Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / arc / include / asm / mmu_context.h
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * vineetg: May 2011
9  *  -Refactored get_new_mmu_context( ) to only handle live-mm.
10  *   retiring-mm handled in other hooks
11  *
12  * Vineetg: March 25th, 2008: Bug #92690
13  *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
14  *
15  * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
16  */
17
18 #ifndef _ASM_ARC_MMU_CONTEXT_H
19 #define _ASM_ARC_MMU_CONTEXT_H
20
21 #include <asm/arcregs.h>
22 #include <asm/tlb.h>
23
24 #include <asm-generic/mm_hooks.h>
25
26 /*              ARC700 ASID Management
27  *
28  * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
29  * with same vaddr (different tasks) to co-exit. This provides for
30  * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
31  *
32  * Linux assigns each task a unique ASID. A simple round-robin allocation
33  * of H/w ASID is done using software tracker @asid_cpu.
34  * When it reaches max 255, the allocation cycle starts afresh by flushing
35  * the entire TLB and wrapping ASID back to zero.
36  *
37  * A new allocation cycle, post rollover, could potentially reassign an ASID
38  * to a different task. Thus the rule is to refresh the ASID in a new cycle.
39  * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
40  * serve as cycle/generation indicator and natural 32 bit unsigned math
41  * automagically increments the generation when lower 8 bits rollover.
42  */
43
44 #define MM_CTXT_ASID_MASK       0x000000ff /* MMU PID reg :8 bit PID */
45 #define MM_CTXT_CYCLE_MASK      (~MM_CTXT_ASID_MASK)
46
47 #define MM_CTXT_FIRST_CYCLE     (MM_CTXT_ASID_MASK + 1)
48 #define MM_CTXT_NO_ASID         0UL
49
50 #define asid_mm(mm, cpu)        mm->context.asid[cpu]
51 #define hw_pid(mm, cpu)         (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
52
53 DECLARE_PER_CPU(unsigned int, asid_cache);
54 #define asid_cpu(cpu)           per_cpu(asid_cache, cpu)
55
56 /*
57  * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
58  * Also set the MMU PID register to existing/updated ASID
59  */
60 static inline void get_new_mmu_context(struct mm_struct *mm)
61 {
62         const unsigned int cpu = smp_processor_id();
63         unsigned long flags;
64
65         local_irq_save(flags);
66
67         /*
68          * Move to new ASID if it was not from current alloc-cycle/generation.
69          * This is done by ensuring that the generation bits in both mm->ASID
70          * and cpu's ASID counter are exactly same.
71          *
72          * Note: Callers needing new ASID unconditionally, independent of
73          *       generation, e.g. local_flush_tlb_mm() for forking  parent,
74          *       first need to destroy the context, setting it to invalid
75          *       value.
76          */
77         if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
78                 goto set_hw;
79
80         /* move to new ASID and handle rollover */
81         if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
82
83                 local_flush_tlb_all();
84
85                 /*
86                  * Above checke for rollover of 8 bit ASID in 32 bit container.
87                  * If the container itself wrapped around, set it to a non zero
88                  * "generation" to distinguish from no context
89                  */
90                 if (!asid_cpu(cpu))
91                         asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
92         }
93
94         /* Assign new ASID to tsk */
95         asid_mm(mm, cpu) = asid_cpu(cpu);
96
97 set_hw:
98         write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
99
100         local_irq_restore(flags);
101 }
102
103 /*
104  * Initialize the context related info for a new mm_struct
105  * instance.
106  */
107 static inline int
108 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
109 {
110         int i;
111
112         for_each_possible_cpu(i)
113                 asid_mm(mm, i) = MM_CTXT_NO_ASID;
114
115         return 0;
116 }
117
118 static inline void destroy_context(struct mm_struct *mm)
119 {
120         unsigned long flags;
121
122         /* Needed to elide CONFIG_DEBUG_PREEMPT warning */
123         local_irq_save(flags);
124         asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
125         local_irq_restore(flags);
126 }
127
128 /* Prepare the MMU for task: setup PID reg with allocated ASID
129     If task doesn't have an ASID (never alloc or stolen, get a new ASID)
130 */
131 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
132                              struct task_struct *tsk)
133 {
134         const int cpu = smp_processor_id();
135
136         /*
137          * Note that the mm_cpumask is "aggregating" only, we don't clear it
138          * for the switched-out task, unlike some other arches.
139          * It is used to enlist cpus for sending TLB flush IPIs and not sending
140          * it to CPUs where a task once ran-on, could cause stale TLB entry
141          * re-use, specially for a multi-threaded task.
142          * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
143          *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
144          *      were to re-migrate to C1, it could access the unmapped region
145          *      via any existing stale TLB entries.
146          */
147         cpumask_set_cpu(cpu, mm_cpumask(next));
148
149 #ifndef CONFIG_SMP
150         /* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
151         write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
152 #endif
153
154         get_new_mmu_context(next);
155 }
156
157 /*
158  * Called at the time of execve() to get a new ASID
159  * Note the subtlety here: get_new_mmu_context() behaves differently here
160  * vs. in switch_mm(). Here it always returns a new ASID, because mm has
161  * an unallocated "initial" value, while in latter, it moves to a new ASID,
162  * only if it was unallocated
163  */
164 #define activate_mm(prev, next)         switch_mm(prev, next, NULL)
165
166 /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
167  * for retiring-mm. However destroy_context( ) still needs to do that because
168  * between mm_release( ) = >deactive_mm( ) and
169  * mmput => .. => __mmdrop( ) => destroy_context( )
170  * there is a good chance that task gets sched-out/in, making it's ASID valid
171  * again (this teased me for a whole day).
172  */
173 #define deactivate_mm(tsk, mm)   do { } while (0)
174
175 #define enter_lazy_tlb(mm, tsk)
176
177 #endif /* __ASM_ARC_MMU_CONTEXT_H */