drivers/tty/serial/8250: update driver for JH7100
[platform/kernel/linux-starfive.git] / arch / alpha / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/alpha/kernel/traps.c
4  *
5  * (C) Copyright 1994 Linus Torvalds
6  */
7
8 /*
9  * This file initializes the trap entry points
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/tty.h>
17 #include <linux/delay.h>
18 #include <linux/extable.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21
22 #include <asm/gentrap.h>
23 #include <linux/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28 #include <asm/special_insns.h>
29
30 #include "proto.h"
31
32 /* Work-around for some SRMs which mishandle opDEC faults.  */
33
34 static int opDEC_fix;
35
36 static void
37 opDEC_check(void)
38 {
39         __asm__ __volatile__ (
40         /* Load the address of... */
41         "       br      $16, 1f\n"
42         /* A stub instruction fault handler.  Just add 4 to the
43            pc and continue.  */
44         "       ldq     $16, 8($sp)\n"
45         "       addq    $16, 4, $16\n"
46         "       stq     $16, 8($sp)\n"
47         "       call_pal %[rti]\n"
48         /* Install the instruction fault handler.  */
49         "1:     lda     $17, 3\n"
50         "       call_pal %[wrent]\n"
51         /* With that in place, the fault from the round-to-minf fp
52            insn will arrive either at the "lda 4" insn (bad) or one
53            past that (good).  This places the correct fixup in %0.  */
54         "       lda %[fix], 0\n"
55         "       cvttq/svm $f31,$f31\n"
56         "       lda %[fix], 4"
57         : [fix] "=r" (opDEC_fix)
58         : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
59         : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60
61         if (opDEC_fix)
62                 printk("opDEC fixup enabled.\n");
63 }
64
65 void
66 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
67 {
68         printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx    %s\n",
69                regs->pc, regs->r26, regs->ps, print_tainted());
70         printk("pc is at %pSR\n", (void *)regs->pc);
71         printk("ra is at %pSR\n", (void *)regs->r26);
72         printk("v0 = %016lx  t0 = %016lx  t1 = %016lx\n",
73                regs->r0, regs->r1, regs->r2);
74         printk("t2 = %016lx  t3 = %016lx  t4 = %016lx\n",
75                regs->r3, regs->r4, regs->r5);
76         printk("t5 = %016lx  t6 = %016lx  t7 = %016lx\n",
77                regs->r6, regs->r7, regs->r8);
78
79         if (r9_15) {
80                 printk("s0 = %016lx  s1 = %016lx  s2 = %016lx\n",
81                        r9_15[9], r9_15[10], r9_15[11]);
82                 printk("s3 = %016lx  s4 = %016lx  s5 = %016lx\n",
83                        r9_15[12], r9_15[13], r9_15[14]);
84                 printk("s6 = %016lx\n", r9_15[15]);
85         }
86
87         printk("a0 = %016lx  a1 = %016lx  a2 = %016lx\n",
88                regs->r16, regs->r17, regs->r18);
89         printk("a3 = %016lx  a4 = %016lx  a5 = %016lx\n",
90                regs->r19, regs->r20, regs->r21);
91         printk("t8 = %016lx  t9 = %016lx  t10= %016lx\n",
92                regs->r22, regs->r23, regs->r24);
93         printk("t11= %016lx  pv = %016lx  at = %016lx\n",
94                regs->r25, regs->r27, regs->r28);
95         printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
96 #if 0
97 __halt();
98 #endif
99 }
100
101 #if 0
102 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
103                            "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
104                            "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
105                            "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
106 #endif
107
108 static void
109 dik_show_code(unsigned int *pc)
110 {
111         long i;
112
113         printk("Code:");
114         for (i = -6; i < 2; i++) {
115                 unsigned int insn;
116                 if (__get_user(insn, (unsigned int __user *)pc + i))
117                         break;
118                 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
119         }
120         printk("\n");
121 }
122
123 static void
124 dik_show_trace(unsigned long *sp, const char *loglvl)
125 {
126         long i = 0;
127         printk("%sTrace:\n", loglvl);
128         while (0x1ff8 & (unsigned long) sp) {
129                 extern char _stext[], _etext[];
130                 unsigned long tmp = *sp;
131                 sp++;
132                 if (!is_kernel_text(tmp))
133                         continue;
134                 printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp);
135                 if (i > 40) {
136                         printk("%s ...", loglvl);
137                         break;
138                 }
139         }
140         printk("%s\n", loglvl);
141 }
142
143 static int kstack_depth_to_print = 24;
144
145 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
146 {
147         unsigned long *stack;
148         int i;
149
150         /*
151          * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the
152          * back trace for this cpu.
