1 DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
2 $ LDAF, IPIV, C, CAPPLY,
5 * -- LAPACK routine (version 3.2.1) --
6 * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
7 * -- Jason Riedy of Univ. of California Berkeley. --
10 * -- LAPACK is a software package provided by Univ. of Tennessee, --
11 * -- Univ. of California Berkeley and NAG Ltd. --
15 * .. Scalar Aguments ..
18 INTEGER N, LDA, LDAF, INFO
20 * .. Array Arguments ..
22 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
23 DOUBLE PRECISION C( * ), RWORK( * )
29 * ZLA_GERCOND_C computes the infinity norm condition number of
30 * op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
35 * TRANS (input) CHARACTER*1
36 * Specifies the form of the system of equations:
37 * = 'N': A * X = B (No transpose)
38 * = 'T': A**T * X = B (Transpose)
39 * = 'C': A**H * X = B (Conjugate Transpose = Transpose)
42 * The number of linear equations, i.e., the order of the
45 * A (input) COMPLEX*16 array, dimension (LDA,N)
46 * On entry, the N-by-N matrix A
49 * The leading dimension of the array A. LDA >= max(1,N).
51 * AF (input) COMPLEX*16 array, dimension (LDAF,N)
52 * The factors L and U from the factorization
53 * A = P*L*U as computed by ZGETRF.
55 * LDAF (input) INTEGER
56 * The leading dimension of the array AF. LDAF >= max(1,N).
58 * IPIV (input) INTEGER array, dimension (N)
59 * The pivot indices from the factorization A = P*L*U
60 * as computed by ZGETRF; row i of the matrix was interchanged
63 * C (input) DOUBLE PRECISION array, dimension (N)
64 * The vector C in the formula op(A) * inv(diag(C)).
66 * CAPPLY (input) LOGICAL
67 * If .TRUE. then access the vector C in the formula above.
69 * INFO (output) INTEGER
70 * = 0: Successful exit.
71 * i > 0: The ith argument is invalid.
73 * WORK (input) COMPLEX*16 array, dimension (2*N).
76 * RWORK (input) DOUBLE PRECISION array, dimension (N).
79 * =====================================================================
84 DOUBLE PRECISION AINVNM, ANORM, TMP
90 * .. External Functions ..
94 * .. External Subroutines ..
95 EXTERNAL ZLACN2, ZGETRS, XERBLA
97 * .. Intrinsic Functions ..
98 INTRINSIC ABS, MAX, REAL, DIMAG
100 * .. Statement Functions ..
101 DOUBLE PRECISION CABS1
103 * .. Statement Function Definitions ..
104 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
106 * .. Executable Statements ..
107 ZLA_GERCOND_C = 0.0D+0
110 NOTRANS = LSAME( TRANS, 'N' )
111 IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
112 $ LSAME( TRANS, 'C' ) ) THEN
113 ELSE IF( N.LT.0 ) THEN
117 CALL XERBLA( 'ZLA_GERCOND_C', -INFO )
121 * Compute norm of op(A)*op2(C).
129 TMP = TMP + CABS1( A( I, J ) ) / C( J )
133 TMP = TMP + CABS1( A( I, J ) )
137 ANORM = MAX( ANORM, TMP )
144 TMP = TMP + CABS1( A( J, I ) ) / C( J )
148 TMP = TMP + CABS1( A( J, I ) )
152 ANORM = MAX( ANORM, TMP )
156 * Quick return if possible.
159 ZLA_GERCOND_C = 1.0D+0
161 ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
165 * Estimate the norm of inv(op(A)).
171 CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
178 WORK( I ) = WORK( I ) * RWORK( I )
182 CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
185 CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
189 * Multiply by inv(C).
193 WORK( I ) = WORK( I ) * C( I )
198 * Multiply by inv(C**H).
202 WORK( I ) = WORK( I ) * C( I )
207 CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
210 CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
217 WORK( I ) = WORK( I ) * RWORK( I )
223 * Compute the estimate of the reciprocal condition number.
225 IF( AINVNM .NE. 0.0D+0 )
226 $ ZLA_GERCOND_C = 1.0D+0 / AINVNM