2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
8 * This file handles the architecture-dependent parts of process handling.
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
33 #include <asm/uaccess.h>
34 #include <asm/system.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
44 * Power off function, if any
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
52 set_thread_flag(TIF_POLLING_NRFLAG);
55 /* FIXME -- EV6 and LCA45 know how to power down
58 while (!need_resched())
71 common_shutdown_1(void *generic_ptr)
73 struct halt_info *how = (struct halt_info *)generic_ptr;
74 struct percpu_struct *cpup;
75 unsigned long *pflags, flags;
76 int cpuid = smp_processor_id();
78 /* No point in taking interrupts anymore. */
81 cpup = (struct percpu_struct *)
82 ((unsigned long)hwrpb + hwrpb->processor_offset
83 + hwrpb->processor_size * cpuid);
84 pflags = &cpup->flags;
87 /* Clear reason to "default"; clear "bootstrap in progress". */
88 flags &= ~0x00ff0001UL;
91 /* Secondaries halt here. */
92 if (cpuid != boot_cpuid) {
93 flags |= 0x00040000UL; /* "remain halted" */
95 set_cpu_present(cpuid, false);
96 set_cpu_possible(cpuid, false);
101 if (how->mode == LINUX_REBOOT_CMD_RESTART) {
102 if (!how->restart_cmd) {
103 flags |= 0x00020000UL; /* "cold bootstrap" */
105 /* For SRM, we could probably set environment
106 variables to get this to work. We'd have to
107 delay this until after srm_paging_stop unless
108 we ever got srm_fixup working.
110 At the moment, SRM will use the last boot device,
111 but the file and flags will be the defaults, when
112 doing a "warm" bootstrap. */
113 flags |= 0x00030000UL; /* "warm bootstrap" */
116 flags |= 0x00040000UL; /* "remain halted" */
121 /* Wait for the secondaries to halt. */
122 set_cpu_present(boot_cpuid, false);
123 set_cpu_possible(boot_cpuid, false);
124 while (cpumask_weight(cpu_present_mask))
128 /* If booted from SRM, reset some of the original environment. */
129 if (alpha_using_srm) {
130 #ifdef CONFIG_DUMMY_CONSOLE
131 /* If we've gotten here after SysRq-b, leave interrupt
132 context before taking over the console. */
135 /* This has the effect of resetting the VGA video origin. */
136 take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
138 pci_restore_srm_config();
142 if (alpha_mv.kill_arch)
143 alpha_mv.kill_arch(how->mode);
145 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
146 /* Unfortunately, since MILO doesn't currently understand
147 the hwrpb bits above, we can't reliably halt the
148 processor and keep it halted. So just loop. */
159 common_shutdown(int mode, char *restart_cmd)
161 struct halt_info args;
163 args.restart_cmd = restart_cmd;
164 on_each_cpu(common_shutdown_1, &args, 0);
168 machine_restart(char *restart_cmd)
170 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
177 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
182 machine_power_off(void)
184 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
188 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
189 saved in the context it's used. */
192 show_regs(struct pt_regs *regs)
194 dik_show_regs(regs, NULL);
198 * Re-start a thread when doing execve()
201 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
208 EXPORT_SYMBOL(start_thread);
211 * Free current thread data structures etc..
221 /* Arrange for each exec'ed process to start off with a clean slate
222 with respect to the FPU. This is all exceptions disabled. */
223 current_thread_info()->ieee_state = 0;
224 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
226 /* Clean slate for TLS. */
227 current_thread_info()->pcb.unique = 0;
231 release_thread(struct task_struct *dead_task)
236 * "alpha_clone()".. By the time we get here, the
237 * non-volatile registers have also been saved on the
238 * stack. We do some ugly pointer stuff here.. (see
241 * Notice that "fork()" is implemented in terms of clone,
242 * with parameters (SIGCHLD, 0).
245 alpha_clone(unsigned long clone_flags, unsigned long usp,
246 int __user *parent_tid, int __user *child_tid,
247 unsigned long tls_value, struct pt_regs *regs)
252 return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
256 alpha_vfork(struct pt_regs *regs)
258 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
259 regs, 0, NULL, NULL);
263 * Copy an alpha thread..
