->dmm_lisa_map_0);
1064 if (omap_revision() >= OMAP4460_ES1_0) {
1066 (struct dmm_lisa_map_regs *)MA_BASE;
1068 writel(lisa_map_regs->dmm_lisa_map_3,
1069 &hw_lisa_map_regs->dmm_lisa_map_3);
1070 writel(lisa_map_regs->dmm_lisa_map_2,
1071 &hw_lisa_map_regs->dmm_lisa_map_2);
1072 writel(lisa_map_regs->dmm_lisa_map_1,
1073 &hw_lisa_map_regs->dmm_lisa_map_1);
1074 writel(lisa_map_regs->dmm_lisa_map_0,
1075 &hw_lisa_map_regs->dmm_lisa_map_0);
1080 * SDRAM initialization:
1081 * SDRAM initialization has two parts:
1082 * 1. Configuring the SDRAM device
1083 * 2. Update the AC timings related parameters in the EMIF module
1084 * (1) should be done only once and should not be done while we are
1085 * running from SDRAM.
1086 * (2) can and should be done more than once if OPP changes.
1087 * Particularly, this may be needed when we boot without SPL and
1088 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1089 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1090 * the frequency. So,
1091 * Doing (1) and (2) makes sense - first time initialization
1092 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1093 * Doing (1) and not (2) doen't make sense
1094 * See do_sdram_init() for the details
1096 void sdram_init(void)
1098 u32 in_sdram, size_prog, size_detect;
1100 debug(">>sdram_init()\n");
1102 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1105 in_sdram = running_from_sdram();
1106 debug("in_sdram = %d\n", in_sdram);
1109 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1112 do_sdram_init(EMIF1_BASE);
1113 do_sdram_init(EMIF2_BASE);
1117 emif_post_init_config(EMIF1_BASE);
1118 emif_post_init_config(EMIF2_BASE);
1121 /* for the shadow registers to take effect */
1124 /* Do some testing after the init */
1126 size_prog = omap_sdram_size();
1127 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1129 /* Compare with the size programmed */
1130 if (size_detect != size_prog) {
1131 printf("SDRAM: identified size not same as expected"
1132 " size identified: %x expected: %x\n",
1136 debug("get_ram_size() successful");
1139 debug("<<sdram_init()\n");