153          */
154         if(sp==NULL)
155                 sp=(unsigned long*)&sp;
156
157         stack = sp;
158         for(i=0; i < kstack_depth_to_print; i++) {
159                 if (((long) stack & (THREAD_SIZE-1)) == 0)
160                         break;
161                 if ((i % 4) == 0) {
162                         if (i)
163                                 pr_cont("\n");
164                         printk("%s       ", loglvl);
165                 } else {
166                         pr_cont(" ");
167                 }
168                 pr_cont("%016lx", *stack++);
169         }
170         pr_cont("\n");
171         dik_show_trace(sp, loglvl);
172 }
173
174 void
175 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
176 {
177         if (regs->ps & 8)
178                 return;
179 #ifdef CONFIG_SMP
180         printk("CPU %d ", hard_smp_processor_id());
181 #endif
182         printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
183         dik_show_regs(regs, r9_15);
184         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
185         dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
186         dik_show_code((unsigned int *)regs->pc);
187
188         if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
189                 printk("die_if_kernel recursion detected.\n");
190                 local_irq_enable();
191                 while (1);
192         }
193         make_task_dead(SIGSEGV);
194 }
195
196 #ifndef CONFIG_MATHEMU
197 static long dummy_emul(void) { return 0; }
198 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
199   = (void *)dummy_emul;
200 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
201 long (*alpha_fp_emul) (unsigned long pc)
202   = (void *)dummy_emul;
203 EXPORT_SYMBOL_GPL(alpha_fp_emul);
204 #else
205 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
206 long alpha_fp_emul (unsigned long pc);
207 #endif
208
209 asmlinkage void
210 do_entArith(unsigned long summary, unsigned long write_mask,
211             struct pt_regs *regs)
212 {
213         long si_code = FPE_FLTINV;
214
215         if (summary & 1) {
216                 /* Software-completion summary bit is set, so try to
217                    emulate the instruction.  If the processor supports
218                    precise exceptions, we don't have to search.  */
219                 if (!amask(AMASK_PRECISE_TRAP))
220                         si_code = alpha_fp_emul(regs->pc - 4);
221                 else
222                         si_code = alpha_fp_emul_imprecise(regs, write_mask);
223                 if (si_code == 0)
224                         return;
225         }
226         die_if_kernel("Arithmetic fault", regs, 0, NULL);
227
228         send_sig_fault_trapno(SIGFPE, si_code, (void __user *) regs->pc, 0, current);
229 }
230
231 asmlinkage void
232 do_entIF(unsigned long type, struct pt_regs *regs)
233 {
234         int signo, code;
235
236         if ((regs->ps & ~IPL_MAX) == 0) {
237                 if (type == 1) {
238                         const unsigned int *data
239                           = (const unsigned int *) regs->pc;
240                         printk("Kernel bug at %s:%d\n",
241                                (const char *)(data[1] | (long)data[2] << 32), 
242                                data[0]);
243                 }
244 #ifdef CONFIG_ALPHA_WTINT
245                 if (type == 4) {
246                         /* If CALL_PAL WTINT is totally unsupported by the
247                            PALcode, e.g. MILO, "emulate" it by overwriting
248                            the insn.  */
249                         unsigned int *pinsn
250                           = (unsigned int *) regs->pc - 1;
251                         if (*pinsn == PAL_wtint) {
252                                 *pinsn = 0x47e01400; /* mov 0,$0 */
253                                 imb();
254                                 regs->r0 = 0;
255                                 return;
256                         }
257                 }
258 #endif /* ALPHA_WTINT */
259                 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
260                               regs, type, NULL);
261         }
262
263         switch (type) {
264               case 0: /* breakpoint */
265                 if (ptrace_cancel_bpt(current)) {
266                         regs->pc -= 4;  /* make pc point to former bpt */
267                 }
268
269                 send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc,
270                                current);
271                 return;
272
273               case 1: /* bugcheck */
274                 send_sig_fault_trapno(SIGTRAP, TRAP_UNK,
275                                       (void __user *) regs->pc, 0, current);
276                 return;
277                 
278               case 2: /* gentrap */
279                 switch ((long) regs->r16) {
280                 case GEN_INTOVF:
281                         signo = SIGFPE;
282                         code = FPE_INTOVF;
283                         break;
284                 case GEN_INTDIV:
285                         signo = SIGFPE;
286                         code = FPE_INTDIV;
287                         break;
288                 case GEN_FLTOVF:
289                         signo = SIGFPE;
290                         code = FPE_FLTOVF;
291                         break;
