1 *> \brief \b ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZSYTF2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.f">
21 * SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, LDA, N
27 * .. Array Arguments ..
29 * COMPLEX*16 A( LDA, * )
38 *> ZSYTF2 computes the factorization of a complex symmetric matrix A
39 *> using the Bunch-Kaufman diagonal pivoting method:
41 *> A = U*D*U**T or A = L*D*L**T
43 *> where U (or L) is a product of permutation and unit upper (lower)
44 *> triangular matrices, U**T is the transpose of U, and D is symmetric and
45 *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
47 *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
55 *> UPLO is CHARACTER*1
56 *> Specifies whether the upper or lower triangular part of the
57 *> symmetric matrix A is stored:
58 *> = 'U': Upper triangular
59 *> = 'L': Lower triangular
65 *> The order of the matrix A. N >= 0.
70 *> A is COMPLEX*16 array, dimension (LDA,N)
71 *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
72 *> n-by-n upper triangular part of A contains the upper
73 *> triangular part of the matrix A, and the strictly lower
74 *> triangular part of A is not referenced. If UPLO = 'L', the
75 *> leading n-by-n lower triangular part of A contains the lower
76 *> triangular part of the matrix A, and the strictly upper
77 *> triangular part of A is not referenced.
79 *> On exit, the block diagonal matrix D and the multipliers used
80 *> to obtain the factor U or L (see below for further details).
86 *> The leading dimension of the array A. LDA >= max(1,N).
91 *> IPIV is INTEGER array, dimension (N)
92 *> Details of the interchanges and the block structure of D.
95 *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
96 *> interchanged and D(k,k) is a 1-by-1 diagonal block.
98 *> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
99 *> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
100 *> is a 2-by-2 diagonal block.
103 *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
104 *> interchanged and D(k,k) is a 1-by-1 diagonal block.
106 *> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
107 *> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
108 *> is a 2-by-2 diagonal block.
114 *> = 0: successful exit
115 *> < 0: if INFO = -k, the k-th argument had an illegal value
116 *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
117 *> has been completed, but the block diagonal matrix D is
118 *> exactly singular, and division by zero will occur if it
119 *> is used to solve a system of equations.
125 *> \author Univ. of Tennessee
126 *> \author Univ. of California Berkeley
127 *> \author Univ. of Colorado Denver
130 *> \date November 2013
132 *> \ingroup complex16SYcomputational
134 *> \par Further Details:
135 * =====================
139 *> If UPLO = 'U', then A = U*D*U**T, where
140 *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
141 *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
142 *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
143 *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
144 *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
145 *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
148 *> U(k) = ( 0 I 0 ) s
152 *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
153 *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
154 *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
156 *> If UPLO = 'L', then A = L*D*L**T, where
157 *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
158 *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
159 *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
160 *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
161 *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
162 *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
165 *> L(k) = ( 0 I 0 ) s
169 *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
170 *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
171 *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
174 *> \par Contributors:
179 *> 09-29-06 - patch from
180 *> Bobby Cheng, MathWorks
182 *> Replace l.209 and l.377
183 *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
185 *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
187 *> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
191 * =====================================================================
192 SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
194 * -- LAPACK computational routine (version 3.5.0) --
195 * -- LAPACK is a software package provided by Univ. of Tennessee, --
196 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
199 * .. Scalar Arguments ..
203 * .. Array Arguments ..
205 COMPLEX*16 A( LDA, * )
208 * =====================================================================
211 DOUBLE PRECISION ZERO, ONE
212 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
213 DOUBLE PRECISION EIGHT, SEVTEN
214 PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
216 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
218 * .. Local Scalars ..
220 INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
221 DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX
222 COMPLEX*16 D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
224 * .. External Functions ..
225 LOGICAL DISNAN, LSAME
227 EXTERNAL DISNAN, LSAME, IZAMAX
229 * .. External Subroutines ..
230 EXTERNAL XERBLA, ZSCAL, ZSWAP, ZSYR
232 * .. Intrinsic Functions ..
233 INTRINSIC ABS, DBLE, DIMAG, MAX, SQRT
235 * .. Statement Functions ..
236 DOUBLE PRECISION CABS1
238 * .. Statement Function definitions ..
239 CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
241 * .. Executable Statements ..
243 * Test the input parameters.
246 UPPER = LSAME( UPLO, 'U' )
247 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
249 ELSE IF( N.LT.0 ) THEN
251 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
255 CALL XERBLA( 'ZSYTF2', -INFO )
259 * Initialize ALPHA for use in choosing pivot block size.
261 ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
265 * Factorize A as U*D*U**T using the upper triangle of A
267 * K is the main loop index, decreasing from N to 1 in steps of
273 * If K < 1, exit from loop
279 * Determine rows and columns to be interchanged and whether
280 * a 1-by-1 or 2-by-2 pivot block will be used
282 ABSAKK = CABS1( A( K, K ) )
284 * IMAX is the row-index of the largest off-diagonal element in
285 * column K, and COLMAX is its absolute value.
286 * Determine both COLMAX and IMAX.
