1 *> \brief \b ZLASCL2 performs diagonal scaling on a vector.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZLASCL2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlascl2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlascl2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlascl2.f">
21 * SUBROUTINE ZLASCL2 ( M, N, D, X, LDX )
23 * .. Scalar Arguments ..
26 * .. Array Arguments ..
27 * DOUBLE PRECISION D( * )
28 * COMPLEX*16 X( LDX, * )
37 *> ZLASCL2 performs a diagonal scaling on a vector:
39 *> where the DOUBLE PRECISION diagonal matrix D is stored as a vector.
41 *> Eventually to be replaced by BLAS_zge_diag_scale in the new BLAS
51 *> The number of rows of D and X. M >= 0.
57 *> The number of columns of X. N >= 0.
62 *> D is DOUBLE PRECISION array, length M
63 *> Diagonal matrix D, stored as a vector of length M.
68 *> X is COMPLEX*16 array, dimension (LDX,N)
69 *> On entry, the vector X to be scaled by D.
70 *> On exit, the scaled vector.
76 *> The leading dimension of the vector X. LDX >= M.
82 *> \author Univ. of Tennessee
83 *> \author Univ. of California Berkeley
84 *> \author Univ. of Colorado Denver
89 *> \ingroup complex16OTHERcomputational
91 * =====================================================================
92 SUBROUTINE ZLASCL2 ( M, N, D, X, LDX )
94 * -- LAPACK computational routine (version 3.6.1) --
95 * -- LAPACK is a software package provided by Univ. of Tennessee, --
96 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
99 * .. Scalar Arguments ..
102 * .. Array Arguments ..
103 DOUBLE PRECISION D( * )
104 COMPLEX*16 X( LDX, * )
107 * =====================================================================
109 * .. Local Scalars ..
112 * .. Executable Statements ..
116 X( I, J ) = X( I, J ) * D( I )