292                 case GEN_FLTDIV:
293                         signo = SIGFPE;
294                         code = FPE_FLTDIV;
295                         break;
296                 case GEN_FLTUND:
297                         signo = SIGFPE;
298                         code = FPE_FLTUND;
299                         break;
300                 case GEN_FLTINV:
301                         signo = SIGFPE;
302                         code = FPE_FLTINV;
303                         break;
304                 case GEN_FLTINE:
305                         signo = SIGFPE;
306                         code = FPE_FLTRES;
307                         break;
308                 case GEN_ROPRAND:
309                         signo = SIGFPE;
310                         code = FPE_FLTUNK;
311                         break;
312
313                 case GEN_DECOVF:
314                 case GEN_DECDIV:
315                 case GEN_DECINV:
316                 case GEN_ASSERTERR:
317                 case GEN_NULPTRERR:
318                 case GEN_STKOVF:
319                 case GEN_STRLENERR:
320                 case GEN_SUBSTRERR:
321                 case GEN_RANGERR:
322                 case GEN_SUBRNG:
323                 case GEN_SUBRNG1:
324                 case GEN_SUBRNG2:
325                 case GEN_SUBRNG3:
326                 case GEN_SUBRNG4:
327                 case GEN_SUBRNG5:
328                 case GEN_SUBRNG6:
329                 case GEN_SUBRNG7:
330                 default:
331                         signo = SIGTRAP;
332                         code = TRAP_UNK;
333                         break;
334                 }
335
336                 send_sig_fault_trapno(signo, code, (void __user *) regs->pc,
337                                       regs->r16, current);
338                 return;
339
340               case 4: /* opDEC */
341                 if (implver() == IMPLVER_EV4) {
342                         long si_code;
343
344                         /* The some versions of SRM do not handle
345                            the opDEC properly - they return the PC of the
346                            opDEC fault, not the instruction after as the
347                            Alpha architecture requires.  Here we fix it up.
348                            We do this by intentionally causing an opDEC
349                            fault during the boot sequence and testing if
350                            we get the correct PC.  If not, we set a flag
351                            to correct it every time through.  */
352                         regs->pc += opDEC_fix; 
353                         
354                         /* EV4 does not implement anything except normal
355                            rounding.  Everything else will come here as
356                            an illegal instruction.  Emulate them.  */
357                         si_code = alpha_fp_emul(regs->pc - 4);
358                         if (si_code == 0)
359                                 return;
360                         if (si_code > 0) {
361                                 send_sig_fault_trapno(SIGFPE, si_code,
362                                                       (void __user *) regs->pc,
363                                                       0, current);
364                                 return;
365                         }
366                 }
367                 break;
368
369               case 3: /* FEN fault */
370                 /* Irritating users can call PAL_clrfen to disable the
371                    FPU for the process.  The kernel will then trap in
372                    do_switch_stack and undo_switch_stack when we try
373                    to save and restore the FP registers.
374
375                    Given that GCC by default generates code that uses the
376                    FP registers, PAL_clrfen is not useful except for DoS
377                    attacks.  So turn the bleeding FPU back on and be done
378                    with it.  */
379                 current_thread_info()->pcb.flags |= 1;
380                 __reload_thread(&current_thread_info()->pcb);
381                 return;
382
383               case 5: /* illoc */
384               default: /* unexpected instruction-fault type */
385                       ;
386         }
387
388         send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, current);
389 }
390
391 /* There is an ifdef in the PALcode in MILO that enables a 
392    "kernel debugging entry point" as an unprivileged call_pal.
393
394    We don't want to have anything to do with it, but unfortunately
395    several versions of MILO included in distributions have it enabled,
396    and if we don't put something on the entry point we'll oops.  */
397
398 asmlinkage void
399 do_entDbg(struct pt_regs *regs)
400 {
401         die_if_kernel("Instruction fault", regs, 0, NULL);
402
403         force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc);
404 }
405
406
407 /*
408  * entUna has a different register layout to be reasonably simple. It
409  * needs access to all the integer registers (the kernel doesn't use
410  * fp-regs), and it needs to have them in order for simpler access.
411  *
412  * Due to the non-standard register layout (and because we don't want
413  * to handle floating-point regs), user-mode unaligned accesses are
414  * handled separately by do_entUnaUser below.
