3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZUNBDB3 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb3.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb3.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb3.f">
21 * SUBROUTINE ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
22 * TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
24 * .. Scalar Arguments ..
25 * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
27 * .. Array Arguments ..
28 * DOUBLE PRECISION PHI(*), THETA(*)
29 * COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
30 * $ X11(LDX11,*), X21(LDX21,*)
39 *> ZUNBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny
40 *> matrix X with orthonomal columns:
43 *> [ X11 ] [ P1 | ] [ 0 ]
44 *> [-----] = [---------] [-----] Q1**T .
45 *> [ X21 ] [ | P2 ] [ B21 ]
48 *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P,
49 *> Q, or M-Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB4 handle cases in
50 *> which M-P is not the minimum dimension.
52 *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
53 *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
54 *> Householder vectors.
56 *> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented
57 *> implicitly by angles THETA, PHI.
67 *> The number of rows X11 plus the number of rows in X21.
73 *> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q).
79 *> The number of columns in X11 and X21. 0 <= Q <= M.
84 *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
85 *> On entry, the top block of the matrix X to be reduced. On
86 *> exit, the columns of tril(X11) specify reflectors for P1 and
87 *> the rows of triu(X11,1) specify reflectors for Q1.
93 *> The leading dimension of X11. LDX11 >= P.
98 *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
99 *> On entry, the bottom block of the matrix X to be reduced. On
100 *> exit, the columns of tril(X21) specify reflectors for P2.
106 *> The leading dimension of X21. LDX21 >= M-P.
111 *> THETA is DOUBLE PRECISION array, dimension (Q)
112 *> The entries of the bidiagonal blocks B11, B21 are defined by
113 *> THETA and PHI. See Further Details.
118 *> PHI is DOUBLE PRECISION array, dimension (Q-1)
119 *> The entries of the bidiagonal blocks B11, B21 are defined by
120 *> THETA and PHI. See Further Details.
125 *> TAUP1 is COMPLEX*16 array, dimension (P)
126 *> The scalar factors of the elementary reflectors that define
132 *> TAUP2 is COMPLEX*16 array, dimension (M-P)
133 *> The scalar factors of the elementary reflectors that define
139 *> TAUQ1 is COMPLEX*16 array, dimension (Q)
140 *> The scalar factors of the elementary reflectors that define
146 *> WORK is COMPLEX*16 array, dimension (LWORK)
152 *> The dimension of the array WORK. LWORK >= M-Q.
154 *> If LWORK = -1, then a workspace query is assumed; the routine
155 *> only calculates the optimal size of the WORK array, returns
156 *> this value as the first entry of the WORK array, and no error
157 *> message related to LWORK is issued by XERBLA.
163 *> = 0: successful exit.
164 *> < 0: if INFO = -i, the i-th argument had an illegal value.
170 *> \author Univ. of Tennessee
171 *> \author Univ. of California Berkeley
172 *> \author Univ. of Colorado Denver
177 *> \ingroup complex16OTHERcomputational
179 *> \par Further Details:
180 * =====================
184 *> The upper-bidiagonal blocks B11, B21 are represented implicitly by
185 *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
186 *> in each bidiagonal band is a product of a sine or cosine of a THETA
187 *> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
189 *> P1, P2, and Q1 are represented as products of elementary reflectors.
190 *> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
197 *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
198 *> Algorithms, 50(1):33-65, 2009.
200 * =====================================================================
201 SUBROUTINE ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
202 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
204 * -- LAPACK computational routine (version 3.6.1) --
205 * -- LAPACK is a software package provided by Univ. of Tennessee, --
206 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
209 * .. Scalar Arguments ..
210 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
212 * .. Array Arguments ..
213 DOUBLE PRECISION PHI(*), THETA(*)
214 COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
215 $ X11(LDX11,*), X21(LDX21,*)
218 * ====================================================================
222 PARAMETER ( ONE = (1.0D0,0.0D0) )
224 * .. Local Scalars ..
225 DOUBLE PRECISION C, S
226 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
230 * .. External Subroutines ..
231 EXTERNAL ZLARF, ZLARFGP, ZUNBDB5, ZDROT, XERBLA
233 * .. External Functions ..
234 DOUBLE PRECISION DZNRM2
237 * .. Intrinsic Function ..
238 INTRINSIC ATAN2, COS, MAX, SIN, SQRT
240 * .. Executable Statements ..
242 * Test input arguments
245 LQUERY = LWORK .EQ. -1
249 ELSE IF( 2*P .LT. M .OR. P .GT. M ) THEN
251 ELSE IF( Q .LT. M-P .OR. M-Q .LT. M-P ) THEN
253 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
255 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
261 IF( INFO .EQ. 0 ) THEN
263 LLARF = MAX( P, M-P-1, Q-1 )
266 LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
269 IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
273 IF( INFO .NE. 0 ) THEN
274 CALL XERBLA( 'ZUNBDB3', -INFO )
276 ELSE IF( LQUERY ) THEN
280 * Reduce rows 1, ..., M-P of X11 and X21
285 CALL ZDROT( Q-I+1, X11(I-1,I), LDX11, X21(I,I), LDX11, C,
289 CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
290 CALL ZLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
293 CALL ZLARF( 'R', P-I+1, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
294 $ X11(I,I), LDX11, WORK(ILARF) )
295 CALL ZLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
296 $ X21(I+1,I), LDX21, WORK(ILARF) )
297 CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
298 C = SQRT( DZNRM2( P-I+1, X11(I,I), 1 )**2
299 $ + DZNRM2( M-P-I, X21(I+1,I), 1 )**2 )
300 THETA(I) = ATAN2( S, C )
302 CALL ZUNBDB5( P-I+1, M-P-I, Q-I, X11(I,I), 1, X21(I+1,I), 1,
303 $ X11(I,I+1), LDX11, X21(I+1,I+1), LDX21,
304 $ WORK(IORBDB5), LORBDB5, CHILDINFO )
305 CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
306 IF( I .LT. M-P ) THEN
307 CALL ZLARFGP( M-P-I, X21(I+1,I), X21(I+2,I), 1, TAUP2(I) )
308 PHI(I) = ATAN2( DBLE( X21(I+1,I) ), DBLE( X11(I,I) ) )
312 CALL ZLARF( 'L', M-P-I, Q-I, X21(I+1,I), 1,
313 $ DCONJG(TAUP2(I)), X21(I+1,I+1), LDX21,
317 CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
318 $ X11(I,I+1), LDX11, WORK(ILARF) )
322 * Reduce the bottom-right portion of X11 to the identity matrix
325 CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
327 CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
328 $ X11(I,I+1), LDX11, WORK(ILARF) )