Merge branch 'master' of git://git.denx.de/u-boot-mmc
[platform/kernel/u-boot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 /*
54  * Get SDRAM type connected to EMIF.
55  * Assuming similar SDRAM parts are connected to both EMIF's
56  * which is typically the case. So it is sufficient to get
57  * SDRAM type from EMIF1.
58  */
59 u32 emif_sdram_type()
60 {
61         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
62
63         return (readl(&emif->emif_sdram_config) &
64                 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
65 }
66
67 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
68 {
69         u32 mr;
70         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
71
72         mr_addr |= cs << EMIF_REG_CS_SHIFT;
73         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
74         if (omap_revision() == OMAP4430_ES2_0)
75                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
76         else
77                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
78         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
79               cs, mr_addr, mr);
80         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
81             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
82             ((mr & 0xff000000) >> 24) == (mr & 0xff))
83                 return mr & 0xff;
84         else
85                 return mr;
86 }
87
88 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
89 {
90         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
91
92         mr_addr |= cs << EMIF_REG_CS_SHIFT;
93         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
94         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
95 }
96
97 void emif_reset_phy(u32 base)
98 {
99         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
100         u32 iodft;
101
102         iodft = readl(&emif->emif_iodft_tlgc);
103         iodft |= EMIF_REG_RESET_PHY_MASK;
104         writel(iodft, &emif->emif_iodft_tlgc);
105 }
106
107 static void do_lpddr2_init(u32 base, u32 cs)
108 {
109         u32 mr_addr;
110         const struct lpddr2_mr_regs *mr_regs;
111
112         get_lpddr2_mr_regs(&mr_regs);
113         /* Wait till device auto initialization is complete */
114         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
115                 ;
116         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
117         /*
118          * tZQINIT = 1 us
119          * Enough loops assuming a maximum of 2GHz
120          */
121
122         sdelay(2000);
123
124         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
125         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
126
127         /*
128          * Enable refresh along with writing MR2
129          * Encoding of RL in MR2 is (RL - 2)
130          */
131         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
132         set_mr(base, cs, mr_addr, mr_regs->mr2);
133
134         if (mr_regs->mr3 > 0)
135                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
136 }
137
138 static void lpddr2_init(u32 base, const struct emif_regs *regs)
139 {
140         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
141
142         /* Not NVM */
143         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
144
145         /*
146          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
147          * when EMIF_SDRAM_CONFIG register is written
148          */
149         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
150
151         /*
152          * Set the SDRAM_CONFIG and PHY_CTRL for the
153          * un-locked frequency & default RL
154          */
155         writel(regs->sdram_config_init, &emif->emif_sdram_config);
156         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
157
158         do_ext_phy_settings(base, regs);
159
160         do_lpddr2_init(base, CS0);
161         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
162                 do_lpddr2_init(base, CS1);
163
164         writel(regs->sdram_config, &emif->emif_sdram_config);
165         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
166
167         /* Enable refresh now */
168         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
169
170         }
171
172 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
173 {
174 }
175
176 void emif_update_timings(u32 base, const struct emif_regs *regs)
177 {
178         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
179
180         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
181         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
182         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
183         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
184         if (omap_revision() == OMAP4430_ES1_0) {
185                 /* ES1 bug EMIF should be in force idle during freq_update */
186                 writel(0, &emif->emif_pwr_mgmt_ctrl);
187         } else {
188                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
189                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
190         }
191         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
192         writel(regs->zq_config, &emif->emif_zq_config);
193         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
194         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
195
196         if ((omap_revision() >= OMAP5430_ES1_0) ||
197                                 (omap_revision() == DRA752_ES1_0)) {
198                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
199                         &emif->emif_l3_config);
200         } else if (omap_revision() >= OMAP4460_ES1_0) {
201                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
202                         &emif->emif_l3_config);
203         } else {
204                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
205                         &emif->emif_l3_config);
206         }
207 }
208
209 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
210 {
211         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
212
213         /* keep sdram in self-refresh */
214         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
215                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
216         __udelay(130);
217
218         /*
219          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
220          * Invert clock adds an additional half cycle delay on the
221          * command interface.  The additional half cycle, is usually
222          * meant to enable leveling in the situation that DQS is later
223          * than CK on the board.It also helps provide some additional
224          * margin for leveling.
225          */
226         writel(regs->emif_ddr_phy_ctlr_1,
227                &emif->emif_ddr_phy_ctrl_1);
228
229         writel(regs->emif_ddr_phy_ctlr_1,
230                &emif->emif_ddr_phy_ctrl_1_shdw);
231         __udelay(130);
232
233         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
234                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
235
236         /* Launch Full leveling */
237         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
238
239         /* Wait till full leveling is complete */
240         readl(&emif->emif_rd_wr_lvl_ctl);
241               __udelay(130);
242
243         /* Read data eye leveling no of samples */
244         config_data_eye_leveling_samples(base);
245
246         /*
247          * Launch 8 incremental WR_LVL- to compensate for
248          * PHY limitation.