415  *
416  * Oh, btw, we don't handle the "gp" register correctly, but if we fault
417  * on a gp-register unaligned load/store, something is _very_ wrong
418  * in the kernel anyway..
419  */
420 struct allregs {
421         unsigned long regs[32];
422         unsigned long ps, pc, gp, a0, a1, a2;
423 };
424
425 struct unaligned_stat {
426         unsigned long count, va, pc;
427 } unaligned[2];
428
429
430 /* Macro for exception fixup code to access integer registers.  */
431 #define una_reg(r)  (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
432
433
434 asmlinkage void
435 do_entUna(void * va, unsigned long opcode, unsigned long reg,
436           struct allregs *regs)
437 {
438         long error, tmp1, tmp2, tmp3, tmp4;
439         unsigned long pc = regs->pc - 4;
440         unsigned long *_regs = regs->regs;
441         const struct exception_table_entry *fixup;
442
443         unaligned[0].count++;
444         unaligned[0].va = (unsigned long) va;
445         unaligned[0].pc = pc;
446
447         /* We don't want to use the generic get/put unaligned macros as
448            we want to trap exceptions.  Only if we actually get an
449            exception will we decide whether we should have caught it.  */
450
451         switch (opcode) {
452         case 0x0c: /* ldwu */
453                 __asm__ __volatile__(
454                 "1:     ldq_u %1,0(%3)\n"
455                 "2:     ldq_u %2,1(%3)\n"
456                 "       extwl %1,%3,%1\n"
457                 "       extwh %2,%3,%2\n"
458                 "3:\n"
459                 EXC(1b,3b,%1,%0)
460                 EXC(2b,3b,%2,%0)
461                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
462                         : "r"(va), "0"(0));
463                 if (error)
464                         goto got_exception;
465                 una_reg(reg) = tmp1|tmp2;
466                 return;
467
468         case 0x28: /* ldl */
469                 __asm__ __volatile__(
470                 "1:     ldq_u %1,0(%3)\n"
471                 "2:     ldq_u %2,3(%3)\n"
472                 "       extll %1,%3,%1\n"
473                 "       extlh %2,%3,%2\n"
474                 "3:\n"
475                 EXC(1b,3b,%1,%0)
476                 EXC(2b,3b,%2,%0)
477                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
478                         : "r"(va), "0"(0));
479                 if (error)
480                         goto got_exception;
481                 una_reg(reg) = (int)(tmp1|tmp2);
482                 return;
483
484         case 0x29: /* ldq */
485                 __asm__ __volatile__(
486                 "1:     ldq_u %1,0(%3)\n"
487                 "2:     ldq_u %2,7(%3)\n"
488                 "       extql %1,%3,%1\n"
489                 "       extqh %2,%3,%2\n"
490                 "3:\n"
491                 EXC(1b,3b,%1,%0)
492                 EXC(2b,3b,%2,%0)
493                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
494                         : "r"(va), "0"(0));
495                 if (error)
496                         goto got_exception;
497                 una_reg(reg) = tmp1|tmp2;
498                 return;
499
500         /* Note that the store sequences do not indicate that they change
501            memory because it _should_ be affecting nothing in this context.
502            (Otherwise we have other, much larger, problems.)  */
503         case 0x0d: /* stw */
504                 __asm__ __volatile__(
505                 "1:     ldq_u %2,1(%5)\n"
506                 "2:     ldq_u %1,0(%5)\n"
507                 "       inswh %6,%5,%4\n"
508                 "       inswl %6,%5,%3\n"
509                 "       mskwh %2,%5,%2\n"
510                 "       mskwl %1,%5,%1\n"
511                 "       or %2,%4,%2\n"
512                 "       or %1,%3,%1\n"
513                 "3:     stq_u %2,1(%5)\n"
514                 "4:     stq_u %1,0(%5)\n"
515                 "5:\n"
516                 EXC(1b,5b,%2,%0)
517                 EXC(2b,5b,%1,%0)
518                 EXC(3b,5b,$31,%0)
519                 EXC(4b,5b,$31,%0)
520                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
521                           "=&r"(tmp3), "=&r"(tmp4)
522                         : "r"(va), "r"(una_reg(reg)), "0"(0));
523                 if (error)
524                         goto got_exception;
525                 return;
526
527         case 0x2c: /* stl */
528                 __asm__ __volatile__(
529                 "1:     ldq_u %2,3(%5)\n"
530                 "2:     ldq_u %1,0(%5)\n"
531                 "       inslh %6,%5,%4\n"
532                 "       insll %6,%5,%3\n"
