1 *> \brief \b ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZLANGB + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlangb.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlangb.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlangb.f">
21 * DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
24 * .. Scalar Arguments ..
26 * INTEGER KL, KU, LDAB, N
28 * .. Array Arguments ..
29 * DOUBLE PRECISION WORK( * )
30 * COMPLEX*16 AB( LDAB, * )
39 *> ZLANGB returns the value of the one norm, or the Frobenius norm, or
40 *> the infinity norm, or the element of largest absolute value of an
41 *> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
47 *> ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
49 *> ( norm1(A), NORM = '1', 'O' or 'o'
51 *> ( normI(A), NORM = 'I' or 'i'
53 *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
55 *> where norm1 denotes the one norm of a matrix (maximum column sum),
56 *> normI denotes the infinity norm of a matrix (maximum row sum) and
57 *> normF denotes the Frobenius norm of a matrix (square root of sum of
58 *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
66 *> NORM is CHARACTER*1
67 *> Specifies the value to be returned in ZLANGB as described
74 *> The order of the matrix A. N >= 0. When N = 0, ZLANGB is
81 *> The number of sub-diagonals of the matrix A. KL >= 0.
87 *> The number of super-diagonals of the matrix A. KU >= 0.
92 *> AB is COMPLEX*16 array, dimension (LDAB,N)
93 *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
94 *> column of A is stored in the j-th column of the array AB as
96 *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
102 *> The leading dimension of the array AB. LDAB >= KL+KU+1.
107 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
108 *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
115 *> \author Univ. of Tennessee
116 *> \author Univ. of California Berkeley
117 *> \author Univ. of Colorado Denver
120 *> \date September 2012
122 *> \ingroup complex16GBauxiliary
124 * =====================================================================
125 DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
128 * -- LAPACK auxiliary routine (version 3.4.2) --
129 * -- LAPACK is a software package provided by Univ. of Tennessee, --
130 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
133 * .. Scalar Arguments ..
135 INTEGER KL, KU, LDAB, N
137 * .. Array Arguments ..
138 DOUBLE PRECISION WORK( * )
139 COMPLEX*16 AB( LDAB, * )
142 * =====================================================================
145 DOUBLE PRECISION ONE, ZERO
146 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
148 * .. Local Scalars ..
150 DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
152 * .. External Functions ..
153 LOGICAL LSAME, DISNAN
154 EXTERNAL LSAME, DISNAN
156 * .. External Subroutines ..
159 * .. Intrinsic Functions ..
160 INTRINSIC ABS, MAX, MIN, SQRT
162 * .. Executable Statements ..
166 ELSE IF( LSAME( NORM, 'M' ) ) THEN
168 * Find max(abs(A(i,j))).
172 DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
173 TEMP = ABS( AB( I, J ) )
174 IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
177 ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
184 DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
185 SUM = SUM + ABS( AB( I, J ) )
187 IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
189 ELSE IF( LSAME( NORM, 'I' ) ) THEN
198 DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
199 WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
205 IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
207 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
216 CALL ZLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
218 VALUE = SCALE*SQRT( SUM )