249          */
250         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
251                &emif->emif_rd_wr_lvl_ctl);
252
253         __udelay(130);
254
255         /* Launch Incremental leveling */
256         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
257                __udelay(130);
258 }
259
260 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
261 {
262         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
263
264         u32 fifo_reg;
265
266         fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_1);
267         writel(fifo_reg | 0x00000100,
268                &emif->emif_ddr_fifo_misaligned_clear_1);
269
270         fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_2);
271         writel(fifo_reg | 0x00000100,
272                &emif->emif_ddr_fifo_misaligned_clear_2);
273
274         /* Launch Full leveling */
275         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
276
277         /* Wait till full leveling is complete */
278         readl(&emif->emif_rd_wr_lvl_ctl);
279               __udelay(130);
280
281         /* Read data eye leveling no of samples */
282         config_data_eye_leveling_samples(base);
283
284         /*
285          * Disable leveling. This is because if leveling is kept
286          * enabled, then PHY triggers a false leveling during
287          * EMIF-idle scenario which results in wrong delay
288          * values getting updated. After this the EMIF becomes
289          * unaccessible. So disable it after the first time
290          */
291         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
292 }
293
294 static void ddr3_leveling(u32 base, const struct emif_regs *regs)
295 {
296         if (is_omap54xx())
297                 omap5_ddr3_leveling(base, regs);
298         else
299                 dra7_ddr3_leveling(base, regs);
300 }
301
302 static void ddr3_init(u32 base, const struct emif_regs *regs)
303 {
304         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
305
306         /*
307          * Set SDRAM_CONFIG and PHY control registers to locked frequency
308          * and RL =7. As the default values of the Mode Registers are not
309          * defined, contents of mode Registers must be fully initialized.
310          * H/W takes care of this initialization
311          */
312         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
313
314         /* Update timing registers */
315         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
316         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
317         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
318
319         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
320         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
321
322         /*
323          * The same sequence should work on OMAP5432 as well. But strange that
324          * it is not working
325          */
326         if (omap_revision() == DRA752_ES1_0) {
327                 do_ext_phy_settings(base, regs);
328                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
329                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
330         } else {
331                 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
332                 writel(regs->sdram_config_init, &emif->emif_sdram_config);
333                 do_ext_phy_settings(base, regs);
334         }
335
336         /* enable leveling */
337         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
338
339         ddr3_leveling(base, regs);
340 }
341
342 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
343 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
344
345 /*
346  * Organization and refresh requirements for LPDDR2 devices of different
347  * types and densities. Derived from JESD209-2 section 2.4
348  */
349 const struct lpddr2_addressing addressing_table[] = {
350         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
351         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
352         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
353         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
354         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
355         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
356         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
357         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
358         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
359         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
360         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
361 };
362
363 static const u32 lpddr2_density_2_size_in_mbytes[] = {
364         8,                      /* 64Mb */
365         16,                     /* 128Mb */
366         32,                     /* 256Mb */
367         64,                     /* 512Mb */
368         128,                    /* 1Gb   */
369         256,                    /* 2Gb   */
370         512,                    /* 4Gb   */
371         1024,                   /* 8Gb   */
372         2048,                   /* 16Gb  */
373         4096                    /* 32Gb  */
374 };
375
376 /*
377  * Calculate the period of DDR clock from frequency value and set the
378  * denominator and numerator in global variables for easy access later
379  */
380 static void set_ddr_clk_period(u32 freq)
381 {
382         /*
383          * period = 1/freq
384          * period_in_ns = 10^9/freq
385          */
386         *T_num = 1000000000;
387         *T_den = freq;
388         cancel_out(T_num, T_den, 200);
389
390 }
391
392 /*
393  * Convert time in nano seconds to number of cycles of DDR clock
394  */
395 static inline u32 ns_2_cycles(u32 ns)
396 {
397         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
398 }
399
400 /*
401  * ns_2_cycles with the difference that the time passed is 2 times the actual
402  * value(to avoid fractions). The cycles returned is for the original value of
403  * the timing parameter
404  */
405 static inline u32 ns_x2_2_cycles(u32 ns)
406 {
407         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
408 }
409
410 /*
411  * Find addressing table index based on the device's type(S2 or S4) and
412  * density
413  */
414 s8 addressing_table_index(u8 type, u8 density, u8 width)
415 {
416         u8 index;
417         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
418                 return -1;
419
420         /*
421          * Look at the way ADDR_TABLE_INDEX* values have been defined
422          * in emif.h compared to LPDDR2_DENSITY_* values
423          * The table is layed out in the increasing order of density
424          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
425          * at the end
426          */
427         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
428                 index = ADDR_TABLE_INDEX1GS2;
429         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
430                 index = ADDR_TABLE_INDEX2GS2;
431         else
432                 index = density;
433
434         debug("emif: addressing table index %d\n", index);
435
436         return index;
437 }
438
439 /*
440  * Find the the right timing table from the array of timing
441  * tables of the device using DDR clock frequency
442  */
443 static const struct lpddr2_ac_timings *get_timings_table(const struct
444                         lpddr2_ac_timings const *const *device_timings,
