3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZPBTRF + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtrf.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtrf.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtrf.f">
21 * SUBROUTINE ZPBTRF( UPLO, N, KD, AB, LDAB, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, KD, LDAB, N
27 * .. Array Arguments ..
28 * COMPLEX*16 AB( LDAB, * )
37 *> ZPBTRF computes the Cholesky factorization of a complex Hermitian
38 *> positive definite band matrix A.
40 *> The factorization has the form
41 *> A = U**H * U, if UPLO = 'U', or
42 *> A = L * L**H, if UPLO = 'L',
43 *> where U is an upper triangular matrix and L is lower triangular.
51 *> UPLO is CHARACTER*1
52 *> = 'U': Upper triangle of A is stored;
53 *> = 'L': Lower triangle of A is stored.
59 *> The order of the matrix A. N >= 0.
65 *> The number of superdiagonals of the matrix A if UPLO = 'U',
66 *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
71 *> AB is COMPLEX*16 array, dimension (LDAB,N)
72 *> On entry, the upper or lower triangle of the Hermitian band
73 *> matrix A, stored in the first KD+1 rows of the array. The
74 *> j-th column of A is stored in the j-th column of the array AB
76 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
77 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
79 *> On exit, if INFO = 0, the triangular factor U or L from the
80 *> Cholesky factorization A = U**H*U or A = L*L**H of the band
81 *> matrix A, in the same storage format as A.
87 *> The leading dimension of the array AB. LDAB >= KD+1.
93 *> = 0: successful exit
94 *> < 0: if INFO = -i, the i-th argument had an illegal value
95 *> > 0: if INFO = i, the leading minor of order i is not
96 *> positive definite, and the factorization could not be
103 *> \author Univ. of Tennessee
104 *> \author Univ. of California Berkeley
105 *> \author Univ. of Colorado Denver
108 *> \date November 2011
110 *> \ingroup complex16OTHERcomputational
112 *> \par Further Details:
113 * =====================
117 *> The band storage scheme is illustrated by the following example, when
118 *> N = 6, KD = 2, and UPLO = 'U':
120 *> On entry: On exit:
122 *> * * a13 a24 a35 a46 * * u13 u24 u35 u46
123 *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
124 *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
126 *> Similarly, if UPLO = 'L' the format of A is as follows:
128 *> On entry: On exit:
130 *> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
131 *> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
132 *> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
134 *> Array elements marked * are not used by the routine.
137 *> \par Contributors:
140 *> Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
142 * =====================================================================
143 SUBROUTINE ZPBTRF( UPLO, N, KD, AB, LDAB, INFO )
145 * -- LAPACK computational routine (version 3.4.0) --
146 * -- LAPACK is a software package provided by Univ. of Tennessee, --
147 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
150 * .. Scalar Arguments ..
152 INTEGER INFO, KD, LDAB, N
154 * .. Array Arguments ..
155 COMPLEX*16 AB( LDAB, * )
158 * =====================================================================
161 DOUBLE PRECISION ONE, ZERO
162 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
164 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
165 INTEGER NBMAX, LDWORK
166 PARAMETER ( NBMAX = 32, LDWORK = NBMAX+1 )
168 * .. Local Scalars ..
169 INTEGER I, I2, I3, IB, II, J, JJ, NB
172 COMPLEX*16 WORK( LDWORK, NBMAX )
174 * .. External Functions ..
177 EXTERNAL LSAME, ILAENV
179 * .. External Subroutines ..
180 EXTERNAL XERBLA, ZGEMM, ZHERK, ZPBTF2, ZPOTF2, ZTRSM
182 * .. Intrinsic Functions ..
185 * .. Executable Statements ..
187 * Test the input parameters.
190 IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
191 $ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
193 ELSE IF( N.LT.0 ) THEN
195 ELSE IF( KD.LT.0 ) THEN
197 ELSE IF( LDAB.LT.KD+1 ) THEN
201 CALL XERBLA( 'ZPBTRF', -INFO )
205 * Quick return if possible
210 * Determine the block size for this environment
212 NB = ILAENV( 1, 'ZPBTRF', UPLO, N, KD, -1, -1 )
214 * The block size must not exceed the semi-bandwidth KD, and must not
215 * exceed the limit set by the size of the local array WORK.
217 NB = MIN( NB, NBMAX )
219 IF( NB.LE.1 .OR. NB.GT.KD ) THEN
223 CALL ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
228 IF( LSAME( UPLO, 'U' ) ) THEN
230 * Compute the Cholesky factorization of a Hermitian band
231 * matrix, given the upper triangle of the matrix in band
234 * Zero the upper triangle of the work array.
