3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZPBSTF + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbstf.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbstf.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbstf.f">
21 * SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, KD, LDAB, N
27 * .. Array Arguments ..
28 * COMPLEX*16 AB( LDAB, * )
37 *> ZPBSTF computes a split Cholesky factorization of a complex
38 *> Hermitian positive definite band matrix A.
40 *> This routine is designed to be used in conjunction with ZHBGST.
42 *> The factorization has the form A = S**H*S where S is a band matrix
43 *> of the same bandwidth as A and the following structure:
48 *> where U is upper triangular of order m = (n+kd)/2, and L is lower
49 *> triangular of order n-m.
57 *> UPLO is CHARACTER*1
58 *> = 'U': Upper triangle of A is stored;
59 *> = 'L': Lower triangle of A is stored.
65 *> The order of the matrix A. N >= 0.
71 *> The number of superdiagonals of the matrix A if UPLO = 'U',
72 *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
77 *> AB is COMPLEX*16 array, dimension (LDAB,N)
78 *> On entry, the upper or lower triangle of the Hermitian band
79 *> matrix A, stored in the first kd+1 rows of the array. The
80 *> j-th column of A is stored in the j-th column of the array AB
82 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
83 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
85 *> On exit, if INFO = 0, the factor S from the split Cholesky
86 *> factorization A = S**H*S. See Further Details.
92 *> The leading dimension of the array AB. LDAB >= KD+1.
98 *> = 0: successful exit
99 *> < 0: if INFO = -i, the i-th argument had an illegal value
100 *> > 0: if INFO = i, the factorization could not be completed,
101 *> because the updated element a(i,i) was negative; the
102 *> matrix A is not positive definite.
108 *> \author Univ. of Tennessee
109 *> \author Univ. of California Berkeley
110 *> \author Univ. of Colorado Denver
113 *> \date November 2011
115 *> \ingroup complex16OTHERcomputational
117 *> \par Further Details:
118 * =====================
122 *> The band storage scheme is illustrated by the following example, when
125 *> S = ( s11 s12 s13 )
133 *> If UPLO = 'U', the array AB holds:
135 *> on entry: on exit:
137 *> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H
138 *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H
139 *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
141 *> If UPLO = 'L', the array AB holds:
143 *> on entry: on exit:
145 *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
146 *> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 *
147 *> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * *
149 *> Array elements marked * are not used by the routine; s12**H denotes
150 *> conjg(s12); the diagonal elements of S are real.
153 * =====================================================================
154 SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
156 * -- LAPACK computational routine (version 3.4.0) --
157 * -- LAPACK is a software package provided by Univ. of Tennessee, --
158 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161 * .. Scalar Arguments ..
163 INTEGER INFO, KD, LDAB, N
165 * .. Array Arguments ..
166 COMPLEX*16 AB( LDAB, * )
169 * =====================================================================
172 DOUBLE PRECISION ONE, ZERO
173 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
175 * .. Local Scalars ..
177 INTEGER J, KLD, KM, M
180 * .. External Functions ..
184 * .. External Subroutines ..
185 EXTERNAL XERBLA, ZDSCAL, ZHER, ZLACGV
187 * .. Intrinsic Functions ..
188 INTRINSIC DBLE, MAX, MIN, SQRT
190 * .. Executable Statements ..
192 * Test the input parameters.
195 UPPER = LSAME( UPLO, 'U' )
196 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
198 ELSE IF( N.LT.0 ) THEN
200 ELSE IF( KD.LT.0 ) THEN
202 ELSE IF( LDAB.LT.KD+1 ) THEN
206 CALL XERBLA( 'ZPBSTF', -INFO )
210 * Quick return if possible
215 KLD = MAX( 1, LDAB-1 )
217 * Set the splitting point m.
223 * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
225 DO 10 J = N, M + 1, -1
227 * Compute s(j,j) and test for non-positive-definiteness.
229 AJJ = DBLE( AB( KD+1, J ) )
230 IF( AJJ.LE.ZERO ) THEN
238 * Compute elements j-km:j-1 of the j-th column and update the
239 * the leading submatrix within the band.
241 CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
242 CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
243 $ AB( KD+1, J-KM ), KLD )
246 * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
250 * Compute s(j,j) and test for non-positive-definiteness.
252 AJJ = DBLE( AB( KD+1, J ) )
253 IF( AJJ.LE.ZERO ) THEN
261 * Compute elements j+1:j+km of the j-th row and update the
262 * trailing submatrix within the band.
265 CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
266 CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
267 CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
268 $ AB( KD+1, J+1 ), KLD )
269 CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
274 * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
276 DO 30 J = N, M + 1, -1
278 * Compute s(j,j) and test for non-positive-definiteness.
280 AJJ = DBLE( AB( 1, J ) )
281 IF( AJJ.LE.ZERO ) THEN
289 * Compute elements j-km:j-1 of the j-th row and update the
290 * trailing submatrix within the band.
292 CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
293 CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
294 CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
295 $ AB( 1, J-KM ), KLD )
296 CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
299 * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
303 * Compute s(j,j) and test for non-positive-definiteness.
305 AJJ = DBLE( AB( 1, J ) )
306 IF( AJJ.LE.ZERO ) THEN
314 * Compute elements j+1:j+km of the j-th column and update the
315 * trailing submatrix within the band.
318 CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
319 CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
320 $ AB( 1, J+1 ), KLD )