445                         u32 freq)
446 {
447         u32 i, temp, freq_nearest;
448         const struct lpddr2_ac_timings *timings = 0;
449
450         emif_assert(freq <= MAX_LPDDR2_FREQ);
451         emif_assert(device_timings);
452
453         /*
454          * Start with the maximum allowed frequency - that is always safe
455          */
456         freq_nearest = MAX_LPDDR2_FREQ;
457         /*
458          * Find the timings table that has the max frequency value:
459          *   i.  Above or equal to the DDR frequency - safe
460          *   ii. The lowest that satisfies condition (i) - optimal
461          */
462         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
463                 temp = device_timings[i]->max_freq;
464                 if ((temp >= freq) && (temp <= freq_nearest)) {
465                         freq_nearest = temp;
466                         timings = device_timings[i];
467                 }
468         }
469         debug("emif: timings table: %d\n", freq_nearest);
470         return timings;
471 }
472
473 /*
474  * Finds the value of emif_sdram_config_reg
475  * All parameters are programmed based on the device on CS0.
476  * If there is a device on CS1, it will be same as that on CS0 or
477  * it will be NVM. We don't support NVM yet.
478  * If cs1_device pointer is NULL it is assumed that there is no device
479  * on CS1
480  */
481 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
482                                 const struct lpddr2_device_details *cs1_device,
483                                 const struct lpddr2_addressing *addressing,
484                                 u8 RL)
485 {
486         u32 config_reg = 0;
487
488         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
489         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
490                         EMIF_REG_IBANK_POS_SHIFT;
491
492         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
493
494         config_reg |= RL << EMIF_REG_CL_SHIFT;
495
496         config_reg |= addressing->row_sz[cs0_device->io_width] <<
497                         EMIF_REG_ROWSIZE_SHIFT;
498
499         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
500
501         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
502                         EMIF_REG_EBANK_SHIFT;
503
504         config_reg |= addressing->col_sz[cs0_device->io_width] <<
505                         EMIF_REG_PAGESIZE_SHIFT;
506
507         return config_reg;
508 }
509
510 static u32 get_sdram_ref_ctrl(u32 freq,
511                               const struct lpddr2_addressing *addressing)
512 {
513         u32 ref_ctrl = 0, val = 0, freq_khz;
514         freq_khz = freq / 1000;
515         /*
516          * refresh rate to be set is 'tREFI * freq in MHz
517          * division by 10000 to account for khz and x10 in t_REFI_us_x10
518          */
519         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
520         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
521
522         return ref_ctrl;
523 }
524
525 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
526                                const struct lpddr2_min_tck *min_tck,
527                                const struct lpddr2_addressing *addressing)
528 {
529         u32 tim1 = 0, val = 0;
530         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
531         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
532
533         if (addressing->num_banks == BANKS8)
534                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
535                                                         (4 * (*T_num)) - 1;
536         else
537                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
538
539         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
540
541         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
542         tim1 |= val << EMIF_REG_T_RC_SHIFT;
543
544         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
545         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
546
547         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
548         tim1 |= val << EMIF_REG_T_WR_SHIFT;
549
550         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
551         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
552
553         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
554         tim1 |= val << EMIF_REG_T_RP_SHIFT;
555
556         return tim1;
557 }
558
559 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
560                                const struct lpddr2_min_tck *min_tck)
561 {
562         u32 tim2 = 0, val = 0;
563         val = max(min_tck->tCKE, timings->tCKE) - 1;
564         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
565
566         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
567         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
568
569         /*
570          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
571          * same value
572          */
573         val = ns_2_cycles(timings->tXSR) - 1;
574         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
575         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
576
577         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
578         tim2 |= val << EMIF_REG_T_XP_SHIFT;
579
580         return tim2;
581 }
582
583 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
584                                const struct lpddr2_min_tck *min_tck,
585                                const struct lpddr2_addressing *addressing)
586 {
587         u32 tim3 = 0, val = 0;
588         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
589         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
590
591         val = ns_2_cycles(timings->tRFCab) - 1;
592         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
593
594         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
595         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
596
597         val = ns_2_cycles(timings->tZQCS) - 1;
598         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
599
600         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
601         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
602
603         return tim3;
604 }
605
606 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
607                              const struct lpddr2_addressing *addressing,
608                              u8 volt_ramp)
609 {
610         u32 zq = 0, val = 0;
611         if (volt_ramp)
612                 val =
613                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
614                     addressing->t_REFI_us_x10;
615         else
616                 val =
617                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
618                     addressing->t_REFI_us_x10;
619         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
620
621         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
622
623         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
624
625         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
626
627         /*
628          * Assuming that two chipselects have a single calibration resistor
629          * If there are indeed two calibration resistors, then this flag should
630          * be enabled to take advantage of dual calibration feature.