533                 "       msklh %2,%5,%2\n"
534                 "       mskll %1,%5,%1\n"
535                 "       or %2,%4,%2\n"
536                 "       or %1,%3,%1\n"
537                 "3:     stq_u %2,3(%5)\n"
538                 "4:     stq_u %1,0(%5)\n"
539                 "5:\n"
540                 EXC(1b,5b,%2,%0)
541                 EXC(2b,5b,%1,%0)
542                 EXC(3b,5b,$31,%0)
543                 EXC(4b,5b,$31,%0)
544                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
545                           "=&r"(tmp3), "=&r"(tmp4)
546                         : "r"(va), "r"(una_reg(reg)), "0"(0));
547                 if (error)
548                         goto got_exception;
549                 return;
550
551         case 0x2d: /* stq */
552                 __asm__ __volatile__(
553                 "1:     ldq_u %2,7(%5)\n"
554                 "2:     ldq_u %1,0(%5)\n"
555                 "       insqh %6,%5,%4\n"
556                 "       insql %6,%5,%3\n"
557                 "       mskqh %2,%5,%2\n"
558                 "       mskql %1,%5,%1\n"
559                 "       or %2,%4,%2\n"
560                 "       or %1,%3,%1\n"
561                 "3:     stq_u %2,7(%5)\n"
562                 "4:     stq_u %1,0(%5)\n"
563                 "5:\n"
564                 EXC(1b,5b,%2,%0)
565                 EXC(2b,5b,%1,%0)
566                 EXC(3b,5b,$31,%0)
567                 EXC(4b,5b,$31,%0)
568                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
569                           "=&r"(tmp3), "=&r"(tmp4)
570                         : "r"(va), "r"(una_reg(reg)), "0"(0));
571                 if (error)
572                         goto got_exception;
573                 return;
574         }
575
576         printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
577                 pc, va, opcode, reg);
578         make_task_dead(SIGSEGV);
579
580 got_exception:
581         /* Ok, we caught the exception, but we don't want it.  Is there
582            someone to pass it along to?  */
583         if ((fixup = search_exception_tables(pc)) != 0) {
584                 unsigned long newpc;
585                 newpc = fixup_exception(una_reg, fixup, pc);
586
587                 printk("Forwarding unaligned exception at %lx (%lx)\n",
588                        pc, newpc);
589
590                 regs->pc = newpc;
591                 return;
592         }
593
594         /*
595          * Yikes!  No one to forward the exception to.
596          * Since the registers are in a weird format, dump them ourselves.
597          */
598
599         printk("%s(%d): unhandled unaligned exception\n",
600                current->comm, task_pid_nr(current));
601
602         printk("pc = [<%016lx>]  ra = [<%016lx>]  ps = %04lx\n",
603                pc, una_reg(26), regs->ps);
604         printk("r0 = %016lx  r1 = %016lx  r2 = %016lx\n",
605                una_reg(0), una_reg(1), una_reg(2));
606         printk("r3 = %016lx  r4 = %016lx  r5 = %016lx\n",
607                una_reg(3), una_reg(4), una_reg(5));
608         printk("r6 = %016lx  r7 = %016lx  r8 = %016lx\n",
609                una_reg(6), una_reg(7), una_reg(8));
610         printk("r9 = %016lx  r10= %016lx  r11= %016lx\n",
611                una_reg(9), una_reg(10), una_reg(11));
612         printk("r12= %016lx  r13= %016lx  r14= %016lx\n",
613                una_reg(12), una_reg(13), una_reg(14));
614         printk("r15= %016lx\n", una_reg(15));
615         printk("r16= %016lx  r17= %016lx  r18= %016lx\n",
616                una_reg(16), una_reg(17), una_reg(18));
617         printk("r19= %016lx  r20= %016lx  r21= %016lx\n",
618                una_reg(19), una_reg(20), una_reg(21));
619         printk("r22= %016lx  r23= %016lx  r24= %016lx\n",
620                una_reg(22), una_reg(23), una_reg(24));
621         printk("r25= %016lx  r27= %016lx  r28= %016lx\n",
622                una_reg(25), una_reg(27), una_reg(28));
623         printk("gp = %016lx  sp = %p\n", regs->gp, regs+1);
624
625         dik_show_code((unsigned int *)pc);
626         dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
627
628         if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
629                 printk("die_if_kernel recursion detected.\n");
630                 local_irq_enable();
631                 while (1);
632         }
633         make_task_dead(SIGSEGV);
634 }
635
636 /*
637  * Convert an s-floating point value in memory format to the
638  * corresponding value in register format.  The exponent
639  * needs to be remapped to preserve non-finite values
640  * (infinities, not-a-numbers, denormals).
641  */
642 static inline unsigned long
643 s_mem_to_reg (unsigned long s_mem)
644 {
645         unsigned long frac    = (s_mem >>  0) & 0x7fffff;
646         unsigned long sign    = (s_mem >> 31) & 0x1;
647         unsigned long exp_msb = (s_mem >> 30) & 0x1;
648         unsigned long exp_low = (s_mem >> 23) & 0x7f;
649         unsigned long exp;
650
651         exp = (exp_msb << 10) | exp_low;        /* common case */
652         if (exp_msb) {
653                 if (exp_low == 0x7f) {
654                         exp = 0x7ff;
655                 }
656         } else {
657                 if (exp_low == 0x00) {
658                         exp = 0x000;
659                 } else {
660                         exp |= (0x7 << 7);
661                 }
662         }
663         return (sign << 63) | (exp << 52) | (frac << 29);
664 }
665
666 /*
667  * Convert an s-floating point value in register format to the
668  * corresponding value in memory format.
669  */
670 static inline unsigned long
671 s_reg_to_mem (unsigned long s_reg)
672 {
673         return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
674 }
675
676 /*
677  * Handle user-level unaligned fault.  Handling user-level unaligned
678  * faults is *extremely* slow and produces nasty messages.  A user
679  * program *should* fix unaligned faults ASAP.
680  *
681  * Notice that we have (almost) the regular kernel stack layout here,
682  * so finding the appropriate registers is a little more difficult
683  * than in the kernel case.
684  *
685  * Finally, we handle regular integer load/stores only.  In
686  * particular, load-linked/store-conditionally and floating point
687  * load/stores are not supported.  The former make no sense with
688  * unaligned faults (they are guaranteed to fail) and I don't think
689  * the latter will occur in any decent program.
690  *
691  * Sigh. We *do* have to handle some FP operations, because GCC will
692  * uses them as temporary storage for integer memory to memory copies.
693  * However, we need to deal with stt/ldt and sts/lds only.
694  */
695
696 #define OP_INT_MASK     ( 1L << 0x28 | 1L << 0x2c   /* ldl stl */       \
697                         | 1L << 0x29 | 1L << 0x2d   /* ldq stq */       \
698                         | 1L << 0x0c | 1L << 0x0d   /* ldwu stw */      \
699                         | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
700
701 #define OP_WRITE_MASK   ( 1L << 0x26 | 1L << 0x27   /* sts stt */       \
702                         | 1L << 0x2c | 1L << 0x2d   /* stl stq */       \
703                         | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
704
705 #define R(x)    ((size_t) &((struct pt_regs *)0)->x)
706
707 static int unauser_reg_offsets[32] = {
708         R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
709         /* r9 ... r15 are stored in front of regs.  */
710         -56, -48, -40, -32, -24, -16, -8,
711         R(r16), R(r17), R(r18),
712         R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
713         R(r27), R(r28), R(gp),
714         0, 0
715 };
716
717 #undef R
718
719 asmlinkage void
720 do_entUnaUser(void __user * va, unsigned long opcode,
721               unsigned long reg, struct pt_regs *regs)
722 {
723         static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
724
725         unsigned long tmp1, tmp2, tmp3, tmp4;
726         unsigned long fake_reg, *reg_addr = &fake_reg;
727         int si_code;
728         long error;
729
730         /* Check the UAC bits to decide what the user wants us to do
731            with the unaligned access.  */
732
733         if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
734                 if (__ratelimit(&ratelimit)) {
735                         printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
736                                current->comm, task_pid_nr(current),
737                                regs->pc - 4, va, opcode, reg);
738                 }
739         }
740         if ((current_thread_info()->status & TS_UAC_SIGBUS))
741                 goto give_sigbus;
742         /* Not sure why you'd want to use this, but... */
743         if ((current_thread_info()->status & TS_UAC_NOFIX))
744                 return;
745
746         /* Don't bother reading ds in the access check since we already
747            know that this came from the user.  Also rely on the fact that
748            the page at TASK_SIZE is unmapped and so can't be touched anyway. */
749         if ((unsigned long)va >= TASK_SIZE)
750                 goto give_sigsegv;
751
752         ++unaligned[1].count;
753         unaligned[1].va = (unsigned long)va;
754         unaligned[1].pc = regs->pc - 4;
755
756         if ((1L << opcode) & OP_INT_MASK) {
757                 /* it's an integer load/store */
758                 if (reg < 30) {
759                         reg_addr = (unsigned long *)
760                           ((char *)regs + unauser_reg_offsets[reg]);
761                 } else if (reg == 30) {
762                         /* usp in PAL regs */
763                         fake_reg = rdusp();
764                 } else {
765                         /* zero "register" */
766                         fake_reg = 0;
767                 }
768         }
769
770         /* We don't want to use the generic get/put unaligned macros as
771            we want to trap exceptions.  Only if we actually get an
772            exception will we decide whether we should have caught it.  */
773
774         switch (opcode) {
775         case 0x0c: /* ldwu */
776                 __asm__ __volatile__(
777                 "1:     ldq_u %1,0(%3)\n"
778                 "2:     ldq_u %2,1(%3)\n"
779                 "       extwl %1,%3,%1\n"
780                 "       extwh %2,%3,%2\n"
781                 "3:\n"
782                 EXC(1b,3b,%1,%0)
783                 EXC(2b,3b,%2,%0)
784                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
785                         : "r"(va), "0"(0));
786                 if (error)
787                         goto give_sigsegv;
788                 *reg_addr = tmp1|tmp2;
789                 break;
790
791         case 0x22: /* lds */
792                 __asm__ __volatile__(
793                 "1:     ldq_u %1,0(%3)\n"
794                 "2:     ldq_u %2,3(%3)\n"
795                 "       extll %1,%3,%1\n"
796                 "       extlh %2,%3,%2\n"
797                 "3:\n"
798                 EXC(1b,3b,%1,%0)
799                 EXC(2b,3b,%2,%0)
800                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
801                         : "r"(va), "0"(0));
802                 if (error)
803                         goto give_sigsegv;
804                 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
805                 return;
806
807         case 0x23: /* ldt */
808                 __asm__ __volatile__(
809                 "1:     ldq_u %1,0(%3)\n"
810                 "2:     ldq_u %2,7(%3)\n"
811                 "       extql %1,%3,%1\n"
812                 "       extqh %2,%3,%2\n"
813                 "3:\n"
814                 EXC(1b,3b,%1,%0)
815                 EXC(2b,3b,%2,%0)
816                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
817                         : "r"(va), "0"(0));
818                 if (error)
819                         goto give_sigsegv;
820                 alpha_write_fp_reg(reg, tmp1|tmp2);
821                 return;
822
823         case 0x28: /* ldl */
824                 __asm__ __volatile__(
825                 "1:     ldq_u %1,0(%3)\n"
826                 "2:     ldq_u %2,3(%3)\n"
827                 "       extll %1,%3,%1\n"
828                 "       extlh %2,%3,%2\n"
829                 "3:\n"
830                 EXC(1b,3b,%1,%0)
831                 EXC(2b,3b,%2,%0)
832                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
833                         : "r"(va), "0"(0));
834                 if (error)
835                         goto give_sigsegv;
836                 *reg_addr = (int)(tmp1|tmp2);
837                 break;
838
839         case 0x29: /* ldq */
840                 __asm__ __volatile__(
841                 "1:     ldq_u %1,0(%3)\n"
842                 "2:     ldq_u %2,7(%3)\n"
843                 "       extql %1,%3,%1\n"
844                 "       extqh %2,%3,%2\n"
845                 "3:\n"
846                 EXC(1b,3b,%1,%0)
847                 EXC(2b,3b,%2,%0)
848                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
849                         : "r"(va), "0"(0));
850                 if (error)
851                         goto give_sigsegv;
852                 *reg_addr = tmp1|tmp2;
853                 break;
854
855         /* Note that the store sequences do not indicate that they change
856            memory because it _should_ be affecting nothing in this context.
