1 *> \brief \b ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZPBTF2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbtf2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbtf2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbtf2.f">
21 * SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, KD, LDAB, N
27 * .. Array Arguments ..
28 * COMPLEX*16 AB( LDAB, * )
37 *> ZPBTF2 computes the Cholesky factorization of a complex Hermitian
38 *> positive definite band matrix A.
40 *> The factorization has the form
41 *> A = U**H * U , if UPLO = 'U', or
42 *> A = L * L**H, if UPLO = 'L',
43 *> where U is an upper triangular matrix, U**H is the conjugate transpose
44 *> of U, and L is lower triangular.
46 *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
54 *> UPLO is CHARACTER*1
55 *> Specifies whether the upper or lower triangular part of the
56 *> Hermitian matrix A is stored:
57 *> = 'U': Upper triangular
58 *> = 'L': Lower triangular
64 *> The order of the matrix A. N >= 0.
70 *> The number of super-diagonals of the matrix A if UPLO = 'U',
71 *> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
76 *> AB is COMPLEX*16 array, dimension (LDAB,N)
77 *> On entry, the upper or lower triangle of the Hermitian band
78 *> matrix A, stored in the first KD+1 rows of the array. The
79 *> j-th column of A is stored in the j-th column of the array AB
81 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
82 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
84 *> On exit, if INFO = 0, the triangular factor U or L from the
85 *> Cholesky factorization A = U**H *U or A = L*L**H of the band
86 *> matrix A, in the same storage format as A.
92 *> The leading dimension of the array AB. LDAB >= KD+1.
98 *> = 0: successful exit
99 *> < 0: if INFO = -k, the k-th argument had an illegal value
100 *> > 0: if INFO = k, the leading minor of order k is not
101 *> positive definite, and the factorization could not be
108 *> \author Univ. of Tennessee
109 *> \author Univ. of California Berkeley
110 *> \author Univ. of Colorado Denver
113 *> \date September 2012
115 *> \ingroup complex16OTHERcomputational
117 *> \par Further Details:
118 * =====================
122 *> The band storage scheme is illustrated by the following example, when
123 *> N = 6, KD = 2, and UPLO = 'U':
125 *> On entry: On exit:
127 *> * * a13 a24 a35 a46 * * u13 u24 u35 u46
128 *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
129 *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
131 *> Similarly, if UPLO = 'L' the format of A is as follows:
133 *> On entry: On exit:
135 *> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
136 *> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
137 *> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
139 *> Array elements marked * are not used by the routine.
142 * =====================================================================
143 SUBROUTINE ZPBTF2( UPLO, N, KD, AB, LDAB, INFO )
145 * -- LAPACK computational routine (version 3.4.2) --
146 * -- LAPACK is a software package provided by Univ. of Tennessee, --
147 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
150 * .. Scalar Arguments ..
152 INTEGER INFO, KD, LDAB, N
154 * .. Array Arguments ..
155 COMPLEX*16 AB( LDAB, * )
158 * =====================================================================
161 DOUBLE PRECISION ONE, ZERO
162 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
164 * .. Local Scalars ..
169 * .. External Functions ..
173 * .. External Subroutines ..
174 EXTERNAL XERBLA, ZDSCAL, ZHER, ZLACGV
176 * .. Intrinsic Functions ..
177 INTRINSIC DBLE, MAX, MIN, SQRT
179 * .. Executable Statements ..
181 * Test the input parameters.
184 UPPER = LSAME( UPLO, 'U' )
185 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
187 ELSE IF( N.LT.0 ) THEN
189 ELSE IF( KD.LT.0 ) THEN
191 ELSE IF( LDAB.LT.KD+1 ) THEN
195 CALL XERBLA( 'ZPBTF2', -INFO )
199 * Quick return if possible
204 KLD = MAX( 1, LDAB-1 )
208 * Compute the Cholesky factorization A = U**H * U.
212 * Compute U(J,J) and test for non-positive-definiteness.
214 AJJ = DBLE( AB( KD+1, J ) )
215 IF( AJJ.LE.ZERO ) THEN
222 * Compute elements J+1:J+KN of row J and update the
223 * trailing submatrix within the band.
227 CALL ZDSCAL( KN, ONE / AJJ, AB( KD, J+1 ), KLD )
228 CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
229 CALL ZHER( 'Upper', KN, -ONE, AB( KD, J+1 ), KLD,
230 $ AB( KD+1, J+1 ), KLD )
231 CALL ZLACGV( KN, AB( KD, J+1 ), KLD )
236 * Compute the Cholesky factorization A = L*L**H.
240 * Compute L(J,J) and test for non-positive-definiteness.
242 AJJ = DBLE( AB( 1, J ) )
243 IF( AJJ.LE.ZERO ) THEN
250 * Compute elements J+1:J+KN of column J and update the
251 * trailing submatrix within the band.
255 CALL ZDSCAL( KN, ONE / AJJ, AB( 2, J ), 1 )
256 CALL ZHER( 'Lower', KN, -ONE, AB( 2, J ), 1,
257 $ AB( 1, J+1 ), KLD )