265 * Note the "stack_offset" stuff: when returning to kernel mode, we need
266 * to have some extra stack-space for the kernel stack that still exists
267 * after the "ret_from_fork". When returning to user mode, we only want
268 * the space needed by the syscall stack frame (ie "struct pt_regs").
269 * Use the passed "regs" pointer to determine how much space we need
270 * for a kernel fork().
274 copy_thread(unsigned long clone_flags, unsigned long usp,
275 unsigned long unused,
276 struct task_struct * p, struct pt_regs * regs)
278 extern void ret_from_fork(void);
280 struct thread_info *childti = task_thread_info(p);
281 struct pt_regs * childregs;
282 struct switch_stack * childstack, *stack;
283 unsigned long stack_offset, settls;
285 stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
287 stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
288 childregs = (struct pt_regs *)
289 (stack_offset + PAGE_SIZE + task_stack_page(p));
295 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
297 stack = ((struct switch_stack *) regs) - 1;
298 childstack = ((struct switch_stack *) childregs) - 1;
299 *childstack = *stack;
300 childstack->r26 = (unsigned long) ret_from_fork;
301 childti->pcb.usp = usp;
302 childti->pcb.ksp = (unsigned long) childstack;
303 childti->pcb.flags = 1; /* set FEN, clear everything else */
305 /* Set a new TLS for the child thread? Peek back into the
306 syscall arguments that we saved on syscall entry. Oops,
307 except we'd have clobbered it with the parent/child set
308 of r20. Read the saved copy. */
309 /* Note: if CLONE_SETTLS is not set, then we must inherit the
310 value from the parent, which will have been set by the block
311 copy in dup_task_struct. This is non-intuitive, but is
312 required for proper operation in the case of a threaded
313 application calling fork. */
314 if (clone_flags & CLONE_SETTLS)
315 childti->pcb.unique = settls;
321 * Fill in the user structure for a ELF core dump.
324 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
326 /* switch stack follows right below pt_regs: */
327 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
359 dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
362 /* Once upon a time this was the PS value. Which is stupid
363 since that is always 8 for usermode. Usurped for the more
364 useful value of the thread's UNIQUE field. */
365 dest[32] = ti->pcb.unique;
367 EXPORT_SYMBOL(dump_elf_thread);
370 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
372 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
375 EXPORT_SYMBOL(dump_elf_task);
378 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
380 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
381 memcpy(dest, sw->fp, 32 * 8);
384 EXPORT_SYMBOL(dump_elf_task_fp);
387 * sys_execve() executes a new program.
390 do_sys_execve(const char __user *ufilename,
391 const char __user *const __user *argv,
392 const char __user *const __user *envp, struct pt_regs *regs)
397 filename = getname(ufilename);
398 error = PTR_ERR(filename);
399 if (IS_ERR(filename))
401 error = do_execve(filename, argv, envp, regs);
408 * Return saved PC of a blocked thread. This assumes the frame
409 * pointer is the 6th saved long on the kernel stack and that the
410 * saved return address is the first long in the frame. This all
411 * holds provided the thread blocked through a call to schedule() ($15
412 * is the frame pointer in schedule() and $15 is saved at offset 48 by
413 * entry.S:do_switch_stack).
415 * Under heavy swap load I've seen this lose in an ugly way. So do
416 * some extra sanity checking on the ranges we expect these pointers
417 * to be in so that we can fail gracefully. This is just for ps after
422 thread_saved_pc(struct task_struct *t)
424 unsigned long base = (unsigned long)task_stack_page(t);
425 unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
427 if (sp > base && sp+6*8 < base + 16*1024) {
428 fp = ((unsigned long*)sp)[6];
429 if (fp > sp && fp < base + 16*1024)
430 return *(unsigned long *)fp;
437 get_wchan(struct task_struct *p)
439 unsigned long schedule_frame;
441 if (!p || p == current || p->state == TASK_RUNNING)
444 * This one depends on the frame size of schedule(). Do a
445 * "disass schedule" in gdb to find the frame size. Also, the
446 * code assumes that sleep_on() follows immediately after
447 * interruptible_sleep_on() and that add_timer() follows
448 * immediately after interruptible_sleep(). Ugly, isn't it?
449 * Maybe adding a wchan field to task_struct would be better,
453 pc = thread_saved_pc(p);
454 if (in_sched_functions(pc)) {
455 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
456 return ((unsigned long *)schedule_frame)[12];