242 * Process the band matrix one diagonal block at a time.
245 IB = MIN( NB, N-I+1 )
247 * Factorize the diagonal block
249 CALL ZPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
256 * Update the relevant part of the trailing submatrix.
257 * If A11 denotes the diagonal block which has just been
258 * factorized, then we need to update the remaining
259 * blocks in the diagram:
265 * The numbers of rows and columns in the partitioning
266 * are IB, I2, I3 respectively. The blocks A12, A22 and
267 * A23 are empty if IB = KD. The upper triangle of A13
268 * lies outside the band.
270 I2 = MIN( KD-IB, N-I-IB+1 )
271 I3 = MIN( IB, N-I-KD+1 )
277 CALL ZTRSM( 'Left', 'Upper', 'Conjugate transpose',
278 $ 'Non-unit', IB, I2, CONE,
279 $ AB( KD+1, I ), LDAB-1,
280 $ AB( KD+1-IB, I+IB ), LDAB-1 )
284 CALL ZHERK( 'Upper', 'Conjugate transpose', I2, IB,
285 $ -ONE, AB( KD+1-IB, I+IB ), LDAB-1, ONE,
286 $ AB( KD+1, I+IB ), LDAB-1 )
291 * Copy the lower triangle of A13 into the work array.
295 WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
299 * Update A13 (in the work array).
301 CALL ZTRSM( 'Left', 'Upper', 'Conjugate transpose',
302 $ 'Non-unit', IB, I3, CONE,
303 $ AB( KD+1, I ), LDAB-1, WORK, LDWORK )
308 $ CALL ZGEMM( 'Conjugate transpose',
309 $ 'No transpose', I2, I3, IB, -CONE,
310 $ AB( KD+1-IB, I+IB ), LDAB-1, WORK,
311 $ LDWORK, CONE, AB( 1+IB, I+KD ),
316 CALL ZHERK( 'Upper', 'Conjugate transpose', I3, IB,
317 $ -ONE, WORK, LDWORK, ONE,
318 $ AB( KD+1, I+KD ), LDAB-1 )
320 * Copy the lower triangle of A13 back into place.
324 AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
332 * Compute the Cholesky factorization of a Hermitian band
333 * matrix, given the lower triangle of the matrix in band
336 * Zero the lower triangle of the work array.
344 * Process the band matrix one diagonal block at a time.
347 IB = MIN( NB, N-I+1 )
349 * Factorize the diagonal block
351 CALL ZPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
358 * Update the relevant part of the trailing submatrix.
359 * If A11 denotes the diagonal block which has just been
360 * factorized, then we need to update the remaining
361 * blocks in the diagram:
367 * The numbers of rows and columns in the partitioning
368 * are IB, I2, I3 respectively. The blocks A21, A22 and
369 * A32 are empty if IB = KD. The lower triangle of A31
370 * lies outside the band.
372 I2 = MIN( KD-IB, N-I-IB+1 )
373 I3 = MIN( IB, N-I-KD+1 )
379 CALL ZTRSM( 'Right', 'Lower',
380 $ 'Conjugate transpose', 'Non-unit', I2,
381 $ IB, CONE, AB( 1, I ), LDAB-1,
382 $ AB( 1+IB, I ), LDAB-1 )
386 CALL ZHERK( 'Lower', 'No transpose', I2, IB, -ONE,
387 $ AB( 1+IB, I ), LDAB-1, ONE,
388 $ AB( 1, I+IB ), LDAB-1 )
393 * Copy the upper triangle of A31 into the work array.
396 DO 100 II = 1, MIN( JJ, I3 )
397 WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
401 * Update A31 (in the work array).
403 CALL ZTRSM( 'Right', 'Lower',
404 $ 'Conjugate transpose', 'Non-unit', I3,
405 $ IB, CONE, AB( 1, I ), LDAB-1, WORK,
411 $ CALL ZGEMM( 'No transpose',
412 $ 'Conjugate transpose', I3, I2, IB,
413 $ -CONE, WORK, LDWORK, AB( 1+IB, I ),
414 $ LDAB-1, CONE, AB( 1+KD-IB, I+IB ),
419 CALL ZHERK( 'Lower', 'No transpose', I3, IB, -ONE,
420 $ WORK, LDWORK, ONE, AB( 1, I+KD ),
423 * Copy the upper triangle of A31 back into place.
426 DO 120 II = 1, MIN( JJ, I3 )
427 AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )