1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 #include <linux/types.h>
7 #include <linux/kprobes.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/kdebug.h>
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <asm/cacheflush.h>
14 #include <asm/current.h>
15 #include <asm/disasm.h>
17 #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
18 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
25 /* Attempt to probe at unaligned address */
26 if ((unsigned long)p->addr & 0x01)
29 /* Address should not be in exception handling code */
31 p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
37 void __kprobes arch_arm_kprobe(struct kprobe *p)
39 *p->addr = UNIMP_S_INSTRUCTION;
41 flush_icache_range((unsigned long)p->addr,
42 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
49 flush_icache_range((unsigned long)p->addr,
50 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
53 void __kprobes arch_remove_kprobe(struct kprobe *p)
55 arch_disarm_kprobe(p);
57 /* Can we remove the kprobe in the middle of kprobe handling? */
58 if (p->ainsn.t1_addr) {
59 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
61 flush_icache_range((unsigned long)p->ainsn.t1_addr,
62 (unsigned long)p->ainsn.t1_addr +
63 sizeof(kprobe_opcode_t));
65 p->ainsn.t1_addr = NULL;
68 if (p->ainsn.t2_addr) {
69 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
71 flush_icache_range((unsigned long)p->ainsn.t2_addr,
72 (unsigned long)p->ainsn.t2_addr +
73 sizeof(kprobe_opcode_t));
75 p->ainsn.t2_addr = NULL;
79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
81 kcb->prev_kprobe.kp = kprobe_running();
82 kcb->prev_kprobe.status = kcb->kprobe_status;
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
87 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 kcb->kprobe_status = kcb->prev_kprobe.status;
91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
93 __this_cpu_write(current_kprobe, p);
96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
99 /* Remove the trap instructions inserted for single step and
100 * restore the original instructions
102 if (p->ainsn.t1_addr) {
103 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
105 flush_icache_range((unsigned long)p->ainsn.t1_addr,
106 (unsigned long)p->ainsn.t1_addr +
107 sizeof(kprobe_opcode_t));
109 p->ainsn.t1_addr = NULL;
112 if (p->ainsn.t2_addr) {
113 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
115 flush_icache_range((unsigned long)p->ainsn.t2_addr,
116 (unsigned long)p->ainsn.t2_addr +
117 sizeof(kprobe_opcode_t));
119 p->ainsn.t2_addr = NULL;
125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
127 unsigned long next_pc;
128 unsigned long tgt_if_br = 0;
132 /* Copy the opcode back to the kprobe location and execute the
133 * instruction. Because of this we will not be able to get into the
134 * same kprobe until this kprobe is done
136 *(p->addr) = p->opcode;
138 flush_icache_range((unsigned long)p->addr,
139 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
141 /* Now we insert the trap at the next location after this instruction to
142 * single step. If it is a branch we insert the trap at possible branch
148 if (regs->status32 & 0x40) {
149 /* We are in a delay slot with the branch taken */
151 next_pc = bta & ~0x01;
153 if (!p->ainsn.is_short) {
157 /* Branch not taken */
160 /* next pc is taken from bta after executing the
161 * delay slot instruction
170 disasm_next_pc((unsigned long)p->addr, regs,
171 (struct callee_regs *) current->thread.callee_reg,
172 &next_pc, &tgt_if_br);
174 p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175 p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176 *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
178 flush_icache_range((unsigned long)p->ainsn.t1_addr,
179 (unsigned long)p->ainsn.t1_addr +
180 sizeof(kprobe_opcode_t));
183 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
187 flush_icache_range((unsigned long)p->ainsn.t2_addr,
188 (unsigned long)p->ainsn.t2_addr +
189 sizeof(kprobe_opcode_t));
193 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
196 struct kprobe_ctlblk *kcb;
200 kcb = get_kprobe_ctlblk();
201 p = get_kprobe((unsigned long *)addr);
205 * We have reentered the kprobe_handler, since another kprobe
206 * was hit while within the handler, we save the original
207 * kprobes and single step on the instruction of the new probe
208 * without calling any user handlers to avoid recursive
211 if (kprobe_running()) {
212 save_previous_kprobe(kcb);
213 set_current_kprobe(p);
214 kprobes_inc_nmissed_count(p);
215 setup_singlestep(p, regs);
216 kcb->kprobe_status = KPROBE_REENTER;
220 set_current_kprobe(p);
221 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
223 /* If we have no pre-handler or it returned 0, we continue with
224 * normal processing. If we have a pre-handler and it returned
225 * non-zero - which means user handler setup registers to exit
226 * to another instruction, we must skip the single stepping.
228 if (!p->pre_handler || !p->pre_handler(p, regs)) {
229 setup_singlestep(p, regs);
230 kcb->kprobe_status = KPROBE_HIT_SS;
232 reset_current_kprobe();
233 preempt_enable_no_resched();
240 preempt_enable_no_resched();
244 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
245 struct pt_regs *regs)
247 struct kprobe *cur = kprobe_running();
248 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
253 resume_execution(cur, addr, regs);
255 /* Rearm the kprobe */
256 arch_arm_kprobe(cur);
259 * When we return from trap instruction we go to the next instruction
260 * We restored the actual instruction in resume_exectuiont and we to
261 * return to the same address and execute it
265 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
266 kcb->kprobe_status = KPROBE_HIT_SSDONE;
267 cur->post_handler(cur, regs, 0);
270 if (kcb->kprobe_status == KPROBE_REENTER) {
271 restore_previous_kprobe(kcb);
275 reset_current_kprobe();
278 preempt_enable_no_resched();
283 * Fault can be for the instruction being single stepped or for the
284 * pre/post handlers in the module.
285 * This is applicable for applications like user probes, where we have the
286 * probe in user space and the handlers in the kernel
289 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
291 struct kprobe *cur = kprobe_running();
292 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294 switch (kcb->kprobe_status) {
298 * We are here because the instruction being single stepped
299 * caused the fault. We reset the current kprobe and allow the
300 * exception handler as if it is regular exception. In our
301 * case it doesn't matter because the system will be halted
303 resume_execution(cur, (unsigned long)cur->addr, regs);
305 if (kcb->kprobe_status == KPROBE_REENTER)
306 restore_previous_kprobe(kcb);
308 reset_current_kprobe();
310 preempt_enable_no_resched();
313 case KPROBE_HIT_ACTIVE:
314 case KPROBE_HIT_SSDONE:
316 * We are here because the instructions in the pre/post handler
321 * In case the user-specified fault handler returned zero,
324 if (fixup_exception(regs))
328 * fixup_exception() could not handle it,
329 * Let do_page_fault() fix it.
339 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
340 unsigned long val, void *data)
342 struct die_args *args = data;
343 unsigned long addr = args->err;
344 int ret = NOTIFY_DONE;
348 if (arc_kprobe_handler(addr, args->regs))
353 if (arc_post_kprobe_handler(addr, args->regs))
364 static void __used kretprobe_trampoline_holder(void)
366 __asm__ __volatile__(".global __kretprobe_trampoline\n"
367 "__kretprobe_trampoline:\n"
371 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
372 struct pt_regs *regs)
375 ri->ret_addr = (kprobe_opcode_t *) regs->blink;
378 /* Replace the return addr with trampoline addr */
379 regs->blink = (unsigned long)&__kretprobe_trampoline;
382 static int __kprobes trampoline_probe_handler(struct kprobe *p,
383 struct pt_regs *regs)
385 regs->ret = __kretprobe_trampoline_handler(regs, NULL);
387 /* By returning a non zero value, we are telling the kprobe handler
388 * that we don't want the post_handler to run
393 static struct kprobe trampoline_p = {
394 .addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
395 .pre_handler = trampoline_probe_handler
398 int __init arch_init_kprobes(void)
400 /* Registering the trampoline code for the kret probe */
401 return register_kprobe(&trampoline_p);
404 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
406 if (p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline)
412 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
414 notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);