631          * This data should ideally come from board files. But considering
632          * that none of the boards today have calibration resistors per CS,
633          * it would be an unnecessary overhead.
634          */
635         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
636
637         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
638
639         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
640
641         return zq;
642 }
643
644 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
645                                  const struct lpddr2_addressing *addressing,
646                                  u8 is_derated)
647 {
648         u32 alert = 0, interval;
649         interval =
650             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
651         if (is_derated)
652                 interval *= 4;
653         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
654
655         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
656
657         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
658
659         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
660
661         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
662
663         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
664
665         return alert;
666 }
667
668 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
669 {
670         u32 idle = 0, val = 0;
671         if (volt_ramp)
672                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
673         else
674                 /*Maximum value in normal conditions - suggested by hw team */
675                 val = 0x1FF;
676         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
677
678         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
679
680         return idle;
681 }
682
683 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
684 {
685         u32 phy = 0, val = 0;
686
687         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
688
689         if (freq <= 100000000)
690                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
691         else if (freq <= 200000000)
692                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
693         else
694                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
695         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
696
697         /* Other fields are constant magic values. Hardcode them together */
698         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
699                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
700
701         return phy;
702 }
703
704 static u32 get_emif_mem_size(u32 base)
705 {
706         u32 size_mbytes = 0, temp;
707         struct emif_device_details dev_details;
708         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
709         u32 emif_nr = emif_num(base);
710
711         emif_reset_phy(base);
712         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
713                                                 &cs0_dev_details);
714         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
715                                                 &cs1_dev_details);
716         emif_reset_phy(base);
717
718         if (dev_details.cs0_device_details) {
719                 temp = dev_details.cs0_device_details->density;
720                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
721         }
722
723         if (dev_details.cs1_device_details) {
724                 temp = dev_details.cs1_device_details->density;
725                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
726         }
727         /* convert to bytes */
728         return size_mbytes << 20;
729 }
730
731 /* Gets the encoding corresponding to a given DMM section size */
732 u32 get_dmm_section_size_map(u32 section_size)
733 {
734         /*
735          * Section size mapping:
736          * 0x0: 16-MiB section
737          * 0x1: 32-MiB section
738          * 0x2: 64-MiB section
739          * 0x3: 128-MiB section
740          * 0x4: 256-MiB section
741          * 0x5: 512-MiB section
742          * 0x6: 1-GiB section
743          * 0x7: 2-GiB section
744          */
745         section_size >>= 24; /* divide by 16 MB */
746         return log_2_n_round_down(section_size);
747 }
748
749 static void emif_calculate_regs(
750                 const struct emif_device_details *emif_dev_details,
751                 u32 freq, struct emif_regs *regs)
752 {
753         u32 temp, sys_freq;
754         const struct lpddr2_addressing *addressing;
755         const struct lpddr2_ac_timings *timings;
756         const struct lpddr2_min_tck *min_tck;
757         const struct lpddr2_device_details *cs0_dev_details =
758                                         emif_dev_details->cs0_device_details;
759         const struct lpddr2_device_details *cs1_dev_details =
760                                         emif_dev_details->cs1_device_details;
761         const struct lpddr2_device_timings *cs0_dev_timings =
762                                         emif_dev_details->cs0_device_timings;
763
764         emif_assert(emif_dev_details);
765         emif_assert(regs);
766         /*
767          * You can not have a device on CS1 without one on CS0
768          * So configuring EMIF without a device on CS0 doesn't
769          * make sense
770          */
771         emif_assert(cs0_dev_details);
772         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
773         /*
774          * If there is a device on CS1 it should be same type as CS0
775          * (or NVM. But NVM is not supported in this driver yet)
776          */
777         emif_assert((cs1_dev_details == NULL) ||
778                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
779                     (cs0_dev_details->type == cs1_dev_details->type));
780         emif_assert(freq <= MAX_LPDDR2_FREQ);
781
782         set_ddr_clk_period(freq);
783
784         /*
785          * The device on CS0 is used for all timing calculations
786          * There is only one set of registers for timings per EMIF. So, if the
787          * second CS(CS1) has a device, it should have the same timings as the
788          * device on CS0
789          */
790         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
791         emif_assert(timings);
792         min_tck = cs0_dev_timings->min_tck;
793
794         temp = addressing_table_index(cs0_dev_details->type,
795                                       cs0_dev_details->density,
796                                       cs0_dev_details->io_width);
797
798         emif_assert((temp >= 0));
799         addressing = &(addressing_table[temp]);
800         emif_assert(addressing);
801
802         sys_freq = get_sys_clk_freq();
803
804         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
805                                                         cs1_dev_details,
806                                                         addressing, RL_BOOT);
807
808         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
809                                                 cs1_dev_details,
810                                                 addressing, RL_FINAL);
811
812         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
813
814         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
815
816         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
817
818         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
819
820         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
821
822         regs->temp_alert_config =
823             get_temp_alert_config(cs1_dev_details, addressing, 0);
824
825         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
826                                             LPDDR2_VOLTAGE_STABLE);
827
828         regs->emif_ddr_phy_ctlr_1_init =
829                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
830
831         regs->emif_ddr_phy_ctlr_1 =
832                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
833
834         regs->freq = freq;
835
836         print_timing_reg(regs->sdram_config_init);
837         print_timing_reg(regs->sdram_config);
838         print_timing_reg(regs->ref_ctrl);
839         print_timing_reg(regs->sdram_tim1);
840         print_timing_reg(regs->sdram_tim2);
841         print_timing_reg(regs->sdram_tim3);
842         print_timing_reg(regs->read_idle_ctrl);
843         print_timing_reg(regs->temp_alert_config);
844         print_timing_reg(regs->zq_config);
845         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
846         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
847 }
848 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
849
850 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
851 const char *get_lpddr2_type(u8 type_id)
852 {
853         switch (type_id) {
854         case LPDDR2_TYPE_S4:
855                 return "LPDDR2-S4";
856         case LPDDR2_TYPE_S2:
857                 return "LPDDR2-S2";
858         default:
859                 return NULL;
860         }
861 }
862
863 const char *get_lpddr2_io_width(u8 width_id)
864 {
865         switch (width_id) {
866         case LPDDR2_IO_WIDTH_8:
867                 return "x8";
868         case LPDDR2_IO_WIDTH_16:
869                 return "x16";
870         case LPDDR2_IO_WIDTH_32:
871                 return "x32";
872         default:
873                 return NULL;
874         }
875 }
876
877 const char *get_lpddr2_manufacturer(u32 manufacturer)
878 {
879         switch (manufacturer) {
880         case LPDDR2_MANUFACTURER_SAMSUNG:
881                 return "Samsung";
882         case LPDDR2_MANUFACTURER_QIMONDA:
883                 return "Qimonda";
884         case LPDDR2_MANUFACTURER_ELPIDA:
885                 return "Elpida";
886         case LPDDR2_MANUFACTURER_ETRON:
887                 return "Etron";
888         case LPDDR2_MANUFACTURER_NANYA:
889                 return "Nanya";
890         case LPDDR2_MANUFACTURER_HYNIX:
891                 return "Hynix";
892         case LPDDR2_MANUFACTURER_MOSEL:
893                 return "Mosel";
894         case LPDDR2_MANUFACTURER_WINBOND:
895                 return "Winbond";
896         case LPDDR2_MANUFACTURER_ESMT:
897                 return "ESMT";
898         case LPDDR2_MANUFACTURER_SPANSION:
899                 return "Spansion";
900         case LPDDR2_MANUFACTURER_SST:
901                 return "SST";
902         case LPDDR2_MANUFACTURER_ZMOS:
903                 return "ZMOS";
904         case LPDDR2_MANUFACTURER_INTEL:
905                 return "Intel";
906         case LPDDR2_MANUFACTURER_NUMONYX:
907                 return "Numonyx";
908         case LPDDR2_MANUFACTURER_MICRON:
909                 return "Micron";
910         default:
911                 return NULL;
912         }
913 }
914
915 static void display_sdram_details(u32 emif_nr, u32 cs,
916                                   struct lpddr2_device_details *device)
917 {
918         const char *mfg_str;
919         const char *type_str;
920         char density_str[10];
921         u32 density;
922
923         debug("EMIF%d CS%d\t", emif_nr, cs);
924
925         if (!device) {
926                 debug("None\n");
927                 return;
928         }
929
930         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
931         type_str = get_lpddr2_type(device->type);
932
933         density = lpddr2_density_2_size_in_mbytes[device->density];
934         if ((density / 1024 * 1024) == density) {
935                 density /= 1024;
936                 sprintf(density_str, "%d GB", density);
937         } else
938                 sprintf(density_str, "%d MB", density);
939         if (mfg_str && type_str)
940                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
941 }
942
943 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
944                                   struct lpddr2_device_details *lpddr2_device)
945 {
946         u32 mr = 0, temp;
947
948         mr = get_mr(base, cs, LPDDR2_MR0);
949         if (mr > 0xFF) {
950                 /* Mode register value bigger than 8 bit */
951                 return 0;
952         }
953
954         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
955         if (temp) {
956                 /* Not SDRAM */
957                 return 0;
958         }
959         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
960
961         if (temp) {
962                 /* DNV supported - But DNV is only supported for NVM */
963                 return 0;
964         }
965
966         mr = get_mr(base, cs, LPDDR2_MR4);
967         if (mr > 0xFF) {
968                 /* Mode register value bigger than 8 bit */
969                 return 0;
970         }
971
972         mr = get_mr(base, cs, LPDDR2_MR5);
973         if (mr > 0xFF) {
974                 /* Mode register value bigger than 8 bit */
975                 return 0;
976         }
977
978         if (!get_lpddr2_manufacturer(mr)) {
979                 /* Manufacturer not identified */
980                 return 0;
981         }
982         lpddr2_device->manufacturer = mr;
983
984         mr = get_mr(base, cs, LPDDR2_MR6);
985         if (mr >= 0xFF) {
986                 /* Mode register value bigger than 8 bit */
987                 return 0;
988         }
989
990         mr = get_mr(base, cs, LPDDR2_MR7);
991         if (mr >= 0xFF) {
992                 /* Mode register value bigger than 8 bit */
993                 return 0;
994         }
995
996         mr = get_mr(base, cs, LPDDR2_MR8);
997         if (mr >= 0xFF) {
998                 /* Mode register value bigger than 8 bit */
999                 return 0;
1000         }
1001
1002         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1003         if (!get_lpddr2_type(temp)) {
1004                 /* Not SDRAM */
1005                 return 0;
1006         }
1007         lpddr2_device->type = temp;
1008
1009         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1010         if (temp > LPDDR2_DENSITY_32Gb) {
1011                 /* Density not supported */
1012                 return 0;
1013         }
1014         lpddr2_device->density = temp;
1015
1016         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1017         if (!get_lpddr2_io_width(temp)) {
1018                 /* IO width unsupported value */
1019                 return 0;
1020         }
1021         lpddr2_device->io_width = temp;
1022
1023         /*
1024          * If all the above tests pass we should
1025          * have a device on this chip-select
1026          */
1027         return 1;
1028 }
1029
1030 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1031                         struct lpddr2_device_details *lpddr2_dev_details)
1032 {
1033         u32 phy;
1034         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1035
1036         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1037
1038         if (!lpddr2_dev_details)
1039                 return NULL;
1040
1041         /* Do the minimum init for mode register accesses */
1042         if (!(running_from_sdram() || warm_reset())) {
1043                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1044                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1045         }
1046
1047         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1048                 return NULL;
1049
1050         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1051
1052         return lpddr2_dev_details;
1053 }
1054 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1055
1056 static void do_sdram_init(u32 base)
1057 {
1058         const struct emif_regs *regs;
1059         u32 in_sdram, emif_nr;
1060
1061         debug(">>do_sdram_init() %x\n", base);
1062
1063         in_sdram = running_from_sdram();
1064         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1065
1066 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1067         emif_get_reg_dump(emif_nr, &regs);
1068         if (!regs) {
1069                 debug("EMIF: reg dump not provided\n");
1070                 return;
1071         }
1072 #else
1073         /*
1074          * The user has not provided the register values. We need to
1075          * calculate it based on the timings and the DDR frequency
1076          */
1077         struct emif_device_details dev_details;
1078         struct emif_regs calculated_regs;
1079
1080         /*
1081          * Get device details:
1082          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1083          * - Obtained from user otherwise
1084          */
1085         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1086         emif_reset_phy(base);
1087         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1088                                                 &cs0_dev_details);
1089         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1090                                                 &cs1_dev_details);
1091         emif_reset_phy(base);
1092
1093         /* Return if no devices on this EMIF */
1094         if (!dev_details.cs0_device_details &&
1095             !dev_details.cs1_device_details) {
1096                 return;
1097         }
1098
1099         /*
1100          * Get device timings:
1101          * - Default timings specified by JESD209-2 if
1102          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1103          * - Obtained from user otherwise
1104          */
1105         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1106                                 &dev_details.cs1_device_timings);
1107
1108         /* Calculate the register values */
1109         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1110         regs = &calculated_regs;
1111 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1112
1113         /*
1114          * Initializing the LPDDR2 device can not happen from SDRAM.
