3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZUNBDB1 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb1.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb1.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb1.f">
21 * SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
22 * TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
24 * .. Scalar Arguments ..
25 * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
27 * .. Array Arguments ..
28 * DOUBLE PRECISION PHI(*), THETA(*)
29 * COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
30 * $ X11(LDX11,*), X21(LDX21,*)
39 *> ZUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
40 *> matrix X with orthonomal columns:
43 *> [ X11 ] [ P1 | ] [ 0 ]
44 *> [-----] = [---------] [-----] Q1**T .
45 *> [ X21 ] [ | P2 ] [ B21 ]
48 *> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
49 *> M-P, or M-Q. Routines ZUNBDB2, ZUNBDB3, and ZUNBDB4 handle cases in
50 *> which Q is not the minimum dimension.
52 *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
53 *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
54 *> Householder vectors.
56 *> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
67 *> The number of rows X11 plus the number of rows in X21.
73 *> The number of rows in X11. 0 <= P <= M.
79 *> The number of columns in X11 and X21. 0 <= Q <=
85 *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
86 *> On entry, the top block of the matrix X to be reduced. On
87 *> exit, the columns of tril(X11) specify reflectors for P1 and
88 *> the rows of triu(X11,1) specify reflectors for Q1.
94 *> The leading dimension of X11. LDX11 >= P.
99 *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
100 *> On entry, the bottom block of the matrix X to be reduced. On
101 *> exit, the columns of tril(X21) specify reflectors for P2.
107 *> The leading dimension of X21. LDX21 >= M-P.
112 *> THETA is DOUBLE PRECISION array, dimension (Q)
113 *> The entries of the bidiagonal blocks B11, B21 are defined by
114 *> THETA and PHI. See Further Details.
119 *> PHI is DOUBLE PRECISION array, dimension (Q-1)
120 *> The entries of the bidiagonal blocks B11, B21 are defined by
121 *> THETA and PHI. See Further Details.
126 *> TAUP1 is COMPLEX*16 array, dimension (P)
127 *> The scalar factors of the elementary reflectors that define
133 *> TAUP2 is COMPLEX*16 array, dimension (M-P)
134 *> The scalar factors of the elementary reflectors that define
140 *> TAUQ1 is COMPLEX*16 array, dimension (Q)
141 *> The scalar factors of the elementary reflectors that define
147 *> WORK is COMPLEX*16 array, dimension (LWORK)
153 *> The dimension of the array WORK. LWORK >= M-Q.
155 *> If LWORK = -1, then a workspace query is assumed; the routine
156 *> only calculates the optimal size of the WORK array, returns
157 *> this value as the first entry of the WORK array, and no error
158 *> message related to LWORK is issued by XERBLA.
164 *> = 0: successful exit.
165 *> < 0: if INFO = -i, the i-th argument had an illegal value.
172 *> \author Univ. of Tennessee
173 *> \author Univ. of California Berkeley
174 *> \author Univ. of Colorado Denver
179 *> \ingroup complex16OTHERcomputational
181 *> \par Further Details:
182 * =====================
186 *> The upper-bidiagonal blocks B11, B21 are represented implicitly by
187 *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
188 *> in each bidiagonal band is a product of a sine or cosine of a THETA
189 *> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
191 *> P1, P2, and Q1 are represented as products of elementary reflectors.
192 *> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
199 *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
200 *> Algorithms, 50(1):33-65, 2009.
202 * =====================================================================
203 SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
204 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
206 * -- LAPACK computational routine (version 3.6.1) --
207 * -- LAPACK is a software package provided by Univ. of Tennessee, --
208 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
211 * .. Scalar Arguments ..
212 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
214 * .. Array Arguments ..
215 DOUBLE PRECISION PHI(*), THETA(*)
216 COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
217 $ X11(LDX11,*), X21(LDX21,*)
220 * ====================================================================
224 PARAMETER ( ONE = (1.0D0,0.0D0) )
226 * .. Local Scalars ..
227 DOUBLE PRECISION C, S
228 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
232 * .. External Subroutines ..
233 EXTERNAL ZLARF, ZLARFGP, ZUNBDB5, ZDROT, XERBLA
236 * .. External Functions ..
237 DOUBLE PRECISION DZNRM2
240 * .. Intrinsic Function ..
241 INTRINSIC ATAN2, COS, MAX, SIN, SQRT
243 * .. Executable Statements ..
245 * Test input arguments
248 LQUERY = LWORK .EQ. -1
252 ELSE IF( P .LT. Q .OR. M-P .LT. Q ) THEN
254 ELSE IF( Q .LT. 0 .OR. M-Q .LT. Q ) THEN
256 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
258 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
264 IF( INFO .EQ. 0 ) THEN
266 LLARF = MAX( P-1, M-P-1, Q-1 )
269 LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
272 IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
276 IF( INFO .NE. 0 ) THEN
277 CALL XERBLA( 'ZUNBDB1', -INFO )
279 ELSE IF( LQUERY ) THEN
283 * Reduce columns 1, ..., Q of X11 and X21
287 CALL ZLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
288 CALL ZLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
289 THETA(I) = ATAN2( DBLE( X21(I,I) ), DBLE( X11(I,I) ) )
294 CALL ZLARF( 'L', P-I+1, Q-I, X11(I,I), 1, DCONJG(TAUP1(I)),
295 $ X11(I,I+1), LDX11, WORK(ILARF) )
296 CALL ZLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, DCONJG(TAUP2(I)),
297 $ X21(I,I+1), LDX21, WORK(ILARF) )
300 CALL ZDROT( Q-I, X11(I,I+1), LDX11, X21(I,I+1), LDX21, C,
302 CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
303 CALL ZLARFGP( Q-I, X21(I,I+1), X21(I,I+2), LDX21, TAUQ1(I) )
304 S = DBLE( X21(I,I+1) )
306 CALL ZLARF( 'R', P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
307 $ X11(I+1,I+1), LDX11, WORK(ILARF) )
308 CALL ZLARF( 'R', M-P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
309 $ X21(I+1,I+1), LDX21, WORK(ILARF) )
310 CALL ZLACGV( Q-I, X21(I,I+1), LDX21 )
311 C = SQRT( DZNRM2( P-I, X11(I+1,I+1), 1 )**2
312 $ + DZNRM2( M-P-I, X21(I+1,I+1), 1 )**2 )
313 PHI(I) = ATAN2( S, C )
314 CALL ZUNBDB5( P-I, M-P-I, Q-I-1, X11(I+1,I+1), 1,
315 $ X21(I+1,I+1), 1, X11(I+1,I+2), LDX11,
316 $ X21(I+1,I+2), LDX21, WORK(IORBDB5), LORBDB5,