857            (Otherwise we have other, much larger, problems.)  */
858         case 0x0d: /* stw */
859                 __asm__ __volatile__(
860                 "1:     ldq_u %2,1(%5)\n"
861                 "2:     ldq_u %1,0(%5)\n"
862                 "       inswh %6,%5,%4\n"
863                 "       inswl %6,%5,%3\n"
864                 "       mskwh %2,%5,%2\n"
865                 "       mskwl %1,%5,%1\n"
866                 "       or %2,%4,%2\n"
867                 "       or %1,%3,%1\n"
868                 "3:     stq_u %2,1(%5)\n"
869                 "4:     stq_u %1,0(%5)\n"
870                 "5:\n"
871                 EXC(1b,5b,%2,%0)
872                 EXC(2b,5b,%1,%0)
873                 EXC(3b,5b,$31,%0)
874                 EXC(4b,5b,$31,%0)
875                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
876                           "=&r"(tmp3), "=&r"(tmp4)
877                         : "r"(va), "r"(*reg_addr), "0"(0));
878                 if (error)
879                         goto give_sigsegv;
880                 return;
881
882         case 0x26: /* sts */
883                 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
884                 fallthrough;
885
886         case 0x2c: /* stl */
887                 __asm__ __volatile__(
888                 "1:     ldq_u %2,3(%5)\n"
889                 "2:     ldq_u %1,0(%5)\n"
890                 "       inslh %6,%5,%4\n"
891                 "       insll %6,%5,%3\n"
892                 "       msklh %2,%5,%2\n"
893                 "       mskll %1,%5,%1\n"
894                 "       or %2,%4,%2\n"
895                 "       or %1,%3,%1\n"
896                 "3:     stq_u %2,3(%5)\n"
897                 "4:     stq_u %1,0(%5)\n"
898                 "5:\n"
899                 EXC(1b,5b,%2,%0)
900                 EXC(2b,5b,%1,%0)
901                 EXC(3b,5b,$31,%0)
902                 EXC(4b,5b,$31,%0)
903                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
904                           "=&r"(tmp3), "=&r"(tmp4)
905                         : "r"(va), "r"(*reg_addr), "0"(0));
906                 if (error)
907                         goto give_sigsegv;
908                 return;
909
910         case 0x27: /* stt */
911                 fake_reg = alpha_read_fp_reg(reg);
912                 fallthrough;
913
914         case 0x2d: /* stq */
915                 __asm__ __volatile__(
916                 "1:     ldq_u %2,7(%5)\n"
917                 "2:     ldq_u %1,0(%5)\n"
918                 "       insqh %6,%5,%4\n"
919                 "       insql %6,%5,%3\n"
920                 "       mskqh %2,%5,%2\n"
921                 "       mskql %1,%5,%1\n"
922                 "       or %2,%4,%2\n"
923                 "       or %1,%3,%1\n"
924                 "3:     stq_u %2,7(%5)\n"
925                 "4:     stq_u %1,0(%5)\n"
926                 "5:\n"
927                 EXC(1b,5b,%2,%0)
928                 EXC(2b,5b,%1,%0)
929                 EXC(3b,5b,$31,%0)
930                 EXC(4b,5b,$31,%0)
931                         : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
932                           "=&r"(tmp3), "=&r"(tmp4)
933                         : "r"(va), "r"(*reg_addr), "0"(0));
934                 if (error)
935                         goto give_sigsegv;
936                 return;
937
938         default:
939                 /* What instruction were you trying to use, exactly?  */
940                 goto give_sigbus;
941         }
942
943         /* Only integer loads should get here; everyone else returns early. */
944         if (reg == 30)
945                 wrusp(fake_reg);
946         return;
947
948 give_sigsegv:
949         regs->pc -= 4;  /* make pc point to faulting insn */
950
951         /* We need to replicate some of the logic in mm/fault.c,
952            since we don't have access to the fault code in the
953            exception handling return path.  */
954         if ((unsigned long)va >= TASK_SIZE)
955                 si_code = SEGV_ACCERR;
956         else {
957                 struct mm_struct *mm = current->mm;
958                 mmap_read_lock(mm);
959                 if (find_vma(mm, (unsigned long)va))
960                         si_code = SEGV_ACCERR;
961                 else
962                         si_code = SEGV_MAPERR;
963                 mmap_read_unlock(mm);
964         }
965         send_sig_fault(SIGSEGV, si_code, va, current);
966         return;
967
968 give_sigbus:
969         regs->pc -= 4;
970         send_sig_fault(SIGBUS, BUS_ADRALN, va, current);
971         return;
972 }
973
974 void
975 trap_init(void)
976 {
977         /* Tell PAL-code what global pointer we want in the kernel.  */
978         register unsigned long gptr __asm__("$29");
979         wrkgp(gptr);
980
981         /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
982            a bug in the handling of the opDEC fault.  Fix it up if so.  */
983         if (implver() == IMPLVER_EV4)
984                 opDEC_check();
985
986         wrent(entArith, 1);
987         wrent(entMM, 2);
988         wrent(entIF, 3);
989         wrent(entUna, 4);
990         wrent(entSys, 5);
991         wrent(entDbg, 6);
992 }