1115          * Changing the timing registers in EMIF can happen(going from one
1116          * OPP to another)
1117          */
1118         if (!(in_sdram || warm_reset())) {
1119                 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
1120                         lpddr2_init(base, regs);
1121                 else
1122                         ddr3_init(base, regs);
1123         }
1124         if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1125                 set_lpmode_selfrefresh(base);
1126                 emif_reset_phy(base);
1127                 ddr3_leveling(base, regs);
1128         }
1129
1130         /* Write to the shadow registers */
1131         emif_update_timings(base, regs);
1132
1133         debug("<<do_sdram_init() %x\n", base);
1134 }
1135
1136 void emif_post_init_config(u32 base)
1137 {
1138         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1139         u32 omap_rev = omap_revision();
1140
1141         /* reset phy on ES2.0 */
1142         if (omap_rev == OMAP4430_ES2_0)
1143                 emif_reset_phy(base);
1144
1145         /* Put EMIF back in smart idle on ES1.0 */
1146         if (omap_rev == OMAP4430_ES1_0)
1147                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1148 }
1149
1150 void dmm_init(u32 base)
1151 {
1152         const struct dmm_lisa_map_regs *lisa_map_regs;
1153         u32 i, section, valid;
1154
1155 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1156         emif_get_dmm_regs(&lisa_map_regs);
1157 #else
1158         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1159         u32 section_cnt, sys_addr;
1160         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1161
1162         mapped_size = 0;
1163         section_cnt = 3;
1164         sys_addr = CONFIG_SYS_SDRAM_BASE;
1165         emif1_size = get_emif_mem_size(EMIF1_BASE);
1166         emif2_size = get_emif_mem_size(EMIF2_BASE);
1167         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1168
1169         if (!emif1_size && !emif2_size)
1170                 return;
1171
1172         /* symmetric interleaved section */
1173         if (emif1_size && emif2_size) {
1174                 mapped_size = min(emif1_size, emif2_size);
1175                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1176                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1177                 /* only MSB */
1178                 section_map |= (sys_addr >> 24) <<
1179                                 EMIF_SYS_ADDR_SHIFT;
1180                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1181                                 << EMIF_SYS_SIZE_SHIFT;
1182                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1183                 emif1_size -= mapped_size;
1184                 emif2_size -= mapped_size;
1185                 sys_addr += (mapped_size * 2);
1186                 section_cnt--;
1187         }
1188
1189         /*
1190          * Single EMIF section(we can have a maximum of 1 single EMIF
1191          * section- either EMIF1 or EMIF2 or none, but not both)
1192          */
1193         if (emif1_size) {
1194                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1195                 section_map |= get_dmm_section_size_map(emif1_size)
1196                                 << EMIF_SYS_SIZE_SHIFT;
1197                 /* only MSB */
1198                 section_map |= (mapped_size >> 24) <<
1199                                 EMIF_SDRC_ADDR_SHIFT;
1200                 /* only MSB */
1201                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1202                 section_cnt--;
1203         }
1204         if (emif2_size) {
1205                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1206                 section_map |= get_dmm_section_size_map(emif2_size) <<
1207                                 EMIF_SYS_SIZE_SHIFT;
1208                 /* only MSB */
1209                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1210                 /* only MSB */
1211                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1212                 section_cnt--;
1213         }
1214
1215         if (section_cnt == 2) {
1216                 /* Only 1 section - either symmetric or single EMIF */
1217                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1218                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1219                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1220         } else {
1221                 /* 2 sections - 1 symmetric, 1 single EMIF */
1222                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1223                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1224         }
1225
1226         /* TRAP for invalid TILER mappings in section 0 */
1227         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1228
1229         if (omap_revision() >= OMAP4460_ES1_0)
1230                 lis_map_regs_calculated.is_ma_present = 1;
1231
1232         lisa_map_regs = &lis_map_regs_calculated;
1233 #endif
1234         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1235             (struct dmm_lisa_map_regs *)base;
1236
1237         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1238         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1239         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1240         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1241
1242         writel(lisa_map_regs->dmm_lisa_map_3,
1243                 &hw_lisa_map_regs->dmm_lisa_map_3);
1244         writel(lisa_map_regs->dmm_lisa_map_2,
1245                 &hw_lisa_map_regs->dmm_lisa_map_2);
1246         writel(lisa_map_regs->dmm_lisa_map_1,
1247                 &hw_lisa_map_regs->dmm_lisa_map_1);
1248         writel(lisa_map_regs->dmm_lisa_map_0,
1249                 &hw_lisa_map_regs->dmm_lisa_map_0);
1250
1251         if (lisa_map_regs->is_ma_present) {
1252                 hw_lisa_map_regs =
1253                     (struct dmm_lisa_map_regs *)MA_BASE;
1254
1255                 writel(lisa_map_regs->dmm_lisa_map_3,
1256                         &hw_lisa_map_regs->dmm_lisa_map_3);
1257                 writel(lisa_map_regs->dmm_lisa_map_2,
1258                         &hw_lisa_map_regs->dmm_lisa_map_2);
1259                 writel(lisa_map_regs->dmm_lisa_map_1,
1260                         &hw_lisa_map_regs->dmm_lisa_map_1);
1261                 writel(lisa_map_regs->dmm_lisa_map_0,
1262                         &hw_lisa_map_regs->dmm_lisa_map_0);
1263         }
1264
1265         /*
1266          * EMIF should be configured only when
1267          * memory is mapped on it. Using emif1_enabled
1268          * and emif2_enabled variables for this.