289 IMAX = IZAMAX( K-1, A( 1, K ), 1 )
290 COLMAX = CABS1( A( IMAX, K ) )
295 IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
297 * Column K is zero or underflow, or contains a NaN:
298 * set INFO and continue
304 IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
306 * no interchange, use 1-by-1 pivot block
311 * JMAX is the column-index of the largest off-diagonal
312 * element in row IMAX, and ROWMAX is its absolute value
314 JMAX = IMAX + IZAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
315 ROWMAX = CABS1( A( IMAX, JMAX ) )
317 JMAX = IZAMAX( IMAX-1, A( 1, IMAX ), 1 )
318 ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
321 IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
323 * no interchange, use 1-by-1 pivot block
326 ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
328 * interchange rows and columns K and IMAX, use 1-by-1
334 * interchange rows and columns K-1 and IMAX, use 2-by-2
345 * Interchange rows and columns KK and KP in the leading
346 * submatrix A(1:k,1:k)
348 CALL ZSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
349 CALL ZSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
352 A( KK, KK ) = A( KP, KP )
354 IF( KSTEP.EQ.2 ) THEN
356 A( K-1, K ) = A( KP, K )
361 * Update the leading submatrix
363 IF( KSTEP.EQ.1 ) THEN
365 * 1-by-1 pivot block D(k): column k now holds
369 * where U(k) is the k-th column of U
371 * Perform a rank-1 update of A(1:k-1,1:k-1) as
373 * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
375 R1 = CONE / A( K, K )
376 CALL ZSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
378 * Store U(k) in column k
380 CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
383 * 2-by-2 pivot block D(k): columns k and k-1 now hold
385 * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
387 * where U(k) and U(k-1) are the k-th and (k-1)-th columns
390 * Perform a rank-2 update of A(1:k-2,1:k-2) as
392 * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
393 * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
398 D22 = A( K-1, K-1 ) / D12
399 D11 = A( K, K ) / D12
400 T = CONE / ( D11*D22-CONE )
403 DO 30 J = K - 2, 1, -1
404 WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
405 WK = D12*( D22*A( J, K )-A( J, K-1 ) )
407 A( I, J ) = A( I, J ) - A( I, K )*WK -
419 * Store details of the interchanges in IPIV
421 IF( KSTEP.EQ.1 ) THEN
428 * Decrease K and return to the start of the main loop
435 * Factorize A as L*D*L**T using the lower triangle of A
437 * K is the main loop index, increasing from 1 to N in steps of
443 * If K > N, exit from loop
449 * Determine rows and columns to be interchanged and whether
450 * a 1-by-1 or 2-by-2 pivot block will be used
452 ABSAKK = CABS1( A( K, K ) )
454 * IMAX is the row-index of the largest off-diagonal element in
455 * column K, and COLMAX is its absolute value.
456 * Determine both COLMAX and IMAX.
459 IMAX = K + IZAMAX( N-K, A( K+1, K ), 1 )
460 COLMAX = CABS1( A( IMAX, K ) )
465 IF( MAX( ABSAKK, COLMAX ).EQ.ZERO .OR. DISNAN(ABSAKK) ) THEN
467 * Column K is zero or underflow, or contains a NaN:
468 * set INFO and continue
474 IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
476 * no interchange, use 1-by-1 pivot block
481 * JMAX is the column-index of the largest off-diagonal
482 * element in row IMAX, and ROWMAX is its absolute value
484 JMAX = K - 1 + IZAMAX( IMAX-K, A( IMAX, K ), LDA )
485 ROWMAX = CABS1( A( IMAX, JMAX ) )
487 JMAX = IMAX + IZAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
488 ROWMAX = MAX( ROWMAX, CABS1( A( JMAX, IMAX ) ) )
491 IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
493 * no interchange, use 1-by-1 pivot block
496 ELSE IF( CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
498 * interchange rows and columns K and IMAX, use 1-by-1
504 * interchange rows and columns K+1 and IMAX, use 2-by-2
515 * Interchange rows and columns KK and KP in the trailing
516 * submatrix A(k:n,k:n)
519 $ CALL ZSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
520 CALL ZSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
523 A( KK, KK ) = A( KP, KP )
525 IF( KSTEP.EQ.2 ) THEN
527 A( K+1, K ) = A( KP, K )
532 * Update the trailing submatrix
534 IF( KSTEP.EQ.1 ) THEN
536 * 1-by-1 pivot block D(k): column k now holds
540 * where L(k) is the k-th column of L
544 * Perform a rank-1 update of A(k+1:n,k+1:n) as
546 * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
548 R1 = CONE / A( K, K )
549 CALL ZSYR( UPLO, N-K, -R1, A( K+1, K ), 1,
550 $ A( K+1, K+1 ), LDA )
552 * Store L(k) in column K
554 CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
558 * 2-by-2 pivot block D(k)
562 * Perform a rank-2 update of A(k+2:n,k+2:n) as
564 * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
565 * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
567 * where L(k) and L(k+1) are the k-th and (k+1)-th
571 D11 = A( K+1, K+1 ) / D21
572 D22 = A( K, K ) / D21
573 T = CONE / ( D11*D22-CONE )
577 WK = D21*( D11*A( J, K )-A( J, K+1 ) )
578 WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
580 A( I, J ) = A( I, J ) - A( I, K )*WK -
590 * Store details of the interchanges in IPIV
592 IF( KSTEP.EQ.1 ) THEN
599 * Increase K and return to the start of the main loop