1269          */
1270         emif1_enabled = 0;
1271         emif2_enabled = 0;
1272         for (i = 0; i < 4; i++) {
1273                 section = __raw_readl(DMM_BASE + i*4);
1274                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1275                         (EMIF_SDRC_MAP_SHIFT);
1276                 if (valid == 3) {
1277                         emif1_enabled = 1;
1278                         emif2_enabled = 1;
1279                         break;
1280                 } else if (valid == 1) {
1281                         emif1_enabled = 1;
1282                 } else if (valid == 2) {
1283                         emif2_enabled = 1;
1284                 }
1285         }
1286
1287 }
1288
1289 static void do_bug0039_workaround(u32 base)
1290 {
1291         u32 val, i, clkctrl;
1292         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1293         const struct read_write_regs *bug_00339_regs;
1294         u32 iterations;
1295         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1296         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1297
1298         if (is_dra7xx())
1299                 phy_status_base++;
1300
1301         bug_00339_regs = get_bug_regs(&iterations);
1302
1303         /* Put EMIF in to idle */
1304         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1305         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1306
1307         /* Copy the phy status registers in to phy ctrl shadow registers */
1308         for (i = 0; i < iterations; i++) {
1309                 val = __raw_readl(phy_status_base +
1310                                   bug_00339_regs[i].read_reg - 1);
1311
1312                 __raw_writel(val, phy_ctrl_base +
1313                              ((bug_00339_regs[i].write_reg - 1) << 1));
1314
1315                 __raw_writel(val, phy_ctrl_base +
1316                              (bug_00339_regs[i].write_reg << 1) - 1);
1317         }
1318
1319         /* Disable leveling */
1320         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1321
1322         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1323 }
1324
1325 /*
1326  * SDRAM initialization:
1327  * SDRAM initialization has two parts:
1328  * 1. Configuring the SDRAM device
1329  * 2. Update the AC timings related parameters in the EMIF module
1330  * (1) should be done only once and should not be done while we are
1331  * running from SDRAM.
1332  * (2) can and should be done more than once if OPP changes.
1333  * Particularly, this may be needed when we boot without SPL and
1334  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1335  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1336  * the frequency. So,
1337  * Doing (1) and (2) makes sense - first time initialization
1338  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1339  * Doing (1) and not (2) doen't make sense
1340  * See do_sdram_init() for the details
1341  */
1342 void sdram_init(void)
1343 {
1344         u32 in_sdram, size_prog, size_detect;
1345         u32 sdram_type = emif_sdram_type();
1346
1347         debug(">>sdram_init()\n");
1348
1349         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1350                 return;
1351
1352         in_sdram = running_from_sdram();
1353         debug("in_sdram = %d\n", in_sdram);
1354
1355         if (!in_sdram) {
1356                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1357                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1358                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1359                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1360         }
1361
1362         if (!in_sdram)
1363                 dmm_init(DMM_BASE);
1364
1365         if (emif1_enabled)
1366                 do_sdram_init(EMIF1_BASE);
1367
1368         if (emif2_enabled)
1369                 do_sdram_init(EMIF2_BASE);
1370
1371         if (!(in_sdram || warm_reset())) {
1372                 if (emif1_enabled)
1373                         emif_post_init_config(EMIF1_BASE);
1374                 if (emif2_enabled)
1375                         emif_post_init_config(EMIF2_BASE);
1376         }
1377
1378         /* for the shadow registers to take effect */
1379         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1380                 freq_update_core();
1381
1382         /* Do some testing after the init */
1383         if (!in_sdram) {
1384                 size_prog = omap_sdram_size();
1385                 size_prog = log_2_n_round_down(size_prog);
1386                 size_prog = (1 << size_prog);
1387
1388                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1389                                                 size_prog);
1390                 /* Compare with the size programmed */
1391                 if (size_detect != size_prog) {
1392                         printf("SDRAM: identified size not same as expected"
1393                                 " size identified: %x expected: %x\n",
1394                                 size_detect,
1395                                 size_prog);
1396                 } else
1397                         debug("get_ram_size() successful");
1398         }
1399
1400         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1401             (!in_sdram && !warm_reset())) {
1402                 do_bug0039_workaround(EMIF1_BASE);
1403                 do_bug0039_workaround(EMIF2_BASE);
1404         }
1405
1406         debug("<<sdram_